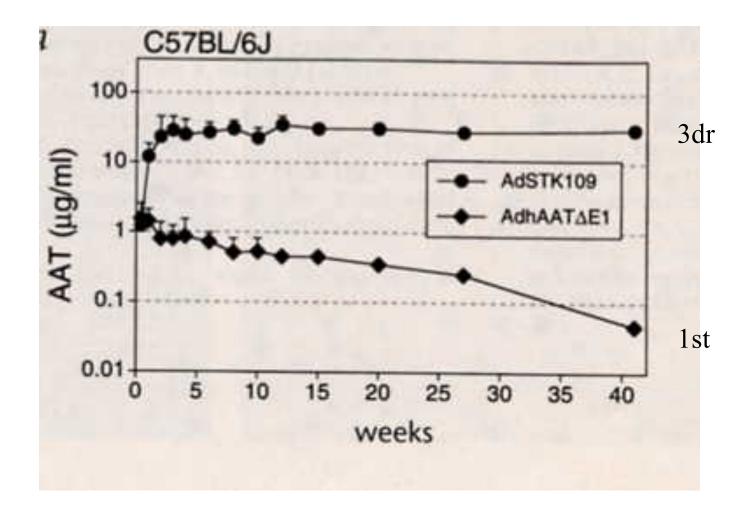
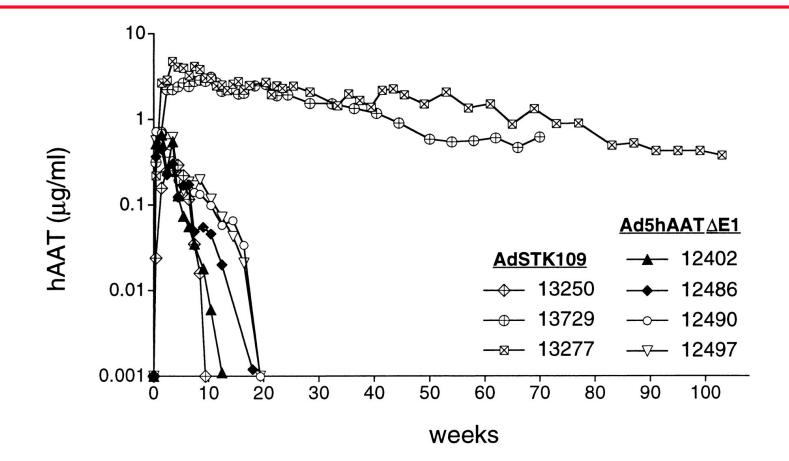

ascoltai a fondo le lezioni. Mi accorsi di com'erano importanti le cose che imparavo. Era bello che un uomo le metteva davanti a un'assemblea di giovani seduti, che avevano uno slancio nell'ascolto, nell'afferrare al volo. Bella un'aula in cui stare per conoscere. Bello l'ossigeno che si legava al sangue e che portava in fondo al corpo il sangue e le parole. Belli i nomi delle lune intorno a Giove, bello il grido di "Mare, mare" dei greci alla fine della ritirata, bello il gesto di Senofonte di scriverlo per non farlo smettere. Bello pure il racconto di Plinio sul Vesuvio esploso. Le loro scritture assorbivano le tragedie, le trasformavano in materia narrativa per trasmetterle e così superarle. Entrava luce in testa come ne entrava in aula. Fuori era un giorno lucente, uno di maggio finito nel mazzo di dicembre.

Erri de Luca Il giorno prima della felicita ' Feltrinelli 2009


#### Problems and ameliorations of Ad vectors

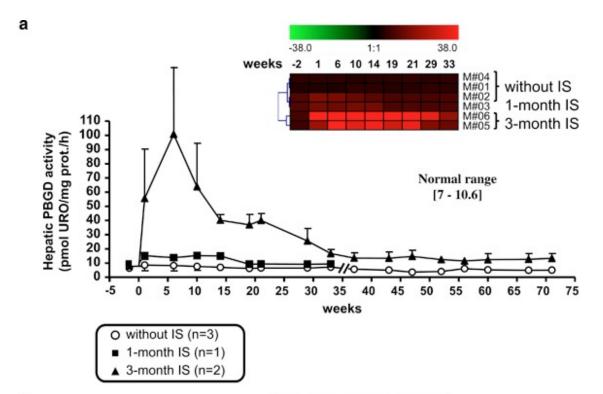
- no integration => chimaeres AAV/ Retro
- seropositivity to Ad => change of serotype, higher doses, immunosuppression
- large tropism => <u>targeted transduction</u>, targeted expression
- immunogenicity => <u>immuno-suppression</u>, <u>new vectors</u>
- size of the insert => <u>new vectors</u>
- short term expr. => chimaeres AAV/Retro, <u>immuno-suppression</u>, <u>new generation</u> <u>vectors</u>
- RCA => new lines, new vectors
- transcomplementation => new vectors

