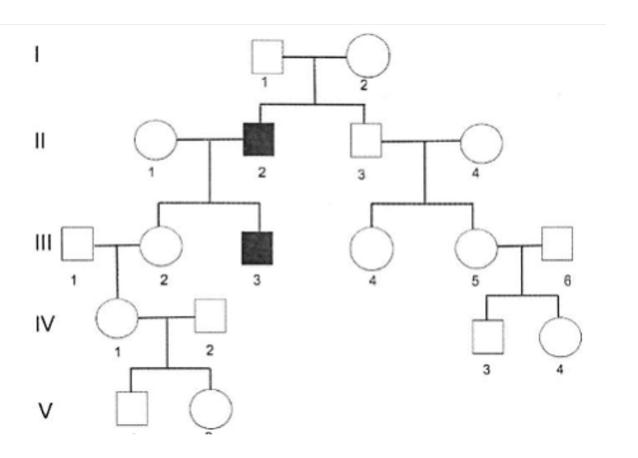

Nel seguente albero gli individui pieni indicano uccelli con becco a punta (bp), un carattere **recessivo autosomico**. Calcolate la **probabilità massima** che l'uccello indicato dal rombo sia portatore dell'allele bp.

$$IV-1 (Aa) = III-2 \times III-3 \times P(Aa)$$

$$\frac{1}{2}$$
 AA x $\frac{1}{2}$ AA x $0 - 0$

$$^{1}/_{3}$$
 AA x $^{1}/_{2}$ Aa x $^{1}/_{2}$ Aa = $^{1}/_{12}$


$$^{2}/_{3}$$
 Aa x $^{1}/_{2}$ AA x $^{1}/_{2}$ Aa = $^{1}/_{6}$

$$^{2}/_{3}$$
 Aa x $^{1}/_{2}$ Aa x $^{2}/_{3}$ **Aa** = $^{2}/_{9}$

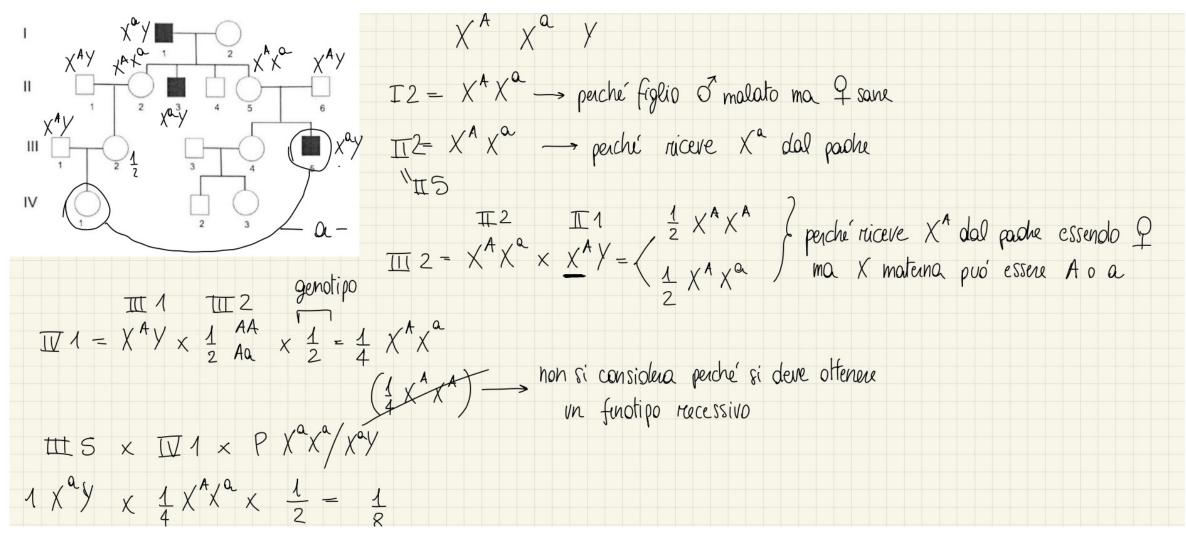
poiché il figlio dal simbolo vuoto è sicuramente sano dobbiamo escludere che sia aa, quindi 2/3 Aa

Pmax (IV-1, Aa)=
$$\frac{1}{12} + \frac{1}{6} + \frac{2}{9} = \frac{3}{36} + \frac{6}{36} + \frac{8}{36} = \frac{17}{36}$$

Nel seguente albero un gene malattia segrega secondo un'eredità autosomica recessiva. Si calcoli la probabilità che dall'accoppiamento V2 e IV3 nasca un figlio omozigote sano.

