genome engineering processes of making targeted modifications to the genome, its contexts (e.g., epigenetic marks), or its outputs (e.g., transcripts).

Genome engineering technologies are enabling a broad range of applications

gene therapy

transfer of genetic material to a patient to treat a disease

AIM:

2.0 gene therapy

long- term expression of the transferred gene high enough to be therapeutic

3.0 gene therapy

long- term correction of the 'edited' gene high enough to be therapeutic

2.0 gene therapy vs 3.0 gene therapy

(Xavier M. Anguela and Katherine A. High, Annual Reviews of Medicine 2018)

Monogenic disease and cancer gene therapy

(Xavier M. Anguela and Katherine A. High, Annual Reviews of Medicine 2018)

(Fazhan Wang et al., J Gene Med. 2019)

(Fazhan Wang et al., J Gene Med. 2019)

Bubble boy

CRISPR Revolution

2019

On-demand organs. Disease-proof babies. Horn-free cows

2015

No hunger. No pollution. No disease.

And the end of life as we know it. The Genesis

Engine.

Editing DNA is now as easy as cut and paste. Welcome to the post-natural world.

AUG 2015

<u>Crispr</u> <u>could give</u> <u>us a more</u> <u>humane</u> <u>world.</u> <u>Will humans</u> <u>let that</u> <u>happen?</u>

> Dairy cows often has their horns burned off with h irons or caustic chemical Meet Princess, who we engineered never to grow ther

APR 2019 CUT & P

CRISPR/Cas9 - It all started with yogurt

2005-Rodolphe Barrangou discovered that S. thermophilus contained odd chunks of repeating DNA sequences—Crisprs

CRISPR/Cas9 - as a tool for genetic engineering

2012 : Jennifer Doudna and Emmanuelle Charpentier discovered S. pyogenes molecular mechanism

>> THE NOBEL PRIZE @NobelPrize 3.104 Mi piace 1J 17

The Nobel Prize

BREAKING NEWS: The 2020 #NobelPrize in Chemistry has been awarded to Emmanuelle Charpentier and Jennifer A. Doudna "for the development of a method for genome editing."

11:47 AM · 7 ott 2020 · Twitter Web App

2020 - Nobel prize

Researchers can directly edit the function of DNA sequences in their endogenous context

(Hsu et al., Cell, 2014)

	TALEN and ZFN	CRISPR/Cas9	
Target binding principle	Protein-DNA specific recognition	Watson-Crick complementary rule	
Working mode	Specifically recognizes the target DNA and dimeric Fok1 makes DSB	Guide RNA specifically recognizes the target DNA and Cas9 makes DSB	
Essential components	Dimers of TALE/ZFN-Fok1 fusion protein	Guide RNA and Cas9	
Target DNA lenght	14-18 bp	20 bp	
Time consumption for construction	5-7 days	1-3 days	
Multiple targeting	context-dependent binding (multiple proteins)	high specificity with multiple sgRNAs	

CRISPR/Cas9 technology increased the feasibility of genome-editing technologies

(Adli M., Nature communications, 2018)

CRISPR/Cas9 technology increased the feasibility of genome-editing technologies

CRISPR/Cas9

CRISPR system in prokariotes is an adaptive immunity system

(Hille F. et al., Cell, 2018)

Engineered CRISPR-Cas9 system consists of a fusion between a crRNA and a part of the tracrRNA sequence: sgRNA

CRISPR/Cas9 Genome editing tool exploit endogenous DNA repair machinery

(Ran et al, Nat Protoc. 2013)

CRISPR/Cas9 Genome editing tool exploit endogenous DNA repair machinery

Cas9 nuclease from *S. pyogenes* is targeted to genome by an sgRNA consisting of a 20-nt guide sequence and a scaffold

The only restriction for targeting is that the sequence must be followed by **PAM motif**

RNA-programmed endonucleases offer a variety of genome editing-options

SpCas9:

- More characterized;
- Balance between PAM complexity and construct size;
- Tested in a variety of contexts

(Komor A.C. et al., Cell, 2017)

RNA-programmed endonucleases offer a variety of genome editing-options

Cpf1s:

- Use naturally crRNA;
- TTTN PAM at 5' end of the protospacer;
- Cleave the two DNA in a stagger configuration

The amazing CRISPR enzyme clan

Cas9 | The OG

Good at cutting DNA, great for knockouts. Already being replaced by newer base pair editors with more finetuned control.

