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Abstract: Salmonella enterica infections result in diverse
clinical manifestations. Typhoid fever, caused by S.
enterica serovar Typhi (S. Typhi) and S. Paratyphi A, is a
bacteremic illness but whose clinical features differ from
other Gram-negative bacteremias. Non-typhoidal Salmo-
nella (NTS) serovars cause self-limiting diarrhea with
occasional secondary bacteremia. Primary NTS bacteremia
can occur in the immunocompromised host and infants in
sub-Saharan Africa. Recent studies on host–pathogen
interactions in Salmonellosis using genome sequencing,
murine models, and patient studies have provided new
insights. The full genome sequences of numerous S.
enterica serovars have been determined. The S. Typhi
genome, compared to that of S. Typhimurium, harbors
many inactivated or disrupted genes. This can partly
explain the different immune responses both serovars
induce upon entering their host. Similar genome degra-
dation is also observed in the ST313 S. Typhimurium strain
implicated in invasive infection in sub-Saharan Africa.
Virulence factors, most notably, type III secretion systems,
Vi antigen, lipopolysaccharide and other surface polysac-
charides, flagella, and various factors essential for the
intracellular life cycle of S. enterica have been character-
ized. Genes for these factors are commonly carried on
Salmonella Pathogenicity Islands (SPIs). Plasmids also carry
putative virulence-associated genes as well as those
responsible for antimicrobial resistance. The interaction
of Salmonella pathogen-associated molecular patterns
(PAMPs) with Toll-like receptors (TLRs) and NOD-like
receptors (NLRs) leads to inflammasome formation,
activation, and recruitment of neutrophils and macro-
phages and the production of pro-inflammatory cyto-
kines, most notably interleukin (IL)-6, IL-1b, tumor necrosis
factor (TNF)-a, and interferon-gamma (IFN)-c. The gut
microbiome may be an important modulator of this
immune response. S. Typhimurium usually causes a local
intestinal immune response, whereas S. Typhi, by
preventing neutrophil attraction resulting from activation
of TLRs, evades the local response and causes systemic
infection. Potential new therapeutic strategies may lead
from an increased understanding of infection pathogen-
esis.

Introduction

Typhoid fever is a global problem, with more than 27 million

cases worldwide each year resulting in an estimated 217,000

deaths [1]. Salmonella enterica serovar Typhi (S. Typhi) and S.

Paratyphi A are the Gram-negative bacteria that cause this

debilitating condition. It is most common among children,

especially in areas of Asia and Africa that lack clean water and

adequate sanitation, and is also an important travel-associated

disease [2]. S. Typhi is an exclusively human pathogen causing a

bacteremic disease that, unlike many other Gram-negative

bacteremias, does not typically manifest with neutrophilia or

septic shock [3]. The widespread appearance of antimicrobial-

resistant strains has limited treatment options [4,5]. Relapse and

chronic asymptomatic fecal carriage may complicate the illness

(Figure 1) [6,7]. Mortality usually results from intestinal perfora-

tion and peritonitis or from a severe toxic encephalopathy

associated with myocarditis and hemodynamic shock [8].

Infections with non-typhoidal Salmonella (NTS) serovars, such as

S. enterica serovar Typhimurium and S. Enteriditis, also cause a

significant disease burden, with an estimated 93.8 million cases

worldwide and 155,000 deaths each year (see [9] for review) [10].

NTS serovars usually cause self-limiting diarrhea with secondary

bacteremia occurring in less than 10% of patients. The host range

of non-typhoidal Salmonella serovars is broad, including poultry and

cattle, and NTS infection is commonly due to food poisoning in

developed countries. NTS serovars cause high rates of bacteremia

in the immunocompromised and, in sub-Saharan Africa, in

children below 5 years old and those with HIV infection [9,11].

Antimicrobial resistance is widespread [12].