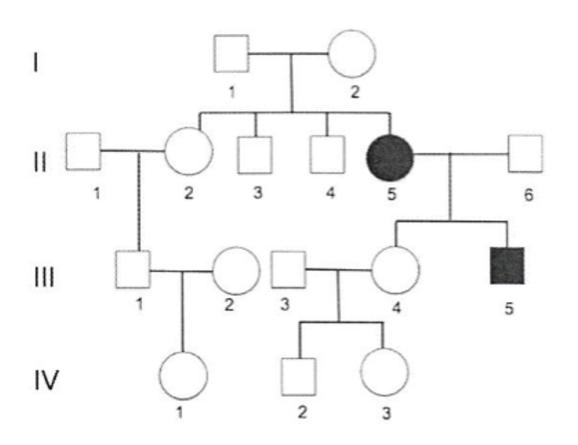
III2 Aa (1) II3
$$\frac{2}{3}$$
 Aa IIV1 Aa ($\frac{1}{2}$) III5 $\frac{2}{3}$ x $\frac{1}{2}$ = $\frac{1}{3}$ Aa V2 Aa ($\frac{1}{2}$ x $\frac{1}{2}$) = $\frac{1}{4}$ IV3 $\frac{1}{3}$ x $\frac{1}{2}$ = $\frac{1}{6}$ Aa V2 AA (1 - $\frac{1}{4}$) = $\frac{3}{4}$ IV3 (1 - $\frac{1}{6}$) = $\frac{5}{6}$ AA V2 AA ($\frac{1}{4}$) $\stackrel{1}{\longleftrightarrow}$ IV3 Aa ($\frac{1}{6}$) V2 AA ($\frac{3}{4}$) $\stackrel{1}{\longleftrightarrow}$ IV3 AA ($\frac{5}{6}$)

VI AA


1)
$$(\frac{1}{4} \times \frac{1}{6}) \times \frac{1}{4} = \frac{1}{96}$$

2) $(\frac{1}{4} \times \frac{5}{6}) \times \frac{1}{2} = \frac{10}{96}$

3)
$$(\frac{3}{4} \times \frac{5}{6}) \times 1 = \frac{60}{96}$$


4)
$$(\frac{3}{4} \times \frac{1}{6}) \times \frac{1}{2} = \frac{6}{96}$$

$$\frac{1}{96} + \frac{10}{96} + \frac{60}{96} + \frac{6}{96} = \frac{77}{96}$$

L'albero genealogico in figura rappresenta l'ereditarietà del carattere narice nera (simboli pieni) che segrega com un carattere recessivo X-linked in questa mandria di lama. Determinare la probabilita che dell'incrocio III 5 X IV 1 nasca un lama (senza specificare il sesso) con narice nera. Se l'allele narice nera fosse autosomico recessivo con che probabilità nascerebbe un lama omozigote con narice normale dall'incrocio II2 X II 4?

L'albero genealogico in figura rappresenta l'ereditarietà del carattere corna corte (simboli pieni) che segrega come un carattere autosomico recessivo in questo mandria di bufali. Determinare la probabilità che dall'incrocio IV1 e IV2 si possano avere 2 bufali con corna normali e 4 corna corte.

IV2 x IV1?

Calcolo della probabilità di ottenere aa

III4 Aa (1)
$$\rightarrow$$
 IV2 Aa ($\frac{1}{2}$)

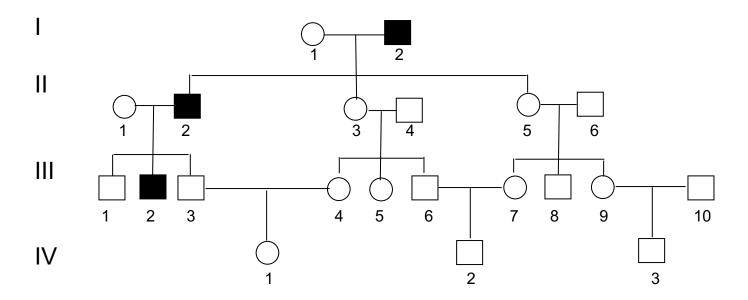
II2 Aa
$$(^{2}/_{3})$$
 x II1 AA

III1
$$\frac{1}{2}$$
 $x^{2}/_{3} = \frac{1}{3}$ Aa x III2 AA(1)