Cpf1 | The Stickler

Like Cas9 but not as sloppy. It leaves "sticky" DNA ends, which are easier to work with when making edits.

Cas13 | The Cowboy

Cuts RNA not DNA. Could knock down protein levels without permanently changing your genome. Pair it with a reporter signal and you've got a diagnostic.

Cas3 | The Gobbler

Cas3 gives zero f***. It offers no repair mechanism—once it finds that target DNA sequence it just starts cutting till there ain't no DNA left.

CasX/CasY | The X/Y Factor

Just discovered in an abandoned silver mine, we don't know yet what these tiny enzymes' superpowers will be.

RNA-programmed endonucleases offer a variety of genome editing-options

PRO

- Target design simplicity;
 - Higly efficiency
- Fast (4 weeks for mice);
- fidelity

CONS

- delivery
- targeting scope

OPEN QUESTIONS:
Immunogenicity of nucleases in vivo (?)
Ethics (?)

I - targeting scope

	Enzyme name	Size (residues)	PAM requirement and cleavage pattern	
	SpCas9 / FnCas9	1368 / 1629	5'	
	St1Cas9	1121	5'- 3'- 1 20NNTCTTW-5'	
	St3Cas9	1409	5'- 3'- 1 20NCCNC-5'	
	NmCas9	1082	5'- 3'- 1 21 24 NNNN GATT-3' 21 24 NNNN CTAA-5'	
	SaCas9	1053	5'- 3'- 1 18 21NNCYYA-5'	
	AsCpf1 / LbCpf1	1307 / 1228	5'-TTTN 3'-AAAN 1 19 1-5'	
	VQR SpCas9	1368	5'	
	EQR SpCas9	1368	5'- 3'- 1 1 20NCTC-5'	
	VRER SpCas9	1368	5'- 118 NGCG-3' 3'- 1 200CGC-5'	1
C 3	RHA FnCas9	1629	5'- 3'- 3'- 1 1 20RC-5'	
2017)	KKH SaCas9	1053	5'- 	

RHA FnCas9 requires only a YG PAM

(Komor A.C. et al., Cell, 2017)

KKH SaCas9 shows Relaxed PAM specifities

How to check?

- Whole genome deep sequencing;
 - BLESS
 - GUIDE-Seq
 - Digenome-Seq

II - Fidelity

How to improve?

(Komor A.C. et al., Cell, 2017)

(Komor A.C. et al., Cell, 2017)

Lentivirus:

- infects non dividing cells;
- Packaging limit **~8.5 kb** (package Cas9 genes, gRNA, promoter and regulatory sequences)

Adenovirus:

- infects dividing and non dividing cells;
- Do not integrate DNA;
- Elicits strong immune response in animals;

AAV variants:

- infect both dividing and non-dividing cells;
- do not integrate;
- do not elicit immune response in the host;
- A variety of serotypes of AAV are known,
- AAV has a packaging limit of ~4.5 kb of foreign DNA