## 3rd generation Ad- vectors




### Ad gutless in mice




Shiedner et al Nat Gen 1998

### Ad gutless in baboons

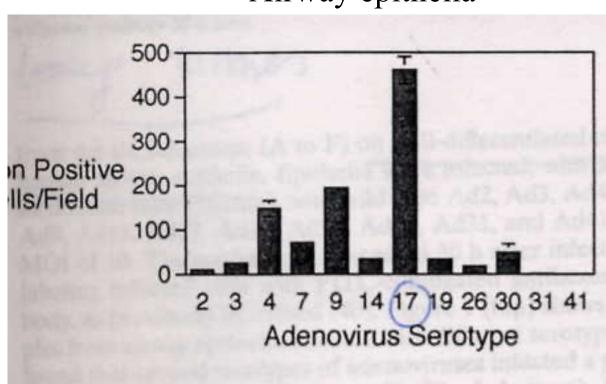


Morral et al PNAS 99

### Ad gutless in primates – porphyria disease



Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in nonhuman primates under immunosuppression


PBGD deficiency Intrahepatic administration of  $5 \times 10(12)$  viral particles kg(-1) immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids

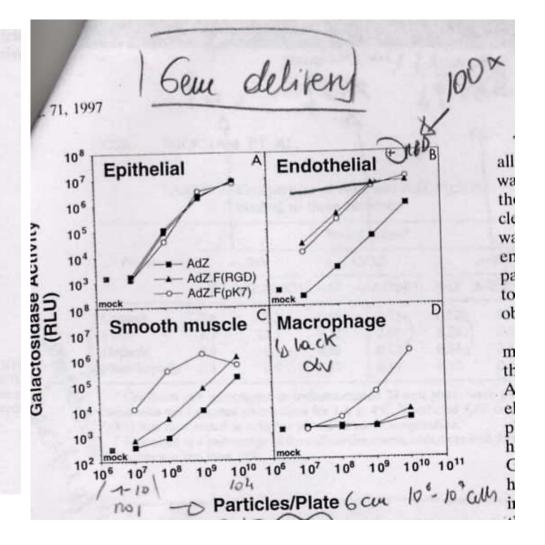
Gen Ther Unzu et al 2015

## Ad: other improvement attempts

- Better transduction of specific tissues => Adheparan binding, Ad17- Ad2 chimerae
- Better transduction => Ad+liposomes

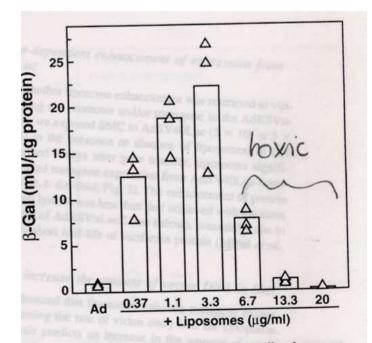
## Ad2-Ad17 (fiber) chimerae

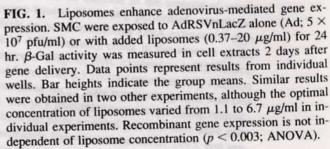



Airway epithelia

J Virology 99, Zabner

### Ad binding heparan sulfate or integrins


| Penton Ba                            | Fiber O                  |                                          |
|--------------------------------------|--------------------------|------------------------------------------|
| FSYIAC<br>wild type fit<br>C-terminu |                          | Targeting<br>Sequence<br>Target Sequence |
| HIGHLARD THE REAL PROPERTY.          |                          | THE REAL PROPERTY OF THE                 |
| AdZ.F(RGD)                           | α <sub>v</sub> Integrins | ACDCRGDCFCC                              |


FIG. 1. Diagram depicting the linker and two ligand sequences used to target Ad binding to adhesion molecules. The vector AdZ.F(RGD) contains a targeting sequence with high affinity for  $\alpha_v$  integrins. The vector AdZ.F(pK7) contains a stretch of seven lysines.



J Virol 97, Wickham

## Ad+liposomes





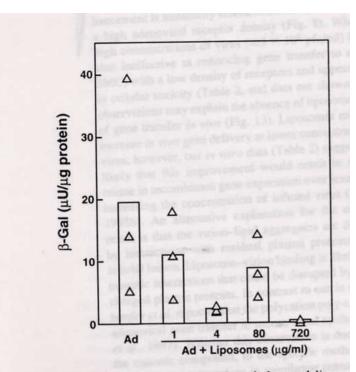



FIG. 13. Effect of liposomes on adenoviral gene delivery vascular SMC *in vivo*. AdRSVnLacZ ( $1 \times 10^{10}$  pfu/ml) was in fused in balloon-injured rat carotid arteries either in the absend (Ad) or the presence of liposomes (Ad + liposomes), at the i dicated concentrations. Carotid arteries were harvested 3 day after gene delivery and the level of  $\beta$ -Gal activity was assay in tissue extracts. Data points represent results from individu rats. Bar heights indicate the group means.

