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INTRODUCTION

How well is a species doing? How likely is it that par-
ticular stressors will cause a wildlife population to 
decline or go extinct? What is the best way to reverse 
the trend? These are the big-picture questions com-
monly asked of  applied population ecologists. Having 
built the foundation for understanding population 
biology and discussed factors causing large popula-
tions to decline, we can now consider ecological tools 
for predicting risks to small and declining popula-
tions.1 Although interesting ecological questions can 
be generated from species that “naturally” persist at 
low abundance (e.g. Gaston 1994, Brown 1995), here 
the focus will be on applied situations where popula-
tions that were historically abundant are currently 
small and/or declining.

What is a small population (Mills et al. 2012)? 
Smallness is a meaningful concept only in relation to 
other species, to historical population sizes, or even  
to arbitrary management standards. For an exploited 
species such as the canvasback, conservation plans 

may call for corrective management to be imple-
mented when population sizes decrease to the tens of  
thousands. In contrast, conservation efforts for threat-
ened species may be delayed until the population falls 
below 100 or is putatively extinct (e.g. the Hawaiian 
honeycreeper with the two letter name: ‘ō‘ū).

In this chapter I will first review ecological charac-
teristics that might predispose populations or species 
to extinction due to humans. The rest of  the chapter 
will describe viability assessment for small popula-
tions, including quantitative approaches for popula-
tion viability analysis (PVA).

ECOLOGICAL CHARACTERISTICS 
PREDICTING RISK

Are there broad ecological characteristics that can 
help classify population dynamics – and therefore risk 
– for particular populations or species? Obviously, 
smaller populations will be more vulnerable to extinc-
tion (all else being equal) than larger populations,  
an idea rooted in the classics of  applied ecology (e.g. 
Leopold 1933, MacArthur & Wilson 1967). For 
example, Mace and Kershaw (1997) found that pop-
ulation size was the best predictor of  extinction risk 
in a global survey of  birds. In some (but not all) 
cases, having a restricted range or being endemic or 
highly specialized can serve as a proxy for small pop-

1 I will avoid the terms rare or rarity. These are often considered 
synonymous with low abundance, but can also sometimes refer to 
high habitat specificity, ecological specialization, and limited geo-
graphical distribution (Rabinowitz et al. 1986, Gaston 1994).When 
using rare or rarity the context should be defined precisely in terms of  
abundance, range size, and habitat use (Mace & Kershaw 1997).

‘ ’
There’s an old adage, translated from the ancient Coptic, that contains all the wisdom of  the ages – “Life is life and 
fun is fun, but it’s all so quiet when the goldfish die”.

Beryl Markham (1983:218), West with the Night



The dynamics of small and declining populations    225

variability relative to growth rate are most resistant  
to extinction, while a high ratio is more predictive of  
local extinction (Fagan et al. 2001). A third predictor 
of  extinction is body size, where larger-bodied animals 
tend to be more vulnerable to extinction both histori-
cally (as in the Pleistocene era) and currently (Brook 
& Bowman 2005, Cardillo et al. 2005). As body size 
increases for animal species, the population growth 
rate and density tend to decrease while the home-
range size increases; furthermore, larger animals are 
more vulnerable to harvest and other human-caused 
threats. Finally, as we saw in the last chapter, a suite 
of  characteristics predispose certain species to be able 
to adapt to human-caused stressors (Box 11.7: large 
abundance, short generation times, medium levels  
of  gene flow, and a more generalist nature); species 

ulation size and therefore be a predictor of  vulnera-
bility to extinction for a species (Channell & Lomolino 
2000, Purvis et al. 2000). There are no simple 
thresholds of  population size that guarantee persist-
ence (Box 12.1) and later in the chapter we will 
explore the best ways to assess risk for populations of  
different sizes.

Another predictor of  extinction is the ratio of  the 
variance in population growth rate to the mean 
growth rate (Chapter 5). Species with a low ratio of  

Box 12.1  The 50–500 rule

As an historical footnote in the use of abundance to predict extinction vulnerability, we must review 
the famous 50–500 rule. This rule of thumb emerged from the application of conservation genetics 
to wild species (Franklin 1980, Soulé 1980, Frankel & Soulé 1981) and was swept up into manage-
ment plans (e.g. the Puerto Rican parrot recovery plan) and a number of biological opinions (Mills 
et al. 2012). In essence, the rule provides a minimum genetic effective size for short- and long-term 
protection.