IV1 Aa
$$\frac{1}{3}$$
 x 1 x $\frac{1}{2}$ = $\frac{1}{6}$

IV1 Aa
$$(\frac{1}{6})$$
 x IV2 Aa $\frac{1}{2}$

V1 aa
$$\frac{1}{6}$$
 x $\frac{1}{2}$ x $\frac{1}{4}$ = $\frac{1}{48}$ V1 A-= 1 - $\frac{1}{48}$ = $\frac{47}{48}$


Probabilità richiesta
$$\frac{6!}{2!4!} \left(\frac{47}{48}\right)^2 \left(\frac{1}{48}\right)^4$$

$$V1 A = 1 - \frac{1}{48} = \frac{47}{48}$$

N. 2.40 pag 40 Shaumm

Un singolo gene recessivo r è responsabile dello sviluppo dei capelli rossi nell'uomo. I capelli scuri sono dovuti all'allele dominante R. Gli individui esterni alla famiglia non sono portatori a meno che non vi siano prove del contrario. Si calcoli la probabilità massima che i capelli rossi compaiano nei figli di questi incroci:

- a) III3 x III9;
- (b) III4 x III 10;
- (c) IV 1 x IV2,
- (d) IV 1 x IV 3

R: (a)1/8; (b) 0; (c) 35/576; (d) 7/192

a) III3xIII9

b) III4xIII10

c) IV1xIV2

Probabiltà che IV1 sia eterozigote *Rr*:

Probabilità che IV1 sia eterozigote *Rr*:

[(A) x prob. di avere un eterozigote da $Rr \times Rr$] cioè (1/2 x 2/3) + [(B) x prob. di avere un eterozigote da $RR \times Rr$] cioè (1/2 x 1/2) quindi: (1/2 x 2/3) + (1/2 x 1/2) = 1/3 + 1/4 = 7/12

Probabiltà che IV2 sia eterozigote Rr:

IV2 deriva da III6xIII7 III6 può essere ½ RR (A) o ½ Rr (B) III7 può essere ½ RR(C) o ½ Rr (D)

c) Probabiltà che V1 abbia i capelli rossi:

(probabilità che IV1sia eterozigote Rr) x (probabilità che IV2 sia eterozigote Rr) x (probabilità che sia omozigote recessivo rr) $7/12 \times 5/12 \times 1/4 = 35/576$

Probabiltà che IV2 sia eterozigote *Rr*:

[(B) x (D) x prob. di avere un eterozigote da $Rr \times Rr$] cioè (1/2 x 1/2 x 2/3) + [(B) x (C) x prob. di avere un eterozigote da $RR \times Rr$] cioè (1/2 x 1/2 x1/2) + [(A) x (C) x prob. di avere un eterozigote da $RR \times Rr$] cioè (1/2 x 1/2 x1/2) + quindi: (1/2 x 1/2 x 2/3) + (1/2 x 1/2 x1/2) + (1/2 x 1/2 x 1/2) = 1/6+1/8+1/8 = 4/24+3/24+3/24 = 10/24 = 5/12

d) IV1xIV3

Probabiltà che IV1 sia eterozigote *Rr*:

Probabilità che IV1 sia eterozigote Rr:

[(A) x prob. di avere un eterozigote da Rr x Rr] cioè (1/2 x 2/3) +

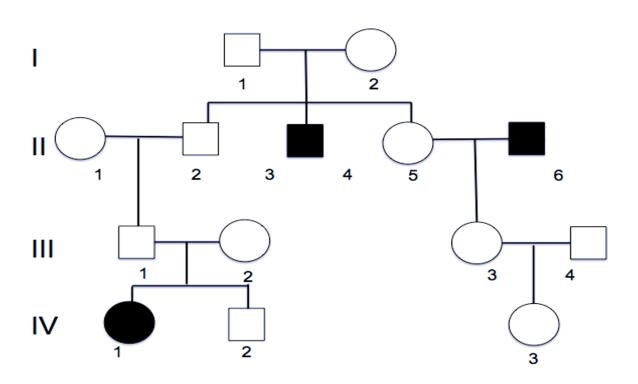
[(B) x prob. di avere un eterozigote da $RR \times Rr$] cioè (1/2 x 1/2)