HGT 98, Qiu

### Clinical trials

https://clinicaltrials.gov/ct2/results?term=a denoviral+vectors&pg=1

### Adenovirus and vaccination

# Attenuated adenovirus expressing Gag, nef, pol immunogens.

#### **Ongoing Trials: Phase II**

| Protocol                                             | Status as of         | Pr                                                                           | Prime        |                     |          |
|------------------------------------------------------|----------------------|------------------------------------------------------------------------------|--------------|---------------------|----------|
| Number                                               | December 2007        | Class                                                                        | Producer     | Product             | Adjuvant |
| HVTN<br>502/Merck 023<br>( <u>Step</u> )<br>(n=3000) | Closed to<br>accrual | <u>Nonreplicating adenoviral</u><br><u>vectors</u> (clade B Gag-Pol-<br>Nef) | <u>Merck</u> | MRKAd5<br>trivalent |          |

## Adenovirus and vaccination

Higher infection

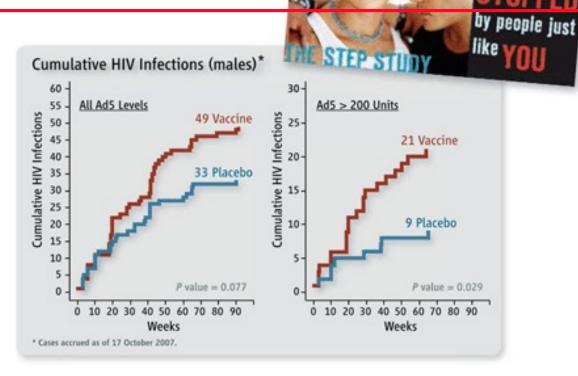

|                         | HIV incidence rate (%) |         |  |
|-------------------------|------------------------|---------|--|
| anti-Ad5 antibody titer | vaccine                | placebo |  |
| <18                     | 4.0                    | 4.0     |  |
| 19 – 200                | 4.4                    | 2.2     |  |
| 201 - 1000              | 6.1                    | 3.0     |  |
| >1000                   | 4.4                    | 1.2     |  |

Table 3. HIV incidence rates during STEP trial. This table shows the HIV incidence observed in vaccine and placebo recipients during the STEP trial, according to Ad5 antibody titer.

|         |        | Ad5 antibody                                                                                    | titer                                                    |           |
|---------|--------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|
|         | <18    | <18 <ad5≤200< th=""><th>200<ad5≤1,000< th=""><th>Ad5&gt;1,000</th></ad5≤1,000<></th></ad5≤200<> | 200 <ad5≤1,000< th=""><th>Ad5&gt;1,000</th></ad5≤1,000<> | Ad5>1,000 |
| Vaccine | 20/382 | 8/140                                                                                           | 14/229                                                   | 7/163     |
| Placebo | 20/394 | 4/142                                                                                           | 7/229                                                    | 2/157     |

Table 1. Number of HIV infections according to Ad5 antibody titer. Number of HIV-infected individuals, out of the total number of vaccine and placebo recipients, according to increasing Ad5 antibody titer. This data, from the post-hoc analysis of the STEP trial, was presented at the HVTN meeting by Mike Robertson of Merck.

# Adenovirus and vaccingion<sub>science</sub>



Two prominent hypotheses have emerged to explain the observed trend of increased HIV infections among some vaccinated Step participants: the first suggests that rAd5 activates memory Ad5-specific CD4 T cells in Ad5seropositive individuals, expanding the potential targets for incoming HIV virions; the second suggests that preexisting nAb to Ad5 can form immune complexes with an rAd5 vaccine vector and promote infection of target CD4 T cells with HIV.

### Adenovirus and vaccination

LIVE **BBC News 24** NEWS Last Updated: Friday, 21 September 2007, 21:52 GMT 22:52 UK **News Front Page** E-mail this to a friend World UK Merck abandons HIV vaccine trials England International drug company Northern Ireland Merck has halted trials on an Scotland HIV vaccine that was Wales regarded as one of the most **Business** promising in the fight against Politics Aids. Health Medical notes Merck stopped testing the Education vaccine after it was judged to Science/Nature be ineffective. Technology Entertainment In trials the vaccine failed to

BBC

Printable version

The vaccine was loaded with copies of three HIV genes

## Simian Adenovirus

#### Science Translational Medicine Integrating Medicine and Science

#### 2012

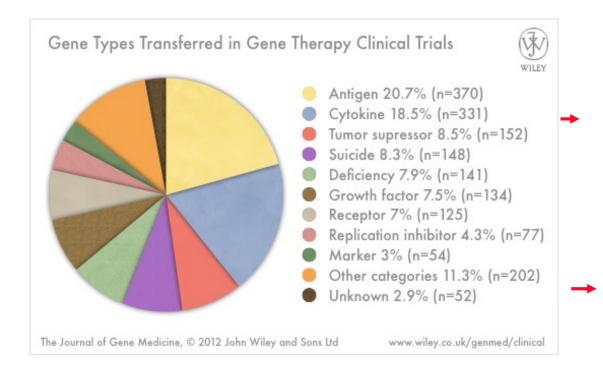
#### **GENE THERAPY**

Vaccine Vectors Derived from a Large Collection of Simian Adenoviruses Induce Potent Cellular Immunity Across Multiple Species

Stefano Colloca<sup>1,\*</sup>, Eleanor Barnes<sup>2,3,\*</sup>, Antonella Folgori<sup>1</sup>, Virginia Ammendola<sup>1</sup>, Stefania Capone<sup>1</sup>,

