# Lab 8 IS 2025 -- 24 aprile 2022 # Esercizio 1 M=10000 alpha=2 beta= 3 x.simul=rgamma(M,alpha,rate=beta) hist(x.simul,prob=T) curve(dgamma(x,alpha,rate=beta),add=T) # (a) valore atteso simulato EX=mean(x.simul) EX # valore atteso esatto alpha/beta # (b) varianza simulata VX=var(x.simul) VX # varianza esatta alpha/beta^2 # (c) probabilità simulata mean(x.simul>0.5&x.simul<2) # probabilità esatta pgamma(2,alpha,rate=beta)-pgamma(0.5,alpha,rate=beta) # (d) mediana simulata quantile(x.simul,0.7) # mediana esatta qgamma(0.7,alpha,rate=beta) # (e) quantile simulata quantile(x.simul,0.7) # quantiile esatto qgamma(0.7,alpha,rate=beta) # Esercizio 2 install.packages("invgamma") library(invgamma) M=50000 alpha=4 beta= 3 x.simul=rgamma(M,alpha,rate=beta) y.simul=1/x.simul hist(y.simul,prob=T) # (a) Valore atteso EY=mean(y.simul) EY # valore atteso esatto: beta/(alpha-1) # (b) Varianza VY=var(y.simul) VY # varianza esatta: (beta^2)/(((alpha-1)^2)*(alpha-2)) # (c) Probab intervallo mean(y.simul>0.5&y.simul<2) # esatto pinvgamma(2,alpha,rate=beta)-pinvgamma(0.5,alpha,rate=beta) # (d) - (e) Mediana e quantile quantile(y.simul,0.5) quantile(y.simul,0.7) # esatti qinvgamma(0.5,alpha,rate=beta) qinvgamma(0.7,alpha,rate=beta) # Esercizio 3 M=10000 a=1 b=0.5 x.simul=rbeta(M,shape1=a,shape2=b) hist(x.simul,prob=T) curve(dbeta(x,a,b),add=T) y.simul=-log(x.simul) hist(y.simul,prob=T) # (a) E[X] e E[Y] E.X=mean(x.simul) E.Y=mean(y.simul) E.X E.Y # E[X]=a/(a+b) a/(a+b) # (b) V[X] e V[Y] V.X=var(x.simul) V.Y=var(y.simul) V.X V.Y # Varianza esatta beta... vedi Wiki # (c) P[X>0.2] e P[Y>0.2] # Per X abbiamo 1-pbeta(0.2,a,b) # con dati simulati mean(x.simul>0.2) # oppure length(x.simul[x.simul>0.2])/M # Per Y abbiamo mean(y.simul>0.2) # (d) P[0.10.1) # Per Y mean(y.simul<0.3&y.simul>0.1) # (e) Mediane # Per X qbeta(0.5,a,b) # oppure median(x.simul) # Per Y median(y.simul) # verifico mean(y.simul