An effective size of 50 was proposed as a minimum to protect against short-term loss of fitness 
due to inbreeding, based on empirical observations of the decrease in fitness-related traits with 
incremental inbreeding domestic animal species.2 Several caveats implicit in the original rule were 
lost as it became applied in management (Soulé 1987, Soulé & Mills 1992). For example, the 50 is 
the genetic effective size (Ne), typically about one-fifth to one-third that of the total population size 
(Chapter 9); thus an Ne of 50 translates to 150–250 or so actual animals. Second, the rule was 
proposed as a short-term guideline for captive breeding and similar holding operations, not for 
long-term survival of wild populations exposed to stochastic and deterministic stressors. Third, the 
rule was based purely on genetic factors, not incorporating the other factors that would again 
increase the minimum necessary size for persistence. Based on these considerations, it is untenable 
to argue that an actual population size of 50 is sufficient as a rule to support any wildlife population 
into the future.

A value of 500 was proposed as the minimum Ne necessary to ensure long-term maintenance of 
genetic variation, thereby preserving evolutionary options for future adaptation. In more formal 
terms, 500 was the estimated minimum genetic effective size where the loss of additive genetic 
variation of a quantitative character due to genetic drift would be balanced by new variation due to 
mutations. This number has received serious scrutiny by population geneticists, with arguments to 
increase it to as large as 5000 or more (Frankham et al. 2010). As Allendorf and Ryman (2002) note, 
this debate is likely to continue, but there is little doubt that the actual population size (as opposed 
to the genetic effective population size) necessary to maintain evolutionary potential for the long 
term should be thousands of individuals and not hundreds.

2 To be exact, the 50 rule emerged from a literature review indicating 
that domestic animals experienced fitness problems when the inbreed-
ing coefficient (F) exceeded about 1% per generation. Because F due 

to drift increases at a rate of  
1

2Ne  per generation (Chapter 9), 

0.01 = 
1

2Ne  is solved by Ne = 50.
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without these traits would be less likely to adapt and 
persist.

Of  course, all such rules of  thumb for vulnerability 
are tempered by the reality that simple predictions may 
be overwhelmed by the specific situation. For example, 
vulnerability of  primates and carnivores was underes-
timated by a model based on species characteristics  
in cases where the species had lost habitat, been com-
mercially overexploited, or suffered from exotic species 
(Purvis et al. 2000). Similarly, extinction vulnerability 
for 145 Australian marsupial species depended more 
on geographical-range overlap with sheep than it did 
on species characteristics such as body size, reproduc-
tive rate, or habitat specialization (Fisher et al. 2003). 
Vulnerability may also derive in part from particular 
behavioral attributes such as Allee effects or naiveté 
toward predators (e.g. the passenger pigeon; Reed 
1999).

THE EXTINCTION VORTEX

In managing small and declining populations, the over-
riding factors to consider are what caused the 
population to become small and how to reverse the  
decline. Whether the cause of  decline was habitat loss 
or fragmentation, overharvest, exotic species, or some 
combination of  these or other causes, reversing the 
human-caused deterministic stressors that led to the 
decline and that now limit recovery is of  paramount 
importance (Chapter 11).

Unfortunately, a small population also becomes par-
ticularly vulnerable to a host of  stochastic threats 
that interact with the deterministic stressors. There-
fore, even if  the deterministic stressors were reversed 
and a small population achieved a positive average 
population growth, the population could still stumble 
toward extinction. Three main types of  stochasticity 
affect persistence: demographic, environmental, and 
genetic (Chapters 5 and 9). As a reminder, demo-
graphic stochasticity causes variation because mean 
vital rates are probabilistic, so as numbers of  individu-
als become small the outcomes of  births and deaths 
can substantially deviate from mean expectations. 
Environmental stochasticity refers to random changes 
in the mean vital rates across individuals from year  
to year, often driven by weather or other unexpected 
effects. Genetic stochasticity arises from genetic drift; 
harmful alleles randomly accumulate as homozygotes 
that may reduce demographic rates.