Agostino Cirillo<sup>4,†</sup>, Loredana Siani<sup>1</sup>, Mariarosaria Naddeo<sup>1</sup>, Fabiana Grazioli<sup>1</sup>, Maria Luisa Esposito<sup>1</sup>, Maria Ambrosio<sup>1</sup>, Angela Sparacino<sup>1</sup>, Marta Bartiromo<sup>1</sup>, Annalisa Meola<sup>4</sup>, Kira Smith<sup>2</sup>, Ayako Kurioka<sup>2</sup>, Geraldine A. O'Hara<sup>5</sup>, Katie J. Ewer<sup>5</sup>, Nicholas Anagnostou<sup>5</sup>, Carly Bliss<sup>5</sup>, Adrian V. S. Hill<sup>5</sup>, Cinzia Traboni<sup>1</sup>, Paul Klenerman<sup>2</sup>, Riccardo Cortese<sup>1,6</sup> and Alfredo Nicosia<sup>1,6,‡</sup>

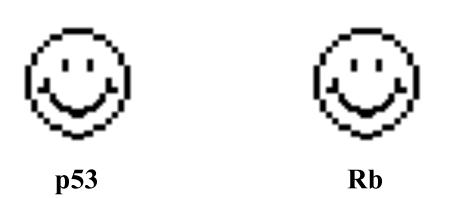



Falsa la notizia che l'Oms sarebbe intenzionata a chiedere una commessa di un milione di vaccini alla Okairos (che ha laboratori a Napoli) e all'Irbm di Pomezia

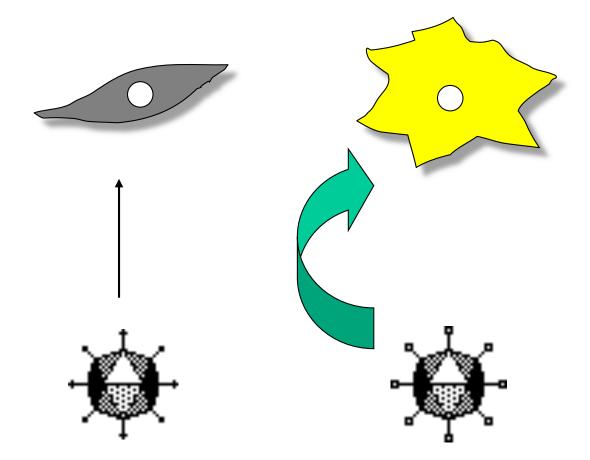
di Redazione Online Roma



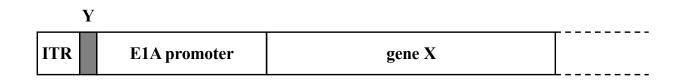
ROMA — Le prime notizie su uno dei vaccini contro il virus Ebola si erano diffuse alla vigilia dell'estate e allora i riflettori si erano accesi su Okairos, con sede in Svizzera e laboratori a Napoli (presso Ceinge) e a Pomezia (in joint venture con l'Irbm Science Park). Circa 10mila dosi del prodotto saranno


#### Cancer gene therapy

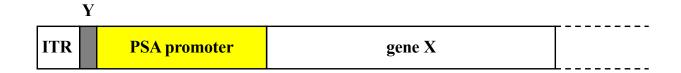



J Gene Med 2013

| Gene type                          | Gene Therapy Clinical Trials |      |  |
|------------------------------------|------------------------------|------|--|
|                                    | Number                       | %    |  |
| Adhesion molecule                  | 10                           | 0.5  |  |
| Antigen                            | 417                          | 21.2 |  |
| Antisense                          | 15                           | 0.8  |  |
| Cell cycle                         | 8                            | 0.4  |  |
| Cell protection/Drug resistance    | 20                           | 1    |  |
| Cytokine                           | 349                          | 17.7 |  |
| Deficiency                         | 156                          | 7.9  |  |
| Growth factor                      | 143                          | 7.3  |  |
| Hormone                            | 9                            | 0.5  |  |
| Marker                             | 54                           | 2.7  |  |
| Oncogene regulator                 | 12                           | 0.6  |  |
| Oncolytic virus                    | 52                           | 2.6  |  |
| Porins, ion channels, transporters | 16                           | 0.8  |  |
| Receptor                           | 149                          | 7.6  |  |
| Replication inhibitor              | 87                           | 4.4  |  |
| Ribozyme                           | 6                            | 0.3  |  |
| siRNA                              | 12                           | 0.6  |  |
| Suicide                            | 156                          | 7.9  |  |
| Transcription factor               | 32                           | 1.6  |  |
| Tumor suppressor                   | 158                          | 8    |  |
| Others                             | 58                           | 2.9  |  |
| Unknown                            | 51                           | 2.6  |  |
| Total                              | 1970                         |      |  |

