

Inferenza statistica – Esonero 2 3 giugno 2021

Cognome, nome e.n. di matricola:
eognome, nome e n. di matricola.
A – Quesiti [dove necessario giustificare adeguatamente le risposte] 1. Sia X_1, \ldots, X_n un campione causale da una popolazione $X \sim N(\theta_1, \theta_2)$, con entrambi i parametri incogniti. Per un campione di dimensione $n = 10$ si ha che $\sum_{i=1}^{n} (x_i - \overline{x}_n)^2 = 30$. Calcolare l'intervallo di confidenza per θ_2 di livello 0.95 sapendo che $\chi^2_{n-1;0.025} = 2.7$, $\chi^2_{n;0.025} = 3.2$, $\chi^2_{n-1;0.975} = 19$, $\chi^2_{n;0.975} = 20$. Risp. $C = \{ (N-1) \leq N \}$
 2. Sia X₁,, X_n ~ N(θ, 1) i.i.d (a) Calcolare l'intervallo di confidenza di livello 1 − α per θ sapendo che ∑_{i=1}ⁿ x_i = 36, n = 18 e z_{1-α/2} = 1. (b) Stabilire se, sulla base di questo intervallo, è plausibile supporre che il vero valore di θ sia pari a 2 (rispondere e motivare). Risp. (a) C = X n ± 2 - ω √√n = X n ± √√n
$= \frac{36 \pm 1}{18} = 11.8 + 2.2$ Risp. (b) $9 \in [1.8, 2.2] = 0$ ACCETIO Ho (line) (line) $0 < 0$
3. Sia $X_1, \ldots, X_n \sim N(\theta, 1)$ i.i.d Scrivere l'espressione generica della statistica test di Karlin-Rubin (UMP) per il confronto delle ipotesi $H_0: \theta = 0.2$ vs. $H_1: \theta > 0.2$. Sapendo che $\overline{x} = 0.7, n = 16, z_{\alpha} = -1.6, z_{1-\alpha} = 1.6, z_{\alpha/2} = -1.9, z_{1-\alpha/2} = 1.9$, determinare il valore numerico della statistica test, scrivere la regola di rifiuto del test di ampiezza α (in funzione dell'opportuno percentile) e stabilire se si accetta o rifiuta H_0 . Risp.
$W = \frac{\sqrt{N}(N_N - N_0)}{\sqrt{N}(N_N - N_0)} = \frac{\sqrt{N}(N_N - N_0)}{\sqrt{N}(N_N - N_0)}$ $V = \frac{\sqrt{N}(N_N - N_0)}{\sqrt{N}(N_N - N_0)} = \frac{\sqrt{N}(N_N - N_0)}{\sqrt{N}(N_N - N_0)} = \frac{\sqrt{N}(N_N - N_0)}{\sqrt{N}(N_N - N_0)}$
Regola generale per questo test: $\frac{d}{d}$ $$
4. Sia $X_1, \ldots, X_n \sim N(\theta, 1)$. Si consideri il campione osservato con: $\overline{x} = 4$, $\sum (x_i - \overline{x})^2 = 64$, $n = 25$, $\theta_0 = 4$. Scrivere in funzione di $\Phi(\cdot)$ o di pnorm(\cdot) l'espressione del p-value per la verifica delle ipotesi $H_0: \theta = 4$ vs. $H_1: \theta < 4$. Calcolare il p-value e stabilire se si accetta o rifiuta H_0 in un test di ampiezza $\alpha = 0.05$.
Risp w.oss: $W \cdot 0\% = V \cdot (x_N - Q_0) / \overline{Q}$
valore di w.oss: $W \circ SS = V2S (4-4)/1 = 0$
espressione generica p-value:
valore p-value: \bigcirc

5.	Sia X_1, X_2, X_3 un campione causale di dimensione $n=3$ da una popolazione di Poisson di parametro θ .
	Considerare il sistema di ipotesi $H_0: \theta=2$ vs. $\theta=1$. Si consideri la regione di rifiuto dell'ipotesi nulla
	del test definita da R = $\{\mathbf{x}_n : \sum_{i=1}^3 x_i < 2\}$. Calcolare la probabilità di errore di I specie associata alla
	regione R.