	Table 1 Naturally occurring major CRISPR-Cas enzymes									
_		Size	PAM sequence	Size of sgRNA guiding sequence	Cutting site	Reference				
	spCas9	1368	NGG	20 bp	~ 3 bp 5' of PAM	Jinek et al. ⁴² Gasiunas et al. ⁴³				
	FnCas9	1629	NGG	20 bp	~ 3 pb 5′ of PAM	Hirano et al. ⁶⁰				
•	SaCas9	1053	NNGR RT	21 bp	~ 3 pb 5' of PAM	Mojica et al. ⁵⁷				
•	NmCas9	1082	NNNNG ATT	24 bp	~ 3 bp 5' of PAM	Hou et al. ⁵³				
	St1Cas9	1121	NNAGA AW	20 bp	~ 3 bp 5' of PAM	Gasiunas et al. ⁴³ Cong et al. ⁴⁵				
	St3Cas9	1409	NGGNG	20 bp	~ 3 bp 5' of PAM	Gasiunas et al. ⁴³ Cong et al. ⁴⁵				
•	CjCas9	984	NNNNACAC	22 bp	~ 3 bp 5′ of PAM	Kim et al. ⁵⁶				
	AsCPf1	1307	TTTV	24 bp	19/24 bp 3' of PAM	Yamano et al. ⁵⁰ Kim et al. 2016				
	LbCpf1	1228	TTTV	24 bp	19/24 bp 3′ of PAM	Yamano et al. ⁵⁰ Kim et al. 2016				
	Cas13	Multiple orthologs	RNA targeting	28 bp		Abudayyeh et al. 2017				

(Adli M., Nature communications, 2018)

Lipid nanoparticle delivery:

- more transient
- higher DNA specificity
- less off-target editing

(Komor A.C. et al., Cell, 2017)
CRISPR/Cas9 technologies beyond genome editing are based mainly on dead-Cas9

(Adli M., Nature communications, 2018)

CRISPR/Cas9 APPLICATIONS

CRISPR/Cas engineering is enabling a broad range of applications

(Hsu et al., Cell, 2014)

Why develop new tools for genome editing?

HR - Classical transgenesis:

- HR is a rare event (1 in 10⁶–10⁹ cells Capecchi, Nature, 1989);
- Time consuming (up to 6-12 months);
- Expensive;
- In most mammalian species no established ES cell lines;
- Difficult to target multiple genes.

(Capecchi, Nature 2005)

Why develop new tools for genome editing?

One Step Generation of Mice With Mutiple Mutations

Targeted Mutations (Deletion / Insertion)

Predefined Precise Mutations

(Wang et al., Cell 2013)

Why develop new tools for genome editing?

CRISPR/Cas9-mediated transgenesis

- Target design simplicity;
- Higly efficiency: directly injecting
 RNAs encoding the Cas9 protein and
 gRNA into zygote (no need for ES);
- Fast (4 weeks for mice);
- Multiplexed mutations

(Wang et al., Cell 2013)

CRISPR/Cas9 system can be used in other mammals?

In vivo

(Niu et al., Cell 2013)

CRISPR/Cas can be used to insert *multiple* genes mutations in monkeys zygotes Genome editing based on CRISPR/Cas9 nucleases is in its translational and clinical infancy (up to 2018)

(Wu et al., Cell 2013)

1 bp deletion in exon 3 of Crygc gene leads to cataract

In vitro

(Wu et al., Cell 2013)

In vitro

sgRNA leads to HDR mediated repair

sgRNA	E14 ESC clones		m <i>Crygc</i> (<i>Crygc</i> ^{+/-}) ESC clones			
	Cleavage at 1	Cleavage at 2	Cleavage at WT	Cleavage at	HDR-mediated	
	Allele/Total	Alleles/Total	Allele/Total	Mutant	Repair/Total	
				Allele/Total		
sgRNA-1	4/36	0/36	0/36	10/36	7/36	
sgRNA-2	23/36	7/36	17/36	25/36	2/36	
sgRNA-3	3/36	0/36	0/36	7/36	5/36	
sgRNA-4	0/36	0/36	0/36	11/36	16/36	
sgRNA-5	4/36	26/36	27/36	26/36	0/36	

(Wu et al., Cell 2013)

sgRNA4 show high specificity for mCrygc allele and mediates HDR

In vivo

(Wu et al., Cell 2013)

CRISPR/Cas9 system leads to gene correction via HDR using wt allele on the homologous chromosome