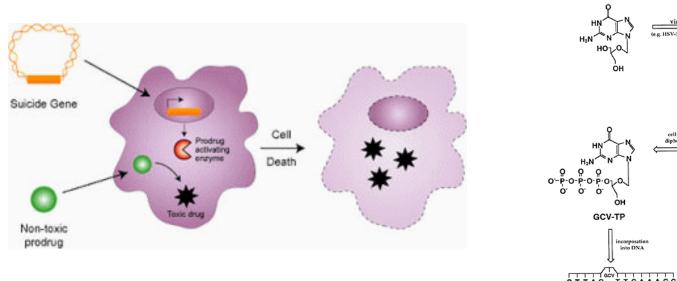

Tumor suppressor for cancer gene therapy

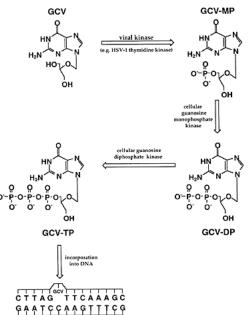



#### Receptor mediated targeting



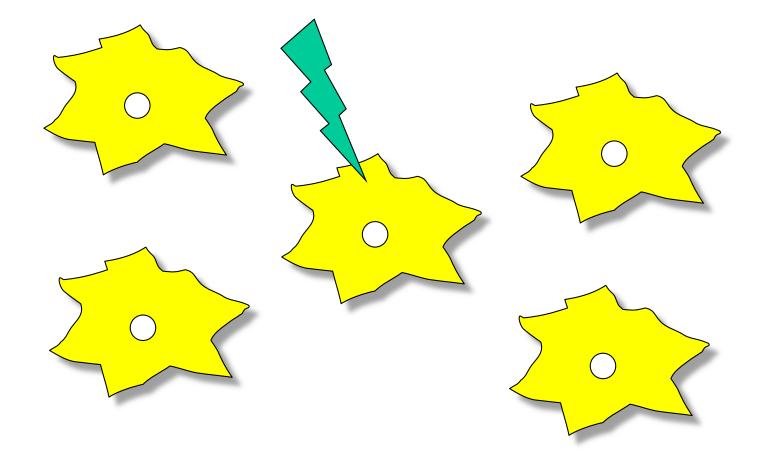
#### Promoter mediated targeting



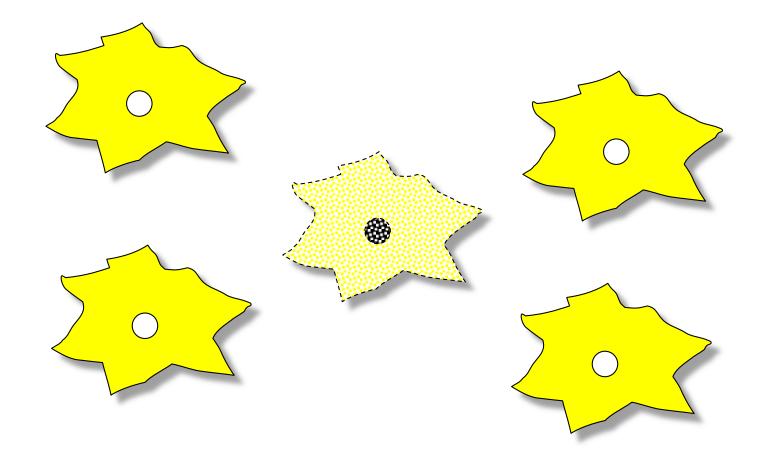





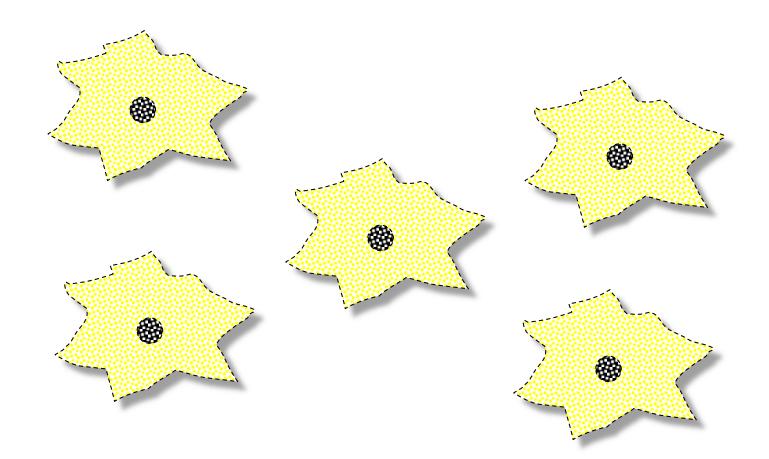

#### Suicide genes and prodrugs


| Table 3   Enzyme-prodrug combinations for suicide gene therapy* |                                          |                          |                                                     |  |
|-----------------------------------------------------------------|------------------------------------------|--------------------------|-----------------------------------------------------|--|
| Enzyme                                                          | Prodrug                                  | Product                  | Mechanism                                           |  |
| HSV-tk                                                          | Ganciclovir                              | Gancicolvir triphosphate | Blocks DNA synthesis                                |  |
| Cytosine deaminase                                              | 5-Fluorocytosine                         | 5-Fluorouracil (5-FU)    | Pyrimidine antagonist: blocks DNA and RNA synthesis |  |
| Nitroreductase                                                  | Nitrobenzyloxycarbonyl<br>anthracyclines | Anthracyclines           | DNA crosslinking                                    |  |
| Carboxylesterase                                                | CPT-11                                   | SN38                     | Topoisomerase inhibitor                             |  |
| Cytochrome P450                                                 | Cyclophosphamide                         | Phosphoramide mustard    | DNA alkylating agent: blocks DNA synthesis          |  |
| Purine nucleoside<br>phosphorylase                              | 6-Mercaptopurine-DR                      | 6-Mercaptopurine         | Purine antagonist: blocks DNA synthesis             |  |