Both deterministic and stochastic factors interact 
in small populations to drive the extinction vortex 
(Fig. 12.1). The extinction vortex makes it very clear 
that when evaluating persistence we should not 
emphasize one factor (e.g. the cause of  decline, 
genetic stochasticity, or environmental stochasticity) 
and disregard the others. Rather, management 
actions are best judged against the relative impor-
tance of  the different factors and how they interact 
in any particular case (Lande 1988a, Mills & Smouse 
1994).

The complex interactions among ecological factors 
and human-caused stressors make the extinction 
vortex hard to detect in the field. However, we saw 
some instances of  the extinction vortex in the Chapter 
9 case studies. Further, a review of  10 species with 
monitoring data documenting their demise showed 
key signatures that the extinction vortex kicked in at 
small numbers to exacerbate their collapse (Fagan & 
Holmes 2006). Finally, some manipulative laboratory 
studies have provided compelling evidence for the 
extinction vortex (Box 12.2).

PREDICTING RISKS IN SMALL 
POPULATIONS

To confront the extinction vortex requires a formal 
framework to assess viability. The intellectual roots  
for assessing viability in wildlife populations go back 
at least 80 years. Aldo Leopold (1933:47) noted the 
importance of  recognizing “the minimum number of  
individuals which may successfully exist as a detached 
population.” A few years later, our old friend W.C. 
Allee (Chapter 7) stated: “The general conclusion 
seems to be that different species have different 
minimum populations below which the species cannot 
go with safety, and that in some instances this is con-
siderably above the theoretical minimum of  one pair” 
(Allee 1938:82).

Viability assessments have more recently been 
placed into legal frameworks with names like cumu-
lative effects analysis (Schultz 2010). Any frame-
work to evaluate viability should place intuition, 
theory, and field data into an operational framework 
to allow insights into factors that caused decline and 
that may cause further decline in the future. At its 
best, viability assessments make both hard data and 
best guesses explicit, so that the input and output can 
be honestly debated. As a framework for incorporating 



The dynamics of small and declining populations    227

POPULATION VIABILITY ANALYSIS (PVA): 
QUANTITATIVE METHODS OF ASSESSING 
VIABILITY

PVA defined

Broadly, PVA can be defined as the application of  data 
and models to estimate likelihoods of  a population crossing 
thresholds of  viability within various time spans, and to 
give insights into factors that constitute the biggest threats. 
Key components in the definition include what is 

multiple, interacting processes, viability assessment 
can reveal nonintuitive and nonobvious outcomes 
that can assist management in surprising and impor-
tant ways.

The quantitative branch of  viability assessment is 
known as population viability analysis (PVA). We 
will consider PVA in some detail next. Because in many 
instances only a qualitative assessment of  viability is 
possible – in contrast to the quantitative assessment of  
PVA – we will also consider qualitative alternatives  
to PVA.

Fig. 12.1  A simplified representation of  the extinction vortex. The effects of  deterministic stressors are filtered by the 
population’s environment (habitat as well as variable extrinsic factors such as weather, competition, predators, and food 
abundance) and by its structure (including age structure, sex ratio, behavioral interactions, density dependence, physiological 
status, and intrinsic birth and death rates). Each turn of  the feedback cycle increases extinction probability (Gilpin & Soulé 
1986). The extinction vortex model predicts that some small populations are more likely to become smaller and eventually go 
extinct with each generation due to the interaction of  genetic and nongenetic factors. Modified from Soulé and Mills (1998). 
Copyright (1998) AAAS.
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Box 12.2  Insights into the extinction vortex from a model system

In a clever test of the extinction vortex, fruit flies 
were exposed to changing and stressful environ-
ments (Bijlsma et al. 2000). The replicated worlds 
were vials 22 mm in diameter holding up to 
about 120 flies. High temperature and different 
levels of ethanol produced stressful treatments. 
For each treatment of an environmental condi-
tion and inbreeding level 50 populations were 
followed over eight generations (imagine the dif-
ficulty of doing this experiment with your favorite 
wild mammal or bird species).