The variations in the clinical features of infection with this

intracellular pathogen relate to differences in the interaction

between different Salmonella serovars and the host. This review

summarizes new and significant insights concerning the virulence

factors of both typhoid and non-typhoidal Salmonellae, their

difference at the genome level, novel mechanisms employed by

these intruders to circumvent the host defense, and their

interactions with both host microbiome and the innate immune

system.
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The Bacteria

Taxonomy and Genomics of Salmonella
The genus Salmonella is composed of two distinct species:

Salmonella bongori and Salmonella enterica, the latter being divided into

six subspecies. These subspecies are classified into more than 50

serogroups based on the O (somatic) antigen, and divided into

.2,400 serovars based on the H (flagellar) antigen. Complete

genome sequence from multiple Salmonella strains are available

[13]. For example, the S. Typhi type strain Ty2, the multidrug-

resistant (MDR) isolate CT18, and the S. Typhimurium strain

LT2 are composed of 4.79 (Ty2), 4.86 (CT18), and 4.81 (LT2)

megabases, respectively [14–16]. The core genomes of Escherichia

coli and S. enterica differ by only 10% in their DNA sequences and

suggest that the two species derived from a common ancestor

about 100 million years ago. Comparison of different S. Typhi

isolates show that they are highly related (clonal) and have arisen

from a single point of origin approximately 30,000–50,000 years

ago [17]. The sequence-based technique of MLST (multilocus

sequence typing) provides a more accurate indication of the

genomic relationship between different Salmonella isolates and may

supersede serotyping in the future [18]. Of the ,4,000 S. Typhi

genes, more than 200 are functionally disrupted or inactive, while

most of these homologs are still fully functional in S. Typhimur-

ium. This could in part explain the restricted host range of S.

Typhi [16]. Although it has been suggested that the different

clinical outcomes of infection between typhoid and NTS serovars

may be explained by differences in genome expression leading to

differences in host-pathogen recognition, one should also consider

the opposite possibility; that is, differences in host-pathogen

interaction may make certain genes dispensable, resulting in the

accumulation of pseudogenes [3,19,20].

Recent analysis of S. Typhimurium isolates from the unusually

invasive infections seen in sub-Saharan Africa have shown

dominance of a particular MLST type, ST313, distinct from the

usual S. Typhimurium sequence type, ST19, associated in other

Figure 1. Dissemination of S. Typhi during systemic infection. Typhoid is usually contracted by ingestion of food or water contaminated by
fecal or urinary carriers excreting S. Typhi. The incubation period is usually 7 to 14 d. In the small intestine the bacteria adhere to the mucosa and then
invade the epithelial cells. The Peyer’s patches, which are aggregrated lymphoid nodules of the terminal ileum, play an important role in the transport
to the underlying lymphoid tissue. Specialized epithelial cells such as M cells overlying these Peyer’s patches are probably the site of internalization of
S. Typhi. Once the bacteria have penetrated the mucosal barrier, the invading organism translocates to the intestinal lymphoid follicles and the
draining mesenteric lymph nodes, and some pass on to the reticuloendothelial cells of the liver and spleen. During the bacteremic phase, the bacteria
are widely disseminated throughout the body. Secondary infection can occur with liver, spleen, bone-marrow, gallbladder, and Peyer’s patches as the
most preferred sites. The gallbladder is the main reservoir during a chronic infection with S. Typhi and invasion occurs either directly from the blood
or by retrograde spread from the bile. Of interest, the ability of Salmonella to form biofilms on gallstones is likely to be a critical factor in
establishment of chronic carriage and shedding of S. Typhi [88]. The bacteria that are excreted in the bile can then reinvade the intestinal wall by the
mechanism previously described or are excreted by feces. Typical clinical symptoms are fever, malaise, and abdominal discomfort. Clinical features
such as a tender abdomen, hepatomegaly, splenomegaly, and a relative bradycardia are common. Rose spots, the classical skin lesions associated
with typhoid fever, are relatively uncommon and occur in 5%–30% of cases. The most severe manifestations of typhoid leading to sepsis and death
are either necrosis of the Peyer’s patches resulting in gut perforation and peritonitis or a toxic encephalopathy associated with myocarditis and
haemodynamic shock [8,89].
doi:10.1371/journal.ppat.1002933.g001
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parts of the world with diarrhea. In the D23580 invasive S.

Typhimurum isolate from Malawi, there is loss of gene function,

including genes previously implicated in the virulence of S.