	WT allele AGTAC	CCGGCGCTTCCAGGACTGGGGCTCTG	
	Mutant allele AGTAC	CCGGC-CTTCCAGGACTGGGGCTCTG	
~ eg .= .		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
a iat	WI allele AGIA	CCGGCGCIICCAGGACIGGGGCICIG	_
Ξġġ	Mutant allele AGTA	CCGGCGCTTCCAGGACTGGGGCTCTG H	DR (×4)
E	MCT allala 3 C C 3	~~~~~~~~~~~~~~~~~~	
ъ	WI allele AGTA	CCGGCGCTTCCAGGACTGGGGCTCTG	a
Ei ge	Mutant allele AGTA	CCGGCCTTCCaAGGACTGGGGCTCTG +1	1
eps eps	WT allele AGTA	CCGCCCTTCCAGGACTGGGGCTCTG	
~ # -	WI allele AGIA	CCGGCGCTTCCAGGACTGGGGGCTCTG	
- 1	Mutant allele AGTA	CC cag AGGACTGGGGCTCTG -8	+3
L	WT allele AGTA	CCGGCGCTTCCAGGACTGGGGCTCTG	
pai	Mutant allele AGTA	CCGGC	33
n-re	WT allele AGTA	CCGGCGCTTCCAGGACTGGGGCTCTG	
JO I			(120)
- C	Mutant allele AGTA	CCGGCCTGGGGCTCTG -9	(×2)
뽀	WT allele AGTA	CCGGCGCTTCCAGGACTGGGGGCTCTG	
z	Mutant allele AGTA	CCGGCCTTGGACTGGGGCTCTG -4	Ļ

(Wu et al., Cell 2013)

NHEJ events can lead to correct reading frame

Is it possible to improve CRISPR/Cas9 sgRNA4 gene correction?

(Wu et al., Cell 2013)

Insertion of Oligo-1 that mimic wt allele and Oligo-2 that contains specific in frame mutation

Is it possible to improve CRISPR/Cas9 sgRNA4 gene correction?

Table 1. CRISPR-Cas9-Mediated Gene Correction in Cataract Mice

Blastocysts			Genetic Modification					
Oligo	Injected Embryos	(Percentage of Injected Embryos)	Transferred Blastocysts	Live-Born Pups	WT allele	mutant allele	NHEJ-Mediated Repair/Nonrepair	HDR-Mediated Repair
-	172	157 (91%)	135	22	0	10	2/4	4
Oligo-1	245	213 (87%)	178	29	0	14	4/5	5
Oligo-2	221	190 (86%)	159	27	0	12	5/3	4

3/4 HDR used oligo-2 donor template

(Wu et al., Cell 2013)

Supplying of exogenous template seems to be not necessary, but it could be useful in homozygous genetic disease

Can CRISPR/Cas9 be used for gene therapy?

Exon 45-55 block skipping

Duchenne Muscolar Dystrophy (DMD):

- most common hereditary disease;
- progressive muscle wasting;
- no effective treatment

DMD molecular mechanism:

- out of frame mutations in dystrophin gene (loss of function);
- common deletions in the exons 45-55 maintain correct reading frame (still functional dystrophin)

(Ousterout et al. Nature communications 2015)

Targeting hotspot region (45-55 Ex) of dystrophin gene with sgRNA to restore correct reading frame

Can CRISPR/Cas9 be used for gene therapy?

(Ousterout et al., Nature communications, 2015)

sgRNA are designed to restore dystrophin reading frame

Are the sgRNA able to edit the genome?

Table 1 | Measured activity of sgRNAs in human cells.