Control populations (Fig. 12.2, top panel) had 
relatively low extinction probabilities over time, 
although inbred populations (with inbreeding 
coefficients, F, greater than 0) had higher extinc-
tion rates. Under stressful conditions extinction 
rates increased (middle and lower panels), with 
inbreeding exacerbating the extinction risk. The 
researchers repeated the experiment 2 years 
later and found the same result: the extinction 
rate was elevated by environmental stress con-
ditions and highly inbred populations were much 
more likely to go extinct when under environ-
mental stress. Inbreeding and environmental 
stress act synergistically, making a convincing 
general case that the extinction vortex is real 
and that genetic effects should not be consid-
ered independently from environmental and 
demographic effects.

Fig. 12.2  Extinctions over time under various sets of 
conditions for outbred (F = 0) or inbred fruit flies. 
Modified from Bijlsma et al. (2000). Reproduced by 
permission of Blackwell Publishing Ltd.
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meant by viable, the time spans of  interest, and the 
risk likelihoods to be described. Each of  these will 
be discussed in the next section. Clearly, a PVA incor-
porates virtually every concept of  applied population 
biology discussed so far in this book.

Notice that this definition says nothing about a min-
imum viable population (MVP), a term that domi-
nated much of  conservation biology in the 1980s (see 
Gilpin & Soulé 1986, Soulé & Mills 1992). This is 
because PVA approaches capture the idea behind MVP, 

while making MVP itself  obsolete. Although MVP has 
alluring simplicity as a single, simple number, the con-
cept is problematic for both philosophical and scientific 
reasons. Philosophically, it seems questionable to pre-
sume to manage for the minimum number of  individu-
als that could persist on this planet. Scientifically, the 
problem is that we simply cannot determine accurately 
a single minimum number of  individuals that will be 
viable for the long term, because of  the inherent 
uncertainties in nature and management arising from 



The dynamics of small and declining populations    229

Time

An assessment of  population viability must also 
include a specified time element. As with many other 
predictions (e.g. weather or stock markets), the projec-
tions of  PVA will be less reliable further into the 
future, reducing predictive accuracy. Therefore, PVA in 
endangered species recovery plans should incorporate 
short-term projections evaluated against a long-term 
goal (Scott et al. 1995, Goodman 2002). The long-
term viability assessment includes management goals 
relatively free of  political and legal considerations (i.e. 
biologically based). The short-term projections show 
tradeoffs for a range of  options explicitly incorporating 
political, legal, social, and economic constraints; moni-
toring and the iterative use of  short-term PVAs evalu-
ate how well the goal of  long-term persistence is being 
met. Thus public input (and political tradeoffs) can be 
incorporated in choosing short-term management 
strategies, but ultimate success is judged against the 
yardstick of  the long-term, biologically based goal. An 
analogy is useful for thinking about the relative merits 
of  short-term, more reliable projections compared 
with long-term projections: “We can see only as far as 
our headlights reach, but we need to be concerned 
about what lies beyond their reach” (Allendorf  & 
Ryman 2002:77).

Likelihood of  risk

As a forecasting tool, PVA relies on predicting likely 
outcomes. Therefore, the third critical issue to consider 
is confidence, or likelihood that the population will 
remain above the viability threshold for the specified 
time. Risks are often visually displayed with quasi-
extinction curves (Groom & Pascual 1998, Akçakaya 
2000) representing the probability (or cumulative 
probability) of  reaching a quasi-extinction threshold 
over a range of  time periods. For example, Figure 
12.3(a) shows how the cumulative probability of  
declining to one California condor increases with time. 
The time that it takes to reach a 0.50 probability of  
quasi-extinction gives the median time to quasi-
extinction.3 In this case, we expect condors to have a 

ecological processes, management scenarios, and 
measurement of  population parameters in wild popu-
lations. Finally, the number of  individuals required to 
carry out ecological functions – including nutrient 
cycling or limitation of  prey numbers – may be much 
bigger than the minimum needed for that species to 
persist; without ecologically effective numbers, key 
ecological processes could be compromised (Soulé et al. 
2003; see Chapter 13). Therefore, instead of  a futile 
focus on a single number (MVP), a much more con-
structive and reliable philosophy evaluates a range of  
possibilities through PVA.