Typhimurium in the murine model of infection, such as sseI

(encoding a type III-secreted effector protein) and ratB (encoding a

secreted protein associated with intestinal persistence), and of the

44 novel pseudogenes or deletions in the strain relative to LT2, 26

are also pseudogenes or deletions in S. Typhi or S. Paratyphi A

[21]. These observations suggest that a similar process of adaption

to the human host may be occurring in African S. Typhimurium as

has been observed in S. Typhi.

Virulence Factors
About 90% of the genes in S. Typhi and S. Typhimurium

serovars are identical [16]. The 10% of genes that differ include

virulence factors, which determine their pathogenic potential

(Figure 2) [20]. The virulence factors of the Salmonella serovars are

mostly encoded on the Salmonella pathogenicity islands (SPI).

Plasmids and prophages. Integrated bacteriophages, phage

remnants, or plasmids are single- or double-stranded DNA

molecules that can be exchanged between bacteria by horizontal

gene transfer. They give bacteria the opportunity to pass on or

receive selected genes that may enhance virulence or result in

antimicrobial resistance [17,22]. Certain Salmonella spp. have a

self-transmissible virulence plasmid called pSLT, which harbors

the spv genes. The spvB enzyme, which acts as an intracellular

ADP-ribosylating toxin causing host cytotoxicity, is necessary for

intra-macrophage survival but is absent in S. Typhi and S.

Paratyphi A [20,23]. Putative virulence-associated plasmid has

only recently been identified in S. Typhi. The chimeric plasmid

pR(ST98) carries genes that are involved in drug resistance and

apoptosis induction in macrophages [24,25]. Additionally, a linear

plasmid in S. Typhi strains originating from Indonesia, called

pBSSB1, carries the fljBz66 gene, which encodes a flagellin antigen

known as H:z66 [26]. Whether the presence of these particular

plasmids has an impact on the virulence of S. Typhi is not known.

The role of plasmids carrying antimicrobial resistance genes,

such as cat, dhfr7, dhfr14, sul1, and blaTEM-1, in the transfer and

spread of antimicrobial resistance has been well described [20,27].

S. Typhi is able to exchange multidrug resistance R-plasmids with

E. coli and other enteric bacteria [28,29]. The self-transmissible

incompatibility group (Inc)HI1 plasmids almost exclusively confer

the phenotype of MDR S. Typhi. The presence of the MDR

phenotype has been suggested to be associated with the

development of severe or fatal disease [30,31]. The presence of

a composite genetic element encoding multiple antimicrobial

resistance genes on the virulence-associated plasmid in the ST313

serovar Typhimurium isolates causing invasive disease in Africa

may provide an explanation for a linkage between drug resistance

and an invasive phenotype [21]. Prophages and phage remnants

Figure 2. Virulence of S. Typhimurium and S. Typhi. S. Typhimurium and S. Typhi possess partly overlapping and a partly distinct repertoire of
virulence factors. Both serovars express the type III secretion system, lipopolysaccharide, and other surface polysaccharides, fimbrae, flagellin, and
bacterial DNA. The Vi antigen is exclusively expressed by S. Typhi and is able to circumvent the innate immune response by repressing flagellin and
LPS expression. SPI, Salmonella pathogenicity islands.
doi:10.1371/journal.ppat.1002933.g002
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can carry non-essential ‘‘cargo’’ genes involved in bacterial

virulence including several type III secretion system effectors,

which play an important role in Salmonella virulence [20,32].

Type III secretion system and outer membrane

vesicles. Salmonella enterica spp. contains two type III secretion

system (T3SS) gene clusters encoding a secretion apparatus that

functions like a molecular syringe. The T3SS secretes effector

proteins into the target-cell cytosol, which manipulate host-cell

signaling cascades. These effector proteins are suggested to have

multiple activities within host cells; for example, SopB is involved

in invasion and Akt activation, which causes fluid secretion and

Salmonella containing vacuole (SCV) formation (Figure 3a) [33–36].

The majority of genes encoding for these virulence-associated

effector molecules are located on the SPIs. Other effector proteins

such as SopE, SspH1, SseI, SodC-1, and SopE2 are encoded by

phages or phage remnants [22,37,38].