-				
Target	sgRNA #	% Modified alleles at day 3	% Modified alleles at day 10	% Change day 10/day 3
Multiplex dele	etion of exon 51			
Int 50	CR1	6.6	9.3	41.8
Int 50	CR2	10.3	14.0	36.2
Ex 51	CR4	11.9	14.4	21.3
Int 51	CR5	12.4	13.3	7.8
Multiplex dele	etion of exons 45-55			
Int 44	CR6	16.1	16.9	4.3
Int 44	CR33	1.3	<1	n.d.
Int 44	CR34	13.2	11.0	- 16.6
Int 55	CR7	6.8	7.1	5.3
Int 55	CR35	22.5	20.9	- 7.1
Int 55	CR36	26.4	24.7	- 6.4
Toraeted from	ashifts			
Ex 45	CR10	14.9	16.3	03
Ex 45	CR11	-1	-1	p.d
Ex 45	CR12		<1	n.d.
Ex 46	CR12	16.9	18.4	9.2
Ex 40	CR14	17.2	17.6	29
Ex 47	CR15	15.4	15.3	- 0.9
Ex 48	CR16	11 5	10.9	- 5.0
Ex 40	CR17	<1	<1	nd
Ex 49	CR18	18	22	20.1
Ex 49	CR19	33.7	38.4	13.9
Ex 50	CR20	14.9	13.7	-76
Ex 50	CR21	24.1	20.8	- 13.5
Ex 51	CR3	13.0	16.7	28.0
Ex 51	CR31	18.9	16.9	- 10.2
Ex 52	CR22	25.9	20.3	- 21.6
Ex 52	CR23	25.2	24.0	- 4.8
Ex 53	CR24	24.8	23.6	- 4.6
Ex 53	CR25	2.6	2.9	9.5
Ex 54	CR26	24.5	22.0	- 10.1
Ex 54	CR27	13.4	12.6	- 5.9
Ex 55	CR28	21.6	19.8	-8.4
Ex 55	CR29	19.2	19.6	2.2

sgRNA, single guide RNA.

HEK293Ts were transfected with constructs encoding human codon-optimized SpCas9 and the indicated sgRNA. Each sgRNA was designed to modify the dystrophin gene as indicated. The frequency of gene modification at day 3 or day 10 post transfection was determined by the Surveyor assay. The ratio of measured Surveyor signal at day 3 and day 10 was calculated to quantify the stability of gene editing frequencies for each sgRNA in human cells.

(Ousterout et al., Nature communications, 2015)

29 out of 32 of sgRNA were able to mediate efficient gene modification

Is possible to correct specific mutations in DMD patient myoblasts cell lines?

(Ousterout et al., Nature communications, 2015)

In DMD sorted cells there is detectable level of sgRNA activity

Are the indels created by NHEJ able to restore dystrophin expression?

a Intron 50 Exon 51 PAM AAAATATTTTAGCTCCTACTCAGACTGTTACTCTGGTGACACAA TTTTATAAAAATCGAGGATGAGTCTGACAATGAGACCACTGTGTT sgRNA 5'-GCCUACUCAGACUGUUACUC.....

b Deletions

TAC TAC TAC TAC	GCTCCTACTCAGACTGTTACTC <u>TGG</u> TGACAC GCTCCTACTCAGACTGGTGACCC GCTCCTACTCTGGTGACAC GCTCCTACTCAGACTGGTGACAC GCTCCTACTCAGAC	CAAC CAAC CAAC	(×16) (×2)	Length 8 12 8 21	Frame +2 +3 +2 +3	_
TAC TAC	GCTCCTACTCAGACTGTTACAC GCTCCTACTCAGACTGTGGTGAGGI GCTCCTACTCAGACTCTCTGGTGACAC	CAAC IGAC CAAC		-9 -6 -4	+3 +3 +1	Sanger sequencing
TA TA TA TA TA TA	SCTCCTACTCAGACCTCTGGTGACAG SCTCCTACTCAGGCTGTCTGGTGACAG SCTCCTACTCAGACTACTCTGGTGACAG GCTCCTACTCAGACTGTTGACAG CTGGTGACAG SCTCCTACTCAGACTGTTAGACAG GCTCCTACTCAGACTGCTCTGGTGACAG	CAAC CAAC CAAC CAAC CAAC CAAC	(×2)	-5 -4 -3 -8 -56 -7 -3	+2 +1 +3 +2 +2 +1 +3	
CAC CAC	ertions_ GACTGTTACTCTGG GACCACCTGTGGTCTCCTACTGGI	IGAC	(×16)	Length +9	Frame +3	
C Tota	al events: 17/33 (52%) +1 Frame: 3/17 (18%) +2 Frame: 7/17 (41%) +3 Frame: 7/17 (41%)	ystro GAF	phin 📗 PDH 🕒	, software, cp	»]←	differentiated DMD myoblasts

(Ousterout et al., Nature communications, 2015)

sgRNA CR3 is able to restore dystrophin reading frame by the introduction of indels within exon 51

Is it possible to develop a single method that can address different common patients deletions?