Three components of PVA

As defined above, three concepts central to the PVA 
definition include a criterion for viability, relevant 
time spans to evaluate, and the description of  risk. 
The last part of  the definition – insights into factors 
that constitute the biggest threats to the population 
– will be discussed for each of  the types of  PVA dis-
cussed below.

Viability versus extinction

The simplest criterion for a viable population is one 
that is not extinct, remaining above zero individuals 
(or one mating pair). Although extinction per se is 
obviously an important threshold, other viability 
thresholds may be more important for biological or 
management-based reasons. These quasi-extinction 
thresholds of  viability might include biological 
thresholds below which Allee effects occur or where 
strongly interacting species become unable to carry 
out critical ecosystem functions. For example, the 
Marine Mammal Act (Section 2) explicitly incorpo-
rates a functional role into the viability threshold: 
“population stocks should not be permitted to diminish 
beyond the point at which they cease to be significant 
functioning elements of  the ecosystem of  which they 
are a part.” The quasi-extinction threshold may also 
include management thresholds such as the trig-
gering number to bring a wild population into captiv-
ity, or the abundance below which a threatened species 
would receive special management (Ginzburg et al. 
1990). Therefore, when I refer to a viability threshold 
for avoiding extinction I mean it in the broad sense, 
including both true extinction as well as management 
or quasi-extinction thresholds.

3 We tend to use median and not mean extinction time descriptions 
because extinction time distributions have a long tail, consisting of  the 
small probability of  lasting a very long time, which causes the mean 
to be much higher than the median and overestimates the probability 
of  safety for the most likely population (see Akçakaya 2000).
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Another way to portray risk is to display the proba-
bility of  the population declining by some amount rela-
tive to the initial population size. For example, Fig. 
12.3(b) shows that the risk of  large percentage declines 
in spotted owls over the next 100 years is much higher 
with logging than without.

Fig. 12.3  Likelihoods of  risk may be portrayed in different ways. (a) The cumulative probability of  12 California condors 
declining to one bird (the quasi-extinction threshold) as time passes (from Dennis et al. 1991; reproduced by permission of  the 
ESA). The dotted lines represent the 95% confidence interval. The median time to extinction is 25 years, the time that it takes 
to reach a 50% quasi-extinction probability. (b) A different way of  portraying risk: the probability of  declining by some 
percentage of  the original population size. The graph shows the risk of  decline of  a northern spotted owl metapopulation 
(modified from Akçakaya & Raphael 1998; reproduced by permission of  Springer Science and Business Media). The top curve 
gives risk under a timber-harvest scenario and the bottom curve assumes no habitat loss. Each point on the curve indicates the 
probability that the overall abundance will decrease by some percentage from the initial abundance during a 100-year 
interval. In this example the maximum difference between the curves is at a 78% decline (marked by a vertical line); the 
probability of  this level of  decline from the initial abundance is approximately 77% with logging and 33% without logging.
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tions with positive growth rates to decline to extinction 
(Chapter 5), implying that managing variability in 
population growth can be as important as managing 
the mean growth rate.

To see how time-series PVA works, consider esti-
mates of  abundance for gray whales off  the central 
California coast from 1967 through 2001 (Fig. 12.4a). 
The population was depleted by commercial whaling 
in the late 1800s. Legal protection began in 1946 and 
by 1994 the population had recovered enough to be 
removed from the list of  endangered and threatened 
wildlife (Gerber et al. 1999). The abundance estimates 
used in the time series were collected while whales 
were migrating south during the winter (Reilly 1992, 
Rugh et al. 2005). Trend analysis using the EGPN 
(exponential growth with process noise) method 
(Chapter 5) and translating r̂  to λ provides an esti-
mated λ of  1.008 with a 90% confidence interval of  
(0.97, 1.052). Thus the most likely trajectory of  the 
gray whales has been an increase of  just under 1%  
per year, with up to a 3% decrease or 5% increase being 
consistent with the data. The final step is to com-
bine these estimates of  growth and its variance with 
a quasi-extinction threshold. Suppose the quasi-
extinction threshold were set at 10,000, a little smaller 
than the lowest number of  whales observed during the 
the time series. The best estimate of  the probability that 
the population will decline from its abundance of  
roughly 18,000 whales in 2001 to 10,000 is about 
15% in 10 years and 28% in 20 years (Fig. 12.4b).