	Risp.
	X= H(R) (H0) = W (ZX) 22 0 = 2)=
	= P(ZXi=0 0=2)+P(ZXi=1 0=2)
	ZXI ON Pois (NO) = Qui toisson (6)
	- NO - NO - NO - NO
	e + (no)e = e (1+no) = e (1+6)
	= 0.017
6.	Sia X_1, \ldots, X_n un campione causale da una popolazione con funzione di densità $f_X(x;\theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$, $x \ge 0$, $\theta > 0$. Determinare l'espressione dell'intervallo di confidenza esatto di livello $1 - \alpha$.
	Risp.
	Xi 0 N 4a (1, scale = 0) 11id
	=D ZXi O ~ Ga (M. SC = O) =D ZXV ~ GQ (NV. 1)
	· to
	711
	1-0 = 1/0 19 5 20 5 92 J =D
	0 0 0 1
	12= 11-x/2 di 92
	$Q = \begin{bmatrix} 2x & 1 & 0 \\ 2x & 1 & 0 \end{bmatrix}$ Com $Q_{12} = Q_{02} $ (m,1)
	92 1 91
7.	Con riferimento al precedente esercizio, determinare l'espressione dell'intervallo di confidenza asintotico di livello $1-\alpha$.
	Risp. \square
	$\theta NV = XN XN $
	$=$ 0 $=$ 1 (Θ) $=$
	$\frac{1}{x}$
	G= Xn + 21-02 Xn
	\sim \sim
	· ·
8.	Modello normale $N(\mu, \sigma^2)$. La statistica test per verifica di ipotesi su σ^2 (valore atteso noto) ha, sotto
	ipotesi nulla $(\mu = \mu_0)$ distribuzione:
9.	Date due v.a. $U \sim N(01)$ e $V = \chi_q^2$ indipendenti, quale tra le seguenti è una v.a. $F_{1,q}$?
	$\square \frac{U^2}{V^2/\sqrt{g}}; \square \frac{qU^2}{V}; \square \frac{qV}{U}; \square \frac{U^2}{qV}; \square q \frac{U}{\sqrt{V^2}}.$
10	7,74
120	Nel caso di un modello $EN(\theta)$ (esponenziale negativo di parametro θ), il limite inferiore di Cramer-Rao è:
	$\frac{\theta^2}{n};\; \Box \; \frac{\theta(1- heta)}{n};\; \Box \; \frac{ heta}{n};\; \Box \; \frac{1}{n heta^2};\; \Box \; \frac{n}{ heta^2}.$
11.	Ciascuno dei seguenti numeri indicano il p-value associato a un campione osservato (5 diversi campioni).
	Quali tra questi fornisce l'evidenza più forte contro l'ipotesi nulla?
,	$p = 0.001; \ \Box \ p = 0.050; \ \Box \ p = 0.010; \ \Box \ p = 0.150.$
12.	Se per il test $H_0: \mu = 0$ vs. $\mu \ge \mu_0$ (modello normale, varianza nota) il valore osservato della statistica
	test è $w_{oss} = z_{0.975}$, il corrispondente p-value risulta pari a
	□ 0.975

	Problema . Sia X_1, X_n un campione casuale in cui si assume per X_i la seguente funzione di densità di abilità:
	$f_X(x;\theta) = 2\theta x e^{-\theta x^2}$ $x \ge 0$, $\theta > 0$.