(Ousterout et al., Nature communications, 2015)

Multiplexed CRISPR/Cas9 is able to generate efficient deletion of the exon 45-55 locus

(Ousterout et al., Nature communications, 2015)

DMD sgRNAs treated myoblasts implanted in nude mice express human spectrin and dystrophin

(Walmsley G.L., et al., PlosOne, 2010)

(Amoasii L. et al., Science, 2018)

⁽Nelson C.E. et al., Nature medicine letters, 2019)

(Nelson C.E. et al., Nature medicine letters, 2019)

uysuopiin expression:

 $IFN\gamma$ -production

(Nelson C.E. et al., Nature medicine letters, 2019)

CRISPR/Cas9 correction in human embryos?
MYBPC3 mutations account for ~40% of all genetic defects causing hypertrophic cardiomyopathy

(Carrier L. et al., Gene review, 2015)

Heart failure in healthy individuals Mostly autosomal dominant

correct a heterozygous dominant 4 bp deletion in MYBPC3 (MYBPC3^{ΔGAGT})

(Ma H., et al., Nature 2017)

a Fertilization and preimplantation development of CRISPR–Cas9-injected oocytes

Origin and genotypes of ES cells derived from CRISPR-Cas9 injected embryos

	ES cell line designation	Treatment	Karyotype	On target genotype	Egg donor
Corrected ES	ES-WT1	M-phase injection	46,XX	WT/WT	Egg donor 1
Confected L3	ES-WT2	M-phase injection	46,XX, inv(10)(p11.2q21.2)	WT/WT	Egg donor 2
с II	ES-WT3	M-phase injection	46,XY, inv(10)(p11.2q21.2)	WT/WT	Egg donor 2
from blastocysts	ES-WT4	M-phase injection	46,XX	WT/WT	Egg donor 2
	ES-Mut1	M-phase injection	46,XX	WT/NHEJ	Egg donor 1
	ES-Mut2	M-phase injection	46,XX	WT/NHEJ	Egg donor 2
	ES-C1	Intact control	46,XY, inv(10)(p11.2q21.2)	WT/WT	Egg donor1

No off targets events analyzed by:

- Whole genome deep sequencing;
- BLESS
- GUIDE-Seq
- Digenome-Seq

⁽Ma H., et al., Nature 2017)

Έτσι, δεν γνωρίζω' Socrate

ETHICS

RECOMMENDATION 5-1. Clinical trials using heritable genome editing should be permitted only within a robust and effective regulatory framework that encompasses

- → the absence of reasonable alternatives;
- → restriction to preventing a serious disease or condition;
 - restriction to editing genes that have been convincingly demonstrated to cause or to strongly predispose to that disease or condition;
- restriction to converting such genes to versions that are prevalent in the population and are known to be associated with ordinary health with little or no evidence of adverse effects;
- the availability of credible preclinical and/or clinical data on risks and potential health benefits of the procedures;
- ongoing, rigorous oversight during clinical trials of the effects of the procedure on the health and safety of the research participants;
- ---- comprehensive plans for long-term, multigenerational followup that still respect personal autonomy;
- → maximum transparency consistent with patient privacy;
 - continued reassessment of both health and societal benefits and risks, with broad ongoing participation and input by the public; and
 - reliable oversight mechanisms to prevent extension to uses other than preventing a serious disease or condition.

National Academies of Sciences, Engineering, and Medicine, Human Genome Editing: Science, Ethics and Governance (National Academies Press, Washington, DC, 2017).

HUMAN GENE EDITING

March 2015: Chinese researchers become the first to edit genes in a human embryo.

June 2016: He Jiankui launches a project to edit genes in human embryos, with the goal of a live birth.

March 2017: He starts recruiting couples (each with an HIV-positive father) for the experiments.