Elaborations of  this basic density-independent PVA 
of  time-series data can be extended to account for 
many real-world complexities, including correlations 
or changes in average trajectory over time, outliers, 
and density dependence (e.g. Bakker et al. 2009, 
Staples et al. 2005). In general, positive density 
dependence (e.g. Allee effects) will tend to increase 
extinctions in time-series PVA, while negative density 
dependence has more complicated effects: at low 
numbers it tends to reduce the extinction proba-
bility because population growth increases, but the  
regulatory effect of  negative density dependence will 
also cap population growth, which could increase 
extinction probability.

How to conduct a PVA

We have seen that various thresholds of  viability  
or extinction may be considered over various times  
and probabilities. Clearly, the best PVAs will be those 
that consider multiple thresholds and alternatives  
with a range of  inputs and outputs, instead of  a  
single analysis with X data input for Y probability 
of  persistence over Z years. Also, it should be clear 
that PVA has a strong biological basis but the selec
tion of  the thresholds arises from societal norms.  
Obviously, issues such as for how long we want to 
evaluate persistence and how secure that persistence 
should include social, cultural, economic, and politi
cal considerations (Shaffer 1987, Ludwig & Walters 
2002).

Likewise, the spatial scale of  any PVA should be 
linked to the population being analyzed and the man-
agement perturbations being considered (Ruggiero  
et al. 1994, Gärdenfors et al. 2001). These different 
scales may not match, for example if  the PVA is for only 
one National Forest while the perturbations are occur-
ring regionwide and the species persists across an even 
larger scale (say, continent-wide for a large carnivore 
species).

Once ranges of  thresholds are set and the scale of  
analysis clearly articulated, we are ready to conduct a 
PVA. Two primary classes of  formal, quantitative PVAs 
exist. One type uses time series, or abundance over 
time. The other uses vital rates linked to demographic 
processes such as density dependence and inbreeding 
depression. Both approaches can be extended to mul-
tiple populations.

Time-series PVA

A time series of  abundance estimates can be used to 
estimate probabilities of  a population reaching quasi-
extinction. The mathematical approaches become 
complicated and beyond this book (see Dennis et al. 
1991, Morris & Doak 2002, Staples et al. 2005), but 
the bedrock of  the methods build off  the estimation of  
average trend or growth rate ( r̂, often denoted in PVA 
as û) and its variance (σ 2), as described in Chapter 5. 
Assuming that the future will have similar growth and 
bounce (variation) as the past, one can calculate the 
future probability of  a population bouncing its way 
down to some threshold quasi-extinction or manage-
ment threshold.4 The math captures the nonintuitive 
but important fact that stochasticity can cause popula-

4 How long a time series is needed to estimate the extinction risk for a 
single population? At the very least, 10–15 time steps (e.g. years) are 
needed to be able to characterize population growth and correlation 
structure, although considerably more may be necessary to properly 
capture variance in growth rates or determine density-dependence 
structure (Brook & Bradshaw 2006, Humbert et al. 2009).
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Fig. 12.4  Time-series PVA based on gray whales off  the coast of  California. (a) Abundance estimates over time, with SE bars 
representing sample variance (data from Rugh et al. 2005; see also Wade 2002). (b) The cumulative distribution function 
(and its 90% confidence interval) of  the density-independent quasi-extinction probability of  decline from the 2001 abundance 
of  18,178 to a quasi-extinction threshold of  10,000 or fewer whales. (c) Quasi-extinction probability, as in (b), except that a 
logistic growth model of  negative density dependence is assumed.
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One of  three approaches are usually taken to deal 
with density dependence in PVA:
•	 Estimate the density-dependent structure and 
parameters from the field data using a model-fitting 
framework (e.g. Akaike’s information criterion, AIC), 
which is undoubtedly the best approach but requires 
high quality and quantity of  data.
•	 Use a density-independent model in the hope that it 
performs well enough to say something useful about 
real populations whether or not they are experiencing 
density dependence.

•	