Of the 21 SPIs known to date, SPI-1 and SPI-2 are the most

studied. S. Typhimurium and S. Typhi genomes share 11 common

SPIs; four are specific to S. Typhi (SPI-7, 15, 17, and 18) and only

one (SPI-14) for S. Typhimurium [20]. SPI-1 harbors the genes for

T3SS1, which is crucial for the invasion of non-phagocytic cells

such as M cells in the gut lumen and activation of pro-

inflammatory responses [39]. However, S. Typhimurium mutants

deficient in SPI-1 can disseminate and cause systemic infection

from the gastrointestinal tract by CD-18 expressing phagocytic

cells such as dendritic cells (DCs) without disrupting the epithelial

barrier [40,41]. Therefore, this alternative pathway via CD-18

immune cells facilitates the development of a systemic infection for

intracellular-adapted bacteria like Salmonella. T3SS2, encoded on

SPI-2, plays a crucial role during the second phase of invasion,

intracellular survival in macrophages [42]. Within the phagocyte,

T3SS2 prevents trafficking from the phagocyte NADPH oxidase

(nicotinamide adenine dinucleotide phosphate-oxidase) towards

the SCV, thereby preventing a phagocytic burst [43,44]. Although

the importance of these systems for the virulence of S.

Typhimurium is clear, limited data are available concerning the

role of T3SS in S. Typhi. Of note, the SPI-2 T3SS of S. Typhi is

not required for survival in human macrophages but may be used

during infection of other cell types, such as DCs or natural killer

cells, leading to the notion that the SPI-2 T3SS may be required to

modulate the host immune system to establish long-term

asymptomatic infection [45].

Bacterial outer membrane vesicles (OMV) have been recently

identified as another method used by Salmonella to transfer its

Figure 3. Salmonella and its first encounter with the host. (a) The intracellular life of Salmonella. Invasion of phagocytic and non-phagocytic
cells. Salmonella is a facultative intracellular pathogen that can be found in a variety of phagocytic and non-phagocytic cells, in which it is able to
survive and replicate. To establish this intracellular niche, the T3SS1 and -2 play a predominant role; key virulence factors are involved in accessing
and utilizing these cells [36]. After ingestion, intestinal colonization follows and Salmonella enters enterocytes and dendritic cells in the intestinal
epithelium [36]. Subsequently, Salmonella that reach the submucosa can be internalized by resident macrophages via different mechanisms: by
phagocytosis, active invasion using the T3SS1 or T3SS1-independent invasion using fimbriae or other adhesins on the bacterial surface. (1)
Salmonella-containing-vacuole. Following internalization Salmonella remains within a modified phagosome known as the Salmonella containing
vacuole (SCV) and injects a limited number of effector proteins, such as SipA, SipC, SopB/SigD, SodC-1, SopE2, and SptP into the cytoplasm. These
effectors cause rearrangements of the actin cytoskeleton and SCV morphology among other changes. (2) Replication within the SCV. Salmonella
survives and replicates within the SCV, where it is able to avoid host antimicrobial effector mechanisms. The T3SS2 is required for systemic virulence
in the mouse and survival within macrophages. (3) Transport of Salmonella to distant sites. After penetration of the M cells, the invading
microorganisms translocate to the intestinal lymphoid follicles and the draining mesenteric lymph nodes, and some pass on to the
reticuloendothelial cells of the liver and spleen. Salmonella organisms are able to survive and multiply within the mononuclear phagocytic cells
of the lymphoid follicles, liver, and spleen [36]. (b) Host–pathogen interaction in typhoid and non-typhoid Salmonella. Simplified scheme of the first
encounter between Salmonella spp. and the immune system. Specified cells such as neutrophils, macrophages, dendritic, phagocytic, and epithelial
cells recognize specific pathogen associated molecular patterns (PAMPs) and danger-associated-molecular patterns (DAMPs), thereby eliciting an
immune response. PAMPs such as LPS, Flagella, and bacterial DNA can trigger TRL4, TRL5, and TRL9, respectively. TLR-induced activation of NF-kB is
essential for the production of pro-IL-1b, pro-IL-18, which can be negatively regulated by IRAK-M [90]. The NLRs are situated in the cytosol and can
also recognize PAMPs. However, NLRP3 is triggered by a different, yet unknown, mechanism, although DAMPs are thought to play a crucial role. TLR,
toll-like receptors; LPS, lipopolysaccharide; NF-kB, regulated nuclear factor kappa-light-chain-enhancer of activated B cells; IRAK-M, IL-1R-assiociated
kinase-M; IL, Interleukin; ASC, apoptotic speck protein containing a caspase recruitment domain; NLR, NOD-like receptors (including NLRP3 and
NLRC4); MyD88, myeloid differentiation primary response gene [88].
doi:10.1371/journal.ppat.1002933.g003
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virulence factors into the cytoplasm of the host cell [46]. For