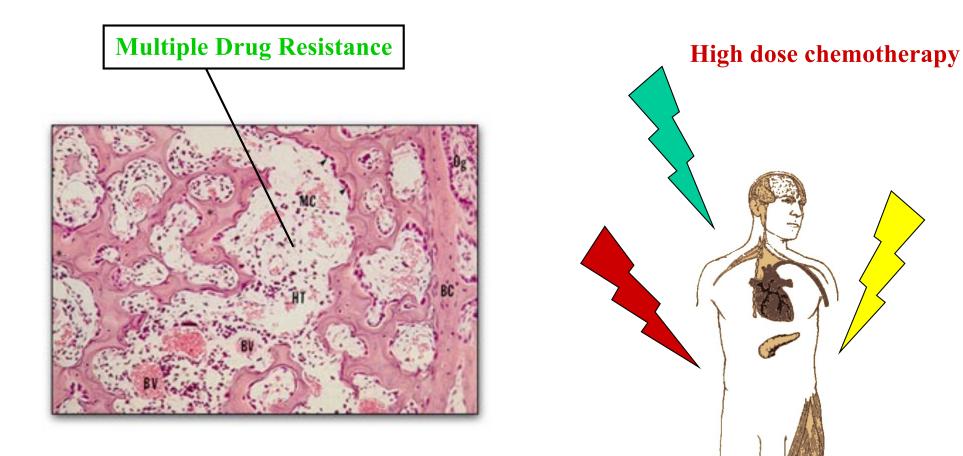




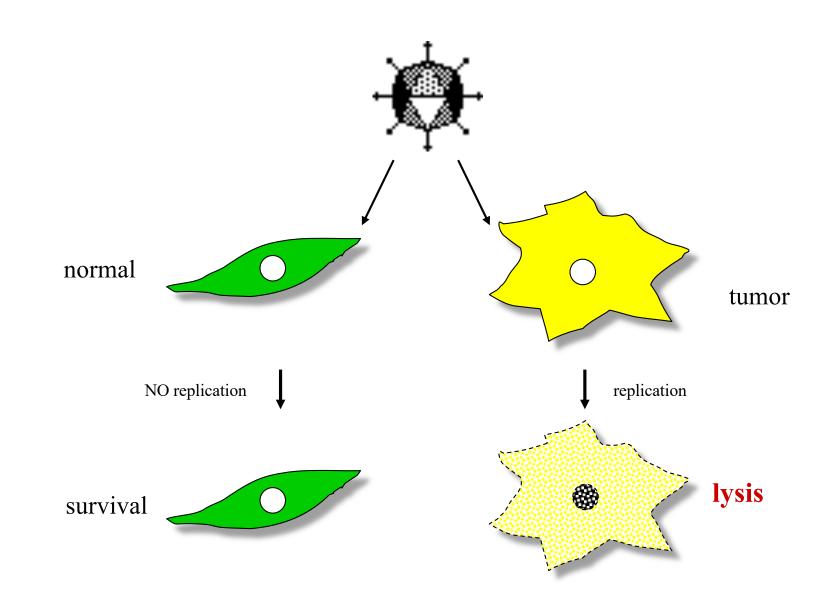

F. McCormick - Nature Reviews on Cancer 1:130, 2001


#### Bystander effect

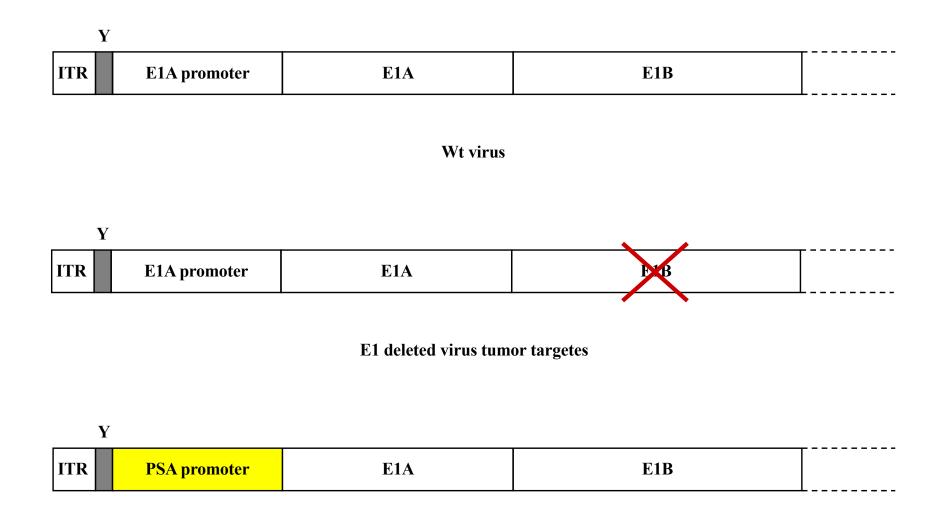



#### Bystander effect




#### Bystander effect



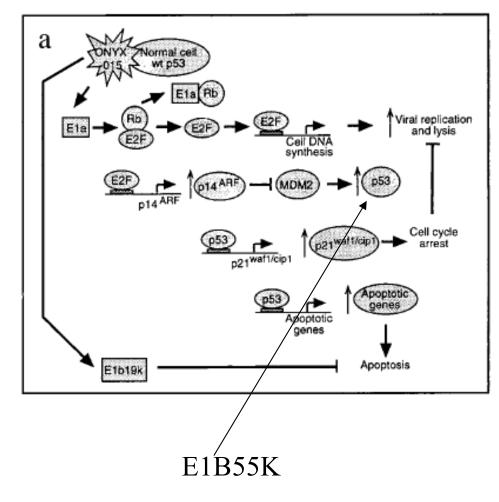

#### Bone marrow protection for chemotherapy



#### Oncolytic viruses



#### **Tumor selectivity**



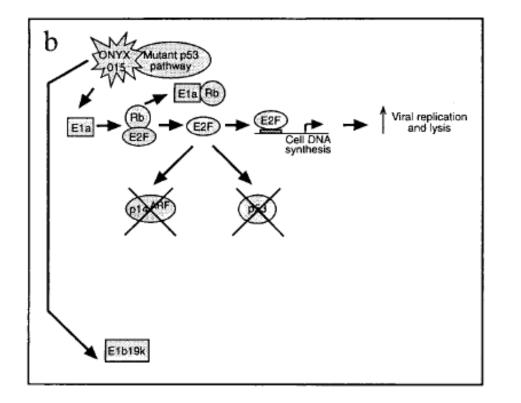

Prostate specific promoter, tumor targeted

### ONYX-015

- A E1B-55K DELETED ADENOVIRUS, FOR THE TREATMENT OF TUMORS p53-
- CURRENTLY THE MOST USED ONCOLYTIC VIRUS