Early November 2018: Gene-edited twin girls are reportedly born, and a second pregnancy with a third gene-edited embryo is established.

25–26 November 2018: The *MIT Technology Review* reveals the existence of the research programme; the Associated Press quickly goes public with the story of the girls' birth.

28 November 2018: He offers details about his work at a gene-editing summit in Hong Kong and is roundly criticized.

November–December 2018: China's National Health Commission orders an investigation into He's work.

January 2019: He is censured by the Guangdong health ministry and fired from his university.

18 March 2019: A World Health Organization committee will meet to set guidelines for human gene editing.

August 2019: Third gene-edited baby expected.

NEWS · 12 DECEMBER 2018 NATURE

Baby gene edits could affect a range of traits

Gene targeted for its role in HIV is linked to increased severity of other infectious diseases – and has implications for learning in mice.

The CCR5 protein is expressed on the surface of some immune cells, and HIV takes advantage of it to sneak into the cells. In 1996, scientists identified a mutation, known as $CCR5-\Delta 32$, that makes carriers highly resistant to HIV

found naturally in about 10% of Europeans

Scientists analysing his presentation slides say that, instead, He seems to have produced three different mutations in the girls. It is expected that these mutations will have disabled the gene.

Slides from He's presentation suggest that both copies of the gene were disabled in one of the twins. The other twin seems to have at least one working copy

Baby gene edits could affect a range of traits

Gene targeted for its role in HIV is linked to increased severity of other infectious diseases – and has implications for learning in mice.

CCR5 also helps to protect the lungs, liver and brain during some other serious infections and chronic diseases.

Philip Murphy, an immunologist at the National Institute of Allergy and Infectious Diseases in Bethesda, Maryland, has done experiments that show that people without a functional CCR5 gene are four times more likely than those with the gene to develop these serious conditions. "CCR5 deficiency is not benign," he says.

Influenza could also pose a greater risk to the twins . Work in mice has shown that the CCR5 protein helps to recruit key immune cells to fight the virus in the lungs

Scientists have also found that, among people with multiple sclerosis, those with the CCR5- Δ 32 deletion are twice as likely to die early than are people without the mutation

NEWS · 12 DECEMBER 2018 Nature

Baby gene edits could affect a range of traits

Gene targeted for its role in HIV is linked to increased severity of other infectious diseases – and has implications for learning in mice.

But, on the basis of the information in the consent form, none of these effects seems to have been communicated to the parents of the girls, or to other couples that participated in He's experiments.

He's informed-consent procedure "was a disaster", says Megan Allyse, a bioethicist at the Mayo Clinic in Rochester, Minnesota.

He has not responded to Nature's multiple requests for comment

NEWS · 12 DECEMBER 2018 Nature

Baby gene edits could affect a range of traits

Gene targeted for its role in HIV is linked to increased severity of other infectious diseases – and has implications for learning in mice.

Ccr5^{+/-} mice show enhanced memory in multiple memory tasks.

https://www.youtube.com/watch?v=tLZufCrjrN0&feature=youtu.be&t=1644

https://www.youtube.com/watch?v=th0vnOmFltc

BIOTECHNOLOGY

• • • • • • • • • •

• • • • • • • • • •

The creator of the CRISPR babies has been released from a Chinese prison

He Jiankui created the first gene-edited children. The price was his career. And his freedom.

By Antonio Regalado

April 4, 2022

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

MIT Technology Review

https://www.technologyreview.com/2022/04/04/1048829/he-jiankui-prison-free-crisprbabies/?utm_source=Nature+Briefing&utm_campaign=94700c0bdc-briefing-dy-20220405&utm_medium=email&utm_term=0_c9dfd39373-94700c0bdc-45882746

first authorized clinical trial - turn the fetal hemoglobin gene back on

https://clinicaltrials.gov/ct2/show/NCT03655678

BIOTECHNOLOGY

A gene-edited pig's heart has been transplanted into a human for the first time

The procedure is a one-off, and highly experimental, but the technique could help reduce transplant waiting lists in the future.

By Charlotte Jee

January 11, 2022