example, S. Typhi uses the OMV to enclose ClyA, a pore-forming

cytotoxin, and subsequently release this virulence factor extra-

cellulary [47]. Moreover, it has also been shown that OMVs can

stimulate responses important for the activation of DCs, priming

Salmonella-specific T and B cells, and possess pro-inflammatory and

antigenic function, which makes them therefore attractive as

vaccine candidates [48].

Fimbrae and flagella. Fimbriae or pili are found on the

bacterial surface and are thought to be mainly important for

biofilm formation, colonization, and initial attachment to the host

cells, although little is known about their true virulence potential

[20,36]. Each Salmonella serovar harbors a unique combination of

fimbrial operons. Flagella are long helical filaments attached to

rotary motors embedded within the membrane that enable

Salmonella species to travel to the epithelial barrier after ingestion.

In vitro, flagellin causes upregulation of pro-inflammatory

cytokines in tissue culture models [49]. However, in vivo data

showed that the role of flagella in virulence can be dispensable and

model-dependent [50–52].

Polysaccharides and other putative virulence factors. The

polysaccharidic capsule Vi antigen is of key importance for S.

Typhi virulence, but notably absent in S. Typhimurium, S.

Paratyphi A, and most other Salmonella serovars. Its presence

increases infectivity of S. Typhi and disease severity, and natural

infection is usually associated with the expression of Vi antigen in

isolated S. Typhi [53]. However, Vi negative mutants are still

able to cause a typhoid-like illness in human volunteers [54]. Two

widely separated chromosomal regions, ViaA together with ViaB,

located on SPI-7, are needed for Vi synthesis [55]. Recently it has

been hypothesized that the Vi capsule can prevent host-pathogen

recognition by preventing lipopolysaccharide (LPS) recognition

by pattern recognition receptors (PRRs) [56]. In this way S.

Typhi does not elicit a neutrophil influx in the small bowel but is

able to disseminate systemically and lead to a persistent bacterial

infection [3]. Other well-documented virulence factors include

ion transporters and superoxide-dismutases [36].

The Host Defense

PRRs, most notably the Toll-like receptors (TLR) and NOD-

like receptors (NLR), are the first component of the immune

system to detect host invasion by pathogens, initiate immune

responses, and form the crucial link between innate and adaptive

immunity [57,58]. PRRs recognize conserved motifs on pathogens

termed ‘‘pathogen-associated-molecular-patterns’’ (PAMPs) and

are also able to recognize endogenous danger signals or ‘‘danger-

associated molecular-patterns’’ (DAMPs). During invasive Salmo-

nella infection, PAMPs and DAMPs initiate the innate immune

system leading to activation and recruitment of neutrophils and

macrophages and the production of pro-inflammatory cytokines,

most notably Interleukin (IL)-6, IL-1b, tumor necrosis factor

(TNF)-a, and interferon-gamma (IFN)-c (Figure 3b) [59–65]. IFN-

c plays a central role in the control of persistent infection by

affecting the extent of macrophage activation [64]. IL-18 is

important for IFN-c release and early host resistance to Salmonella

infections [66].