- PHASE III CLINICAL TRIALS ARE UNGOING

### **ONYX-015 ON NORMAL CELLS**




•Infects normal cells that have functional p53 gene

•p53 gene increases the production of antiviral protein

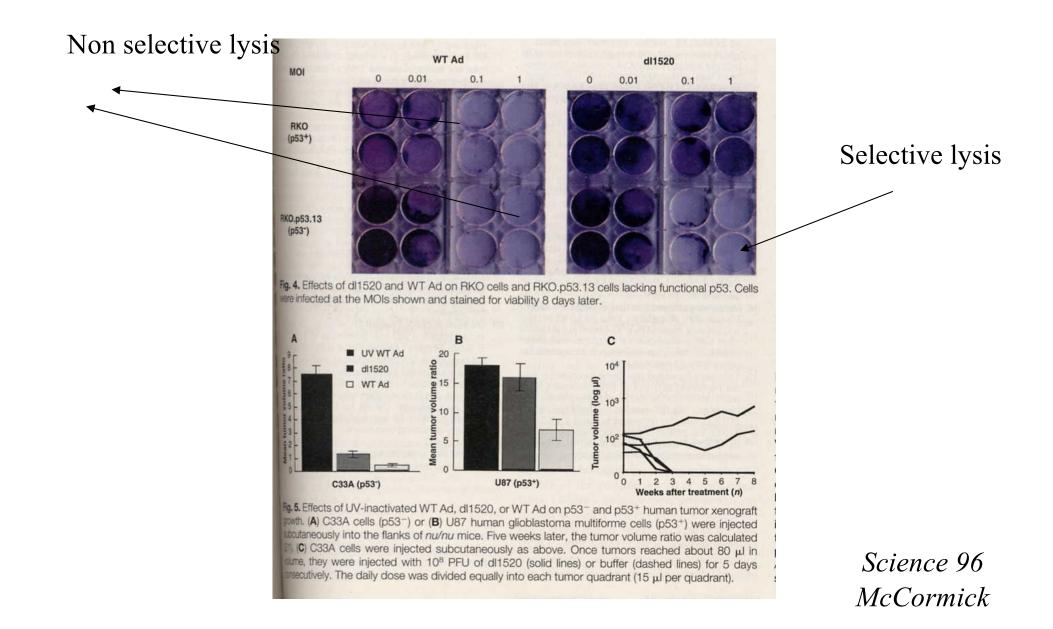
•Virus does not replicate

•Normal cell is not killed

### **ONYX-015 ON CANCER CELLS**



•Infects cancer cells that lack a functional p53 gene


•Uses cell's machinery to replicate and make more copies of itself

•Kills the cancer cells through lysis

•New viruses can infect more cancer cells An Ad mutant that selectively replicates in p53deficient human tumor cells

