Partizioni sufficienti, sufficienti minimali e di verosimiglianza

Consideriamo un campione casuale (iid) $\mathbf{X}_n = (X_1, \dots, X_n)$ di dimensione n da una v.a. bernoulliana di parametro incognito θ . Il modello statistico è quindi

$$\left\{ \mathcal{X}^n = \{0,1\}^n, \ f_n(\mathbf{x}_n; \theta) = \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}, \ \theta \in [0,1] \right\}.$$

La funzione di verosimiglianza associata a un campione osservato \mathbf{x}_n è

$$L(\theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$$

= $\theta^{n\bar{x}_n} (1 - \theta)^{n - n\bar{x}_n}, \quad \theta \in [0, 1].$

Osserviamo preliminarmente quanto segue.

- Per il criterio di fattorizzazione, sia $T_1(\mathbf{x}_n) = \sum_{i=1}^n x_i$ che $T_2(\mathbf{x}_n) = \bar{x}_n$ sono **statistiche sufficienti** per il modello.
- Le statistiche T_1 e T_2 sono a valori scalari, ovvero: $T_j: \mathcal{X}^n \to \mathbb{R}^1, \ j=1,2$. L'informazione degli n numeri x_1,\ldots,x_n è esattamente la stessa di quella fornita dal numero $\sum x_i$ (o, equivalentemente, dal numero \bar{x}_n).
- Passando dai campioni alle statistiche sufficienti si ha una sostanziale **riduzione dimensionale** delle funzioni dei dati con cui dobbiamo avere a che fare (nell'esempio, da n a 1).
- T_1 e T_2 sono in **relazione biunivoca** (one-to-one).
- Le due statistiche T_1 e T_2 , oltre ad essere sufficienti, sono anche **minimali**. Ciò si evince dal **criterio di Lehmann-Scheffe**. Lo scopo di questo esempio è capire meglio questo aspetto.
- Per confronto consideriamo a statistica $T_3(\mathbf{x}_n) = (\sum x_i, x_1)$, che assume, per ogni campione, una coppia di valori, ovvero: $T_3: \mathcal{X}^n \to \mathbb{R}^2$.
- Le statistiche T_1 , T_2 , T_3 sono tutte sufficienti; la statistica T_3 fornisce però un valore inutile: conoscere il valore di x_1 non serve per ottenere il nucleo della fdv.
- Le statistiche T_1 e T_2 si possono ottenere da T_3 ; T_3 non si può ottenere da T_1 o T_2 (se conosco solo quanto vale la somma o la media d tre numeri, non posso conoscere il primo dei tre valori). In altri termini, T_1 e T_2 sono funzioni di T_3 , ma non non è vero il viceversa.
- Da quanto appena detto possiamo concludere che la statistica T_3 è sufficiente ma non minimale.

Per comprendere meglio la differenza profonda che sussiste tra le statistiche T_1 e T_2 da una parte (entrambi sufficienti minimali) e la statistica T_3 dall'altra (sufficiente ma non minimale), consideriamo il caso in cui n=3 ed esaminiamo la seguente tabella, suddivisa in tre macrocolonne. In particolate, esaminiamo le **partizioni dello spazio dei campioni** indotte dalle tre statistiche sufficienti.

- La prima macrocolonna riporta la partizione dello spazio dei campioni indotta da T_1 e T_2 (la partizione è la stessa, in quanto le due statistiche sono in relazione biunivoca). Come vedremo, si tratta della **partizione** sufficiente minimale.
- La seconda macrocolonna riporta la partizione indotta dalla statistica sufficiente (non minimale) $T_3(\mathbf{x}_n) = (\sum x_i, x_1)$. Come vedremo, si tratta di una **partizione sufficiente non minimale**.
- La terza macrocolonna riporta la **partizione di verosimiglianza**, che coincide con quella indotta da T_1 e T_2 : proprio per questa coincidenza possiamo dire che T_1 e T_2 , benchè distinte tra loro (in quanto danno valori diversi), sono entrambe sufficienti minimali ed equivalenti in termini di informazione fornita su θ .

Partizione				Partizione			Partizione	
minimale				non minimale			di verosimiglianza	
		T_1	T_2			T_3		$L(\theta) = g(\theta; \mathbf{x}_n)$
\mathcal{X}^n		$\sum x_i$	\bar{x}_n	\mathcal{X}^n		$(\sum x_i, x_1)$		$\theta^{\sum x_i}(1-\theta)^{n-\sum x_i}$
(0,0,0)	A_1	0	0	(0,0,0)	A'_1	(0,0)	A_1	$(1-\theta)^3$
(1,0,0)				(1,0,0)	A_2'	(1,1)		
(0,1,0)	A_2	1	$\frac{1}{3}$	(0,1,0)	A_3'	(1,0)	A_2	$\theta(1-\theta)^2$
(0,0,1)				(0,0,1)		(1,0)		
(0, 1, 1)				(0,1,1)	A_4'	(2,0)		
(1,1,0)	A_3	2	$\frac{2}{3}$	(1,1,0)	A_5'	(2,1)	A_3	$\theta^2(1-\theta)$
(1,0,1)				(1,0,1)		(2,1)		
(1, 1, 1)	A_4	3	1	(1, 1, 1)	A_6'	(3,1)	A_4	θ^3
n. gruppi	4	4	4	6	6	6	4	4

Vediamo nel dettaglio.