1.	Determinare l'espressione della funzione di verosimiglianza di θ e quella di $\widehat{\theta}_{mv}(\mathbf{X}_n)$, stimatore di massima verosimiglianza del parametro. Risp. $ \begin{bmatrix} \begin{pmatrix} \Theta \end{pmatrix} = \begin{pmatrix} \cdot & \Theta & \bullet \\ & & \bullet \end{bmatrix} & \begin{bmatrix} \cdot & \bullet \\ & & \bullet \end{bmatrix} & \begin{bmatrix} \cdot & \bullet \\ & & \bullet \end{bmatrix} & \begin{bmatrix} \cdot & \bullet \\ & & \bullet \end{bmatrix} $
	e(0) = nen o - ot $e'(0) = N - T = 0$
	$\frac{\ell(0)}{\ell(0)} = \frac{\ell(0)}{\ell(0)} = \frac{\ell(0)}{\ell(0)$
2.	Determinare l'informazione attesa e l'approssimazione normale della distribuzione campionaria di $\widehat{\theta}_{mv}(\mathbf{X}_n)$.
	Risp. $\frac{I_{h}(0) = \frac{N}{0}}{\sqrt{1 - \frac{N}{0}}}$
	ên 2 N (0, 02)
	Fornire l'espressione di uno stimatore della varianza asintotica di $\widehat{\theta}_{mv}(\mathbf{X}_n)$.
	Risp. $\frac{2}{\sqrt{2}[\theta_{NV}]} = \frac{2}{2} = 0$ $\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac$
	W / qu 2
4.	Determinare l'espressione dell'intervallo di confidenza asintotico di livello $1-\alpha$ per θ . Risp
	$G = \Theta NV \pm 21 - \alpha \qquad \Theta NV = \frac{N}{T} \pm \frac{2}{T} - \alpha \qquad \frac{N}{T}$
	- M + 21-2 1 T TVN
	Supponendo di avere osservato un campione di dimensione $n=20$ in cui $Y_n=\sum_{i=1}^n x_i^2=80$, determinare i valori numerici di $\hat{\theta}_{mv}$ e della stima della sua varianza asintotica.
	Risp. $\frac{1}{9} = \frac{1}{7} = \frac{1}{4} = 0.25$
	$\sqrt[4]{80} = \sqrt{7^2} = 20 80^2 = 0.003$

Risp	1	カラモ	± 1.0	26 1	7.) [Γ	
1	4 =	0 23	+ /	100	1/20	= [0.14-,0
					V20		
Parket and the second second						*	
,							
	e una statisti non decrescer		rispetto alla	quale il	modello ha raj	pporto delle	e verosimiglianz
Risp.	027	Óı	L(c	12)	- 921		-
	M		L(0,)			
201 -	(92)	* ext	, (_	0, -0	DIT	*12:- *1277	Toli.
	(01)		2	CV	J		o oli
	· /			>	0		
4 							
8. Si consideri	il sistema di	ipotesi H_0 :	$\theta = \theta_0$ vs.	$H_1: \theta < \theta$	o. Scrivere la	regione di	rifiuto (generica
del test UN	IP (di Karlir	n-Rubin) in f	unzione della	statistica	suffieciente e	dello stima	tore di massima
verosimiglia Pi ce	nza di θ .						Total Reserve
Risp.	- 5	*		· K	= 2 20	c T	> KY
	19 acia		T	. 10 1	c of ho		
5-1-	1 -	. 0				· C	
	$=$ $\sqrt{3}$	in.	N =	9 HV	1 L. K.	_}	
	,		1				
0. Si consideri	il sistema di i	inotosi U . A	_ 0 .m U	0 < 0 00	n 0 _ 9/5 C	nnauva di a	vere osservato u