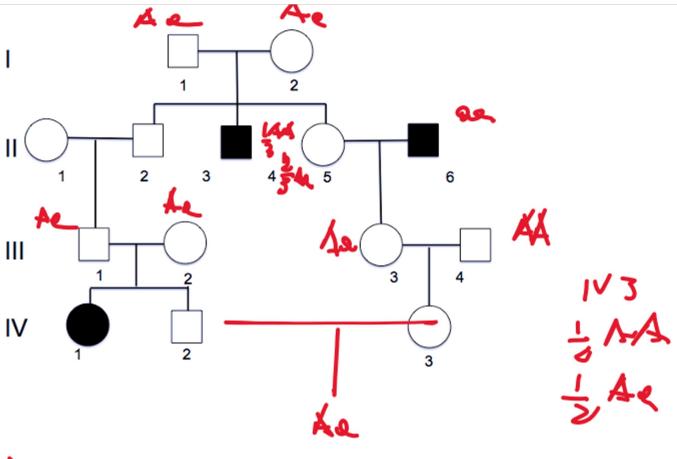
quindi:

$$(1/2 \times 2/3) + (1/2 \times 1/2) = 1/3 + 1/4 = 7/12$$

Probabiltà che IV3 sia eterozigote *Rr*:

IV1 deriva da III9xIII10
III9 può essere ½ Rr (A) o ½ RR (B)
III10 è sicuramente RR

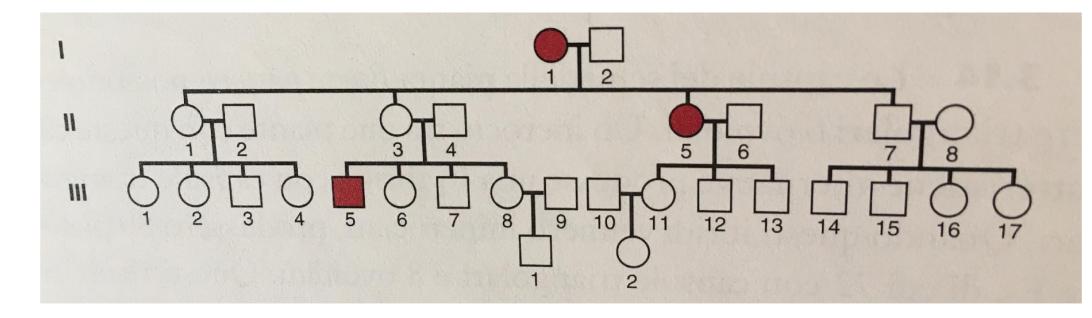

Probabilità che IV3 sia eterozigote Rr:


[(A) x prob. di avere un eterozigote da $Rr \times RR$] cioè (1/2 x 1/2) =1/4

Probabiltà che V2 abbia i capelli rossi:

(probabilità che IV1sia eterozigote *Rr*) x (probabilità che IV3 sia eterozigote *Rr*) x (probabilità che sia omozigote recessivo *rr*) 7/12 x 1/4 x 1/4= 1/192

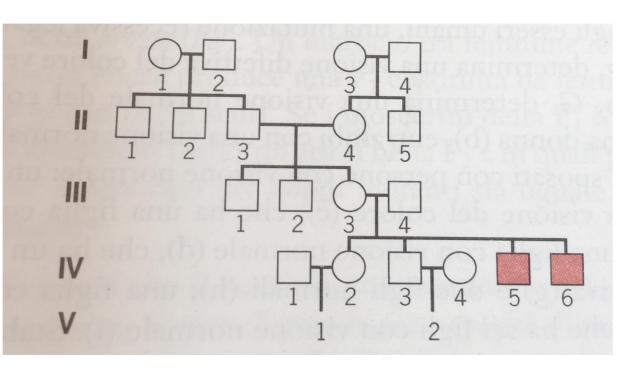
• L'albero genealogico in figura rappresenta l'ereditarietà del carattere *narice* larga (simboli pieni) che segrega come un carattere autosomico recessivo in questo gregge di capre. Si calcoli **la probabilità massima** che dall'incrocio IV 2 e IV3 nasca una pecora che porti l'allele recessivo. 5/12



$$\frac{1}{12} + \frac{1}{6} + \frac{1}{6} = \frac{5}{12}$$

Il seguente albero genealogico illustra l'ereditarietà di un carattere recessivo. Qual è la probabilità che la progenie dei seguenti incroci presenti il carattere?