During severe bacterial infection uncontrolled activation of the

innate immune response can lead to detrimental systemic

inflammation, intravascular coagulation, tissue injury, and even-

tually death [67,68]. This hyper pro-inflammatory response is only

seen to a limited extent in patients with typhoid fever. Coagulation

abnormalities do not become clinically apparent and serum levels

of TNF-a and IL-1b are low compared to the levels measured in

patients with systemic infections caused by other Gram-negative

bacteria [60,62]. Patients with typhoid fever demonstrate a

distinct and highly reproducible signature in the peripheral blood,

shown by micro-arrays and transcriptional profiling, that changes

during treatment and convalescence, returning in the majority of

cases to a normal profile as measured in healthy uninfected

controls [63]. Patients who do return to a normal profile may be

genetically or temporarily incapable of developing an effective

immune response and may be more susceptible to re-infection,

relapse, or the establishment of a carrier state [63]. In this respect

it is of importance to note that antimicrobial treatment—which

can lead to depletion of the gut microbiome—is associated with

prolonged deleterious effects on intestinal Salmonella colonization

resistance, which can result in increased fecal shedding and

carrier status (Box 1) [69]. In contrast to NTS, which is an

important cause of morbidity and mortality in patients with an

inherited or acquired immunodeficiency syndrome such as HIV

infection, IL-12R deficiency, or chronic granulomatous disease,

typhoid fever has not been associated with any primary or

acquired immunodeficiency or underlying disease [9,70,71]. Such

a difference can potentially be ascribed to a difference in

signaling through PRRs where production of interleukin-17-

producing T cells and their associated family cytokines (IL-17,

-21, -22, -26) play an important role in the dissemination of NTS

but not S. Typhi [9].

Pattern Recognition Receptors
Salmonella spp. expresses multiple PAMPs, most notably T3SS,

flagella, fimbrae, LPS (Vi antigen), and bacterial DNA, which are

recognized by PRRs (Figure 2). Not surprisingly, TLR4 plays an

important role in invasive Salmonellosis. TLR4-deficient mice

Box 1. Salmonella and the Gut Microbiome

In recent years it has become clear that the intestinal
microbiome, consisting of more bacteria than the total
number of cells in the human body, can be seen as an
exteriorised organ that exerts numerous functions in the
host response against Salmonellosis. The gut hosts
,161014 bacteria from 500–1,000 different species of
which three bacterial divisions—the Firmicutes (Gram-
positive), Bacteroides (Gram-negative), and Actinobacteria
(Gram-positive)—dominate. The healthy gut microbiome
can protect against epithelial cell injury by producing toxic
metabolites known to repress Salmonella virulence gene
expression, optimizes host immune systems, and mediates
pathogen clearance from the gut lumen after non-
typhoidal Salmonella diarrhea [69,91]. Of importance,
antimicrobial treatment depletes the gut microbiome
and is associated with prolonged deleterious effects on
intestinal Salmonella colonization resistance, which can
result in increased fecal shedding and carrier status
induction [69,92,93]. Ingeniously, S. Typhimurium is able
to exploit a specific microbiome-derived nutrient, named
ethanolamine, in order to acquire a significant growth
advantage in the lumen of inflamed intestine over other
potential pathogens [94]. Similarly, S. Typhimurium viru-
lence factors have been found to induce host-driven
production of a new electron acceptor that allows the
pathogen to use respiration to compete with fermenting
gut microbes [95]. The potential of microbiota-based
therapies for curing Salmonella-infected patients has
opened a whole new area of research [69].
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have increased susceptibility to Salmonella infection, and stimula-

tion of TLR4 by LPS has an important role in the development of

septic shock during S. Typhimurium infection [56,72–74].

Salmonella flagellin leads to TLR5 activation [49]. Intriguingly,

the Vi capsule expressed in mutated S. Typhimurium prevents

both in vitro and in vivo recognition of Salmonella LPS by TLR4

[50,56]. The presence of the Vi antigen on the cell surface leads to

capsule formation, which ultimately prevents this recognition. A

crucial role is ascribed to the TviA regulatory protein, encoded on

the S. Typhi–specific SPI-7 (viaB locus), which downregulates

flagellin production and enhances Vi antigen attachment to the

cell surface [75]. The TviA protein therefore serves as a regulatory

switch affecting the ability of the host to recognize S. Typhi as an

intruder at crucial stages of the spread in humans.