9. Si consideri	dimensione η	n = 20 in cui	$Y_n = \sum_{i=1}^n x_i$	$\theta < \theta_0$, co $\theta = 80$. Cale	$0 = \frac{1}{\sqrt{3}}$, Su colare il valore	osservato <i>û</i>	vere osservato ui b_0 della statistica
campione di							
test \widetilde{W}_0 (tes		~~~~	(ê	nv - 6	90 / T	-1/2/6	, 1
test \widetilde{W}_0 (tes		1 7 7	150		- / /	1 6.	00)
test \widetilde{W}_0 (tes		W o	= (211		
test \widetilde{W}_0 (tes		W .		-/T -	00)/0		
test \widetilde{W}_0 (test Risp	di \widetilde{W}_0			,	00)/00	2	1.67
test \widetilde{W}_0 (tes	di \widetilde{W}_0		= VW (h	,	00)/0	2	1.67
test \widetilde{W}_0 (test Risp	di \widetilde{W}_0		= VW (h	,	00)/0	2	1.67
test W_0 (test Risp Espressione Valore nume [10]. Stabilire sets	di \widetilde{W}_0	V20 (= VW (n 20/80.	- 2/5) [2/5		$che z_{\alpha} = -1.648$
test W_0 (test Risp Espressione Valore nume et al. 0. Stabilire set $z_{\frac{\alpha}{2}} = 0$	di \widetilde{W}_0	V20 (= VW (n 20/80.	- 2/5) [2/5		
test W_0 (test Risp Espressione Valore nume 0.0. Stabilire set	di \widetilde{W}_0	V20 (= Vw (n 20/80 -	- <u>Z/5</u> di ampiezz) $ 2 $ 5 a $\alpha = 0.95$ per	θ , sapendo	$che z_{\alpha} = -1.645$
test W_0 (test Risp Espressione Valore nume 0. Stabilire set $z_{\frac{\alpha}{2}} = 0$	di \widetilde{W}_0	V20 (= Vw (n 20/80 -	- 2/5) [2/5	θ , sapendo	
test W_0 (test Risp Espressione Valore nume 0. Stabilire set $z_{\frac{\alpha}{2}} = 0$	di \widetilde{W}_0	V20 (= Vw (n 20/80 -	- <u><u><u>9</u>/5</u> di ampiezz</u>	a $\alpha = 0.95$ per	θ , sapendo	$che z_{\alpha} = -1.64$
test W_0 (test Risp Espressione Valore nume 0. Stabilire set $z_{\frac{\alpha}{2}} = 0$	di \widetilde{W}_0	V20 (= Vw (n 20/80 -	- <u>Z/5</u> di ampiezz) $ 2 $ 5 a $\alpha = 0.95$ per	θ , sapendo	$che z_{\alpha} = -1.645$

```
# 3 GIUGNO 2021 IS - esonero 2
# PARTE A
# ES. 1
al=0.05
n = 10
S2=30/(n-1)
q2=qchisq(1-al/2,n-1)
q1=qchisq(al/2,n-1)
L=(n-1)*S2/q2
U=(n-1)*S2/q1
c(L,U) # 1.5 - 11.1
     # 2.7
q1
q2
     # 19
# ES. 2
y = 36
n = 18
z=1
m=y/n
L=m-z*1/sqrt(n)
U=m+z*1/sqrt(n)
c(L,U) # 1.7 - 2.2
# Es. 3
n=16
m=0.7
th.0=0.2
sig=1
W=sqrt(n)*(m-th.0)/sig
W # 2
# Es. 4
n=4
m=4
th.0=4
sig=1
W=sqrt(n)*(m-th.0)/sig
p.value=pnorm(0) # 0.5
p.value>0.05 # accetto H.0 se TRUE
# Es. 5
dpois(0,6)+dpois(1,6)
# ovvero
\exp(-6)*7 # 0.017
# Es. 6-10 --> vedi altro foglio soluzioni
```

```
# Es. 5, 6, 9, 10
# Es. 5
n=20
T=80
smv=n/T
SMV
      # 0.25
v.as.hat=n/T^2
v.as.hat # 0.003
# C (es. 6)
L=smv-1.96*smv/sqrt(n)
U=smv+1.96*smv/sqrt(n)
U
# 0.14 - 0.35
# Test (Es. 9)
th.0=2/5
w.0=sqrt(n)*(smv-th.0)/th.0
w.0 # -1.677
# Test (Es. 10)
w.0 < 1.645 \# Rif se TRUE
```

PARTE B