- E1B => vp55 protein that inactivates hp53 (whose function would block cell and DNA replication)
- Viral mutant => vp55 can replicate and kill p53ko tumors => good for selective therapy

### Replicative p55- Ad for therapy of p53- tumors



### Evaluation in cell culture

- BISCHOFF et al. 1996: ONYX replicates in *p53-*, not in *p53+;* rescue if I add 55k
- HEISE et al, 1997:

ONYX does not replicate in primary cells, 100-1000fold attenuated vs wt

### **Preclinical trials**

### Preclinical studies in mice xenograft models

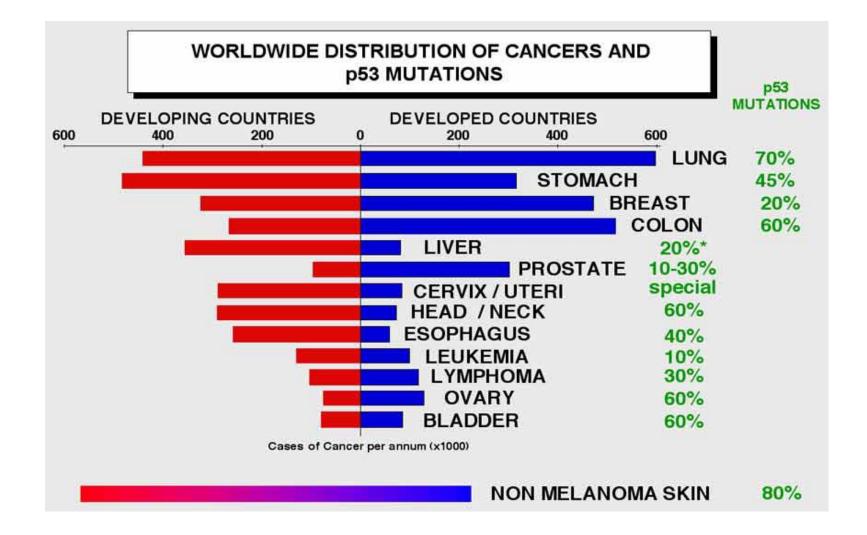
- ONYX induces 50% regression of tumor mass at 6 months
- ONYX acts synergically with chemotherapy HEISE et al.1997

### 1996: PHASE I CLINICAL TESTING

### Phase II clinical trial

- ONYX ALONE:
- 50% TUMOR DESTRUCTION IN 14% PATIENTS ENROLLED
- SIGNIFICANT CORRELATION BETWEEN ANTITUMORAL ACTIVITY (COMPLETE, PARTIAL AND MINOR RESPONSES) AND PRESENCE OF A P53 MUTATION

NEMUNAITIS et al. 2000 e 2001


- ONYX-015 ADMINISTERED IN COMBINATION WITH CISPLATIN AND 5-FLUOROURACIL
- 19 (63%) OF THE 30 PATIENTS EXPERIENCED REGRESSION OF 50% OR MORE IN THEIR INJECTED TUMORS
- 8 (27%) OF THE PATIENTS EXPERIENCED A 100% REGRESSION IN THE SIZE OF THEIR INJECTED TUMORS
- SIX MONTHS AFTER THE END OF THE STUDY, NO TUMOR HAD PROGRESSED

#### ONYX-015 & Chemotherapy: complete response



2005 China FDA approves

#### Why p53 as target?



| virus       | administration cancer typ                    |                                       | clinical phase |   |     |
|-------------|----------------------------------------------|---------------------------------------|----------------|---|-----|
| virus       | administration                               | cancer type                           | 1              | _ | III |
| ONYX<br>015 | intratumoral<br>injection +<br>chemotherapy  | head and neck                         |                |   | -   |
|             | intratumoral<br>injection +<br>chemotherapy  | pancreatic cancer                     |                |   |     |
|             | hepatic<br>artery infusion +<br>chemotherapy | liver metastases<br>colorectal cancer |                |   |     |
|             | intratumoral<br>injection +<br>chemotherapy  | sarcoma                               |                |   |     |
| 2           | intratumoral injection                       | malignant glioma                      |                |   |     |
|             | mouthwash                                    | oral leukoplakia                      |                |   |     |
|             |                                              |                                       | clinical phase |   | ase |
| virus       | administration                               | cancer type                           | 1              |   | III |
| CV706       | intratumoral injection                       | prostate cancer                       |                |   |     |
| CV787       | intratumoral injection                       | prostate cancer                       |                |   |     |
| G207        | intratumoral injection                       | glioblastoma<br>multiforme            |                |   |     |
| Reovirus    | intratumoral                                 | advanced                              |                |   |     |

tumors

injection

#### Onyx ongoing ameliorations

- ARMED ADENOVIRUS:
- SUICIDE GENES
- IMMUNOSTIMULATORY CYTOKINES

- UNDERSTANDING THE BIOLOGICAL MECHANISMS DEFINING
  - INTERACTION WITH HUMAN HOST
  - SYNERGY BETWEEN VIRUS THERAPY AND CHEMOTHERAPY

# QUESTIONS? BIBLIO