The inflammasomes, which are intracellular complexes consist-

ing of caspase-1, NLRs (e.g., NLRP3- or NLRC4), and the

adaptor molecule ASC (apoptosis-associated speck-like protein

containing a CARD), play a central role in the innate immune

defense against S. Typhimurium [76]. Mice deficient in caspase-1

or the end product of inflammasome activation, namely IL-1b and

IL-18, have higher bacterial load and succumb earlier upon

infection with S. Typhimurium [77]. In vitro experiments have

shown that S. Typhimurium induces caspase-1 and NLRC4-

dependent IL-1b release and cell death [78]. NLRC4 is able to

recognize bacterial flagellin that—as has been hypothesized by

different authors—can be injected accidentally into the cytoplasm

by the T3SS causing cytosolic perturbations [65,79–81]. However,

during experimental infection mice deficient in NLRC4 are able to

clear S. Typhimurium just as efficiently as control mice, suggesting

the involvement of other inflammasomes [78]. Indeed, Broz et al.

demonstrated that both NLRP3 and NLRC4 activate caspase-1 in

response to S. Typhimurium infection, and mice lacking both NLRP3

and NLRC4 genes show increased susceptibility to infection. In

response to a bacterial trigger, NLRP3 and NLRC4 will recruit ASC

and caspase-1 into a single cytoplasmic focus, which subsequently

serves as the site for pro-IL-1b processing [82]. Recent work provides

evidence that the recognition of bacterial flagellin by the NLRC4

inflammasome in splenic dendritic cells triggers rapid release of IL-

18, which leads to IFN-c production by memory CD8+ T cells [65].

NLRC4-mediated release of IL-1b has also been shown to be flagellin

dependent, while the bacterial trigger for NLRP3 remains unclear.

However, NLRP3 is able to recognize SPI-2 T3SS mutants, which

lack the capacity to replicate intracellularly; therefore, the receptor is

thought to play a role in the detection of persistent bacteria [83].

Although these studies underscore the central role of the inflamma-

some during S. Typhimurium infection, further research is needed to

define its role in typhoid fever [83].

Box 2. Mouse Models for S. Typhi Infection

S. Typhi infects humans exclusively. The consequent lack of
animal models has hampered the study of host–pathogen
interactions in typhoid fever. To overcome this problem
experimental murine S. Typhimurium infection has been
used extensively as a model for typhoid fever. The
intestinal pathology and inflammatory response seen in
this model resembles the changes observed in patients
with typhoid fever [96]. Current murine models include
both oral and systemic (intravenous or intraperitoneal)
inoculation with or without streptomycin pretreatment
[91]. Infection of susceptible mouse strains that carry a
mutation in the gene encoding for a metal transporter
present on the SCV membrane named Nramp1 (Slc11a1),
such as CL57/BL6 or BALB/C mice, produces a disease that
resembles typhoid fever upon inoculation with S. Typhi-
murium [20]. To study chronic and persistent infection
such as can be seen in S. Typhi carriers, strains of mice
possessing the Nramp +/+ allele, which are consequently
resistant to the infection with S. Typhimurium, are used
[64]. Of note, no allelic association was identified in
humans between the Nramp alleles and typhoid suscep-
tibility, and as S. Typhimurium causes a different disease in
humans than S. Typhi, conclusions regarding typhoid fever
pathogenesis derived from animal experiments must be
interpreted carefully [97]. An ingenious mouse model for S.
Typhi was proposed by making use of immunodeficient
Rag22/2 yc2/2 mice engrafted with human fetal liver
hematopoietic stem and progenitor cells creating human-
ized mice susceptible to S. Typhi [98]. Although these
humanized mice were able to support S. Typhi replication
and persistent infection, it did not lead to an acute lethal
infection [98]. Most recently, another murine lethal S. Typhi
model resembling characteristic features of human ty-
phoid fever was created by making use of humanized
nonobese diabetic-scid IL2rcnull mice, which are engrafted
with human hematopoetic stem cells (hu-SRC-SCID mice).
This model, which has already been proven to be useful for
detecting new virulence determinants, could also be useful
to study host–pathogen interactions and evaluate vaccine
candidates [99].

Box 3. Questions for Future Research

Genomics

N Can bacterial genotype be linked to the clinical disease
phenotype in humans?

N Is there a true association between bacterial genotype
and/or the presence of a multidrug resistant plasmid and
disease severity? If there is an association, what is the
mechanism?

Host-response

N Is there a difference between S. Typhi- and S. Paratyphi-
induced enteric fever in the host gene expression
pathways?

N What is the role of DAMPs during severe typhoid fever?
Are these danger-associated molecular patterns causing
the damage that occurs in the gut, or are they mere
bystanders triggering the NLRP3 inflammasome?

N Is a change in gut flora the reason that typhoid patients
still have an altered immune profile nine months after
infection? Moreover, do these patients have an increased
risk for re-infection with other invasive Salmonellae?

Treatment

N Can we exploit a better understanding of disease
pathogenesis to lead to new therapeutic approaches?
Potential immunomodulating treatment strategies for
invasive Salmonellosis could target the pathogen
directly (e.g., based on drugs targeting T3SS or flagella)
or target key host response proteins (e.g., TLR4, NLRC4,
or IL-1b) depending on the phase of the immune
response.

N Are steroids beneficial in severe typhoid fever as has
previously been suggested [100]? And if so, what is the
mechanism behind these observations?
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Apoptosis and Pyroptosis
Apoptosis or programmed cell death is regarded as a protective

mechanism of host defense by preventing further release of pro-

inflammatory cellular mediators [84]. Serovars of S. enterica are

able to employ different mechanisms to induce macrophage cell

death [85,86]. Recently it has been proposed that activation of

caspase-1 can also trigger a form of pro-inflammatory cell death

called ‘‘pyroptosis’’ [87]. Caspase-1, which is triggered via the

flagellin-detection of the NRLC4-inflammasome, is able to cause

clearance of S. Typhimurium independent of IL-1b or IL-18 by

pyroptotic macrophage death [76]. In infected cells, caspase-1-

induced lysis of macrophages can result in the release of bacteria

into the extracellular space, which will enable efficient reactive

oxygen species (ROS) mediated killing by neutrophils. During the

systemic phase of infection, S. Typhimurium is able to completely

suppress flagellin expression, which results in evasion of NLRC4

detection and subsequent pyroptosis [76]. Interestingly selected

Salmonella-infected caspase-1-deficient macrophages do not under-

go pyroptosis but display a form of delayed cell death with features

of autophagy [86].

Conclusion

Significant progress has been made in our understanding of

host–pathogen interactions in invasive Salmonellosis. Mouse

models using S. Typhimurium have been instrumental in

unraveling complex pathways and have shed new light on the

role of key virulence factors such as Vi antigen and T3SS (Box 2).

Studies of genome differences between S. Typhi, S. Paratyphi A, S.

Typhimurium, and other Salmonella serovars have begun to explain

some of the variation in disease manifestations. The important yet

undefined roles of DAMPs and NLR-recognition in typhoid fever

remain to be clarified, and these may be major players in the

severe gut ulceration that is an important cause of the mortality.

Despite these major advances, large gaps remain in our

understanding of the pathogenesis of the disease in humans.

Unraveling of the pathogenesis of invasive Salmonellosis hopefully

leads to new therapeutic treatment strategies, urgently needed in

the light of growing antimicrobial resistance. Box 3 summarizes

some important questions for future research on invasive Salmonella

pathogenesis research.

Search Strategy and Selection Criteria

Data for this review were identified by searches of PubMed,

with the search terms ‘‘Typhoid Fever’’ in combination with

‘‘epidemiology,’’ ‘‘clinical features,’’ ‘‘therapy,’’ and ‘‘origin.’’

‘‘Salmonella Typhi’’ or ‘‘Salmonella Typhimurium’’ in combina-

tion with ‘‘genome,’’ ‘‘virulence factors,’’ ‘‘toll-like receptors,’’

‘‘NOD-like receptors,’’ and ‘‘inflammasome.’’ The references of

identified articles were manually searched for further relevant

papers, and we also searched our own reference databases. English

and French papers were reviewed.
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