- Lo spazio dei campioni \mathcal{X}^n è costituito da 8 campioni distinti (colonne 1 e 5).
- Le statistiche $T_1 = \sum_{i=1}^n x_i$ e $T_2 = \bar{x}_n$ inducono la partizione $\{A_1, \dots, A_4\}$ dello spazio dei campioni \mathcal{X}^n , dove $A_1 = \{(0,0,0)\},$

$$A_2 = \{(1,0,0), (0,1,0), (0,0,1)\},\$$

$$A_3 = \{(0,1,1), (1,1,0), (1,0,1)\},\$$

$$A_4 = \{(1, 1, 1)\}.$$

Si tratta di una partizione dello spazio dei campioni \mathcal{X}^n , in quanto $\bigcup_{j=1}^4 A_j = \mathcal{X}^n$ e $\bigcap_{j=1}^4 A_j = \emptyset$.

- ullet La partizione A_t indotta da T_1 e T_2 coincide con quella indotta dalla funzione di verosimiglianza:
 - tutti i campioni nello stesso insieme A_j , che hanno stesso valore della statistica, danno la stessa funzione di verosimiglianza;
 - tutti i campioni con stessa verosimiglianza sono nello stesso insieme A_j ;
 - i campioni che danno verosimiglianza diversa sono in insiemi A_j distinti.

In altri termini: campioni distinti portano allo stesso valore della statistica \iff portano alla stessa verosimiglianza (criterio di Lehmann-Scheffe).

• Le statistica $T_3 = (\sum_{i=1}^n x_i, x_1)$ induce la partizione $\{A_1', \dots, A_6'\}$ dello spazio dei campioni \mathcal{X}^n , dove

$$A'_1 = \{(0,0,0)\} = A_1,$$

$$A_2' = \{(1,0,0)\},\$$

$$A_3' = \{(0,1,0), (0,0,1)\},\$$

$$A_4' = \{(0, 1, 1)\},\$$

$$A_5' = \{(1, 1, 0), (1, 0, 1)\},\$$

$$A_6' = \{(1, 1, 1)\} = A_4.$$

- Il numero di elementi della partizione $\{A'_t\}$ è pari a 6; questo numero è superiore a quello della partizione $\{A_t\}$ di verosimiglianza e di T_1 e T_2 , pari a 4. Infatti, la presenza dell'elemento inutile (ai fini dell'individuazione della fdv) x_1 in T_3 fa sì che, nella corrispondente partizione, il campione (1,0,0) risulti in un insieme distinto ta quello in cui si trovano (0,1,0) e (0,0,1), nonostante i tre campioni diano luogo alla stessa verosimiglianza. In altre parole, l'insieme A_2 viene diviso in due insiemi A'_2 e A'_3 nella partizione di \mathcal{X}^n indotta da T_3 . Lo stesso succede per l'insieme A_3 che viene suddiviso nella partizione indotta da T_3 in A'_4 e A'_5 , sebbene i tre campioni diano luogo alla stessa verosimiglianza.
- La partizione indotta dalle statistiche sufficienti e minimali (qui T_1 e T_3) è costituita da 4 insiemi ed è **meno fine** di quella indotta dalla statistica sufficiente ma non minimale T_3 , costituita da 6 insiemi di campioni. ¹

¹Dati due collezioni di insiemi, il primo è **meno fine** del secondo se contiene meno insiemi. Qui la partizione $\{A_t\}$ contiene 4 insiemi di campioni ed è quindi meno fine della partizione $\{A_t'\}$ che ne contiene 6.

- La partizione sufficiente minimale coincide con quella di verosimiglianza.
- In generale, la partizione indotta da una statistica sufficiente minimale è quella **meno fine** tra quelle indotte da tutte le possibili statistiche sufficienti non minimali di un modello.
- Le statistiche sufficienti minimali inducono una e una sola partizione, che coincide con quella di verosimiglianza. Questo dipende dal fatto che le statistiche sufficienti minimali sono in corrispondenza biunivoca tra loro.
- Per quanto detto, possiamo affremare che le statistiche sufficienti minimali sono infinite (come le funzioni biunivoche di una data quantità) ma la partizione sufficiente minimale è unica.