- III-1 x III-12 • III-4 x III-14
- III-6 x III-13
- IV-1 x IV-2



<u>Risposta</u>

- a) La probabilità che III-1 sia $Aa \stackrel{.}{e} \frac{1}{2}$, la probabilità che III-12 sia $Aa \stackrel{.}{e} 1$; quindi la probabilità che il figlio sia aa sarà $\frac{1}{2} \times 1 \times \frac{1}{4} = 1/8$
- b) La probabilità che III-4 sia $Aa \doteq \frac{1}{2}$, la probabilità che III-14 sia $Aa \doteq \frac{1}{2}$; quindi la probabilità che il figlio sia aa sarà $\frac{1}{2}x\frac{1}{2}x\frac{1}{4} = \frac{1}{16}$
- c) La probabilità che III-6 sia $Aa \doteq 2/3$, la probabilità che III-13 sia $Aa \doteq 1$; quindi la probabilità che il figlio sia aa sarà $2/3 \times 1/4 = 1/6$
- d) La probabilità che IV-1 sia Aa è 2/3 x ½, la probabilità che IV-2 sia Aa è ½ ;

 $2/3 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{24}$

Gli individui deficitari dell'enzima HPRT (localizzato sul cromosoma X), affetti dalla sindrome di Lesch-Nyhan, sono incapaci di controllare i loro movimenti e manifestano un incontrollabile comportamento autodistruttivo. I maschi indicati con IV-5 IV-6 nell'albero genealogico mostrato hanno la sindrome di Lesch-Nyhan. Quali sono i rischi che V-1 e V-2 ereditino questo disordine?

Risposta

III-3 deve essere portatrice eterozigote dell'allele mutante *h*, perché due dei suoi due figli sono affetti e lei è sana.

La probabilità che III-3 trasmetta l'allele h alla sua figlia IV-2 è ½.

La probabilità che IV-2 lo trasmetta al figlio maschio (½) è di nuovo ½.

Quindi il rischio che V-1 abbia la sindrome sarà $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ = 1/8.

Per V-2 il rischio di ereditare la sindrome è praticamente 0. Il padre IV-3 non è portatore e anche se lo fosse non trasmetterebbe l'allele mutante al figlio maschio. La madre proviene dall'esterno della famiglia.

Il gene che determina la lunghezza del pelo della capra africana Mbuzi (A) è dominante rispetto all'allele per pelo lungo (a). Nel seguente pedigree, a meno che non ci siano prove del contrario, si sottintende che gli individui esterni non siano portatori. Si calcoli **la probabilità massima** che dall'incrocio tra III2 e III3 venga generata una capra portatrice di a.

P III2, $Cc = \frac{2}{3}$

P III2, CC =
$$\frac{1}{3}$$

P III4,
$$Cc = \frac{2}{3}$$

P III4, CC =
$$\frac{1}{3}$$

II2 Cc
$$(^2/_3)$$
 II1 CC (1) x P III2 CC $(^1/_2)$ = $^2/_3$ x 1 x $^1/_2$ = $^1/_3$ II2 Cc $(^2/_3)$ II1 CC (1) x P III2 Cc $(^1/_2)$ = $^2/_3$ x 1 x $^1/_2$ = $^1/_3$ II2 CC $(^1/_3)$ II1 CC (1) x P III2 CC (1) = $^2/_3$ x 1 x $^1/_2$ = $^1/_3$ P III2 CC = $^2/_3$ P III2 CC = $^2/_3$

$$P \max (III2 \ x \ III4, Cc) = P(a) + P(b) + P(c)$$

a) III2 CC
$$\binom{2}{3}$$
 x III4 Cc $\binom{2}{3}$ x P figlio Cc $\binom{1}{2}$ = $\binom{2}{3}$ x $\binom{2}{3}$ x $\binom{1}{2}$ = $\binom{2}{9}$

b) III2 Cc (
$$^{1}/_{3}$$
) x III4 CC ($^{1}/_{3}$) x P figlio Cc ($^{1}/_{2}$) = ($^{1}/_{3}$) x ($^{1}/_{3}$) x ($^{1}/_{2}$) = ($^{1}/_{18}$)

c) III2 Cc
$$\binom{1}{3}$$
 x III4 Cc $\binom{2}{3}$ x P figlio Cc $\binom{1}{2}$ = $\binom{1}{3}$ x $\binom{2}{3}$ x $\binom{1}{2}$ = $\binom{1}{9}$

Sommando tutte le probabilità, si ottiene la P max di ottenere un eterozigote dall'incrocio III2 x III4:

$$P(III2 \times III4, figlio Cc) = \frac{1}{9} + \frac{1}{18} + \frac{2}{9} = \frac{7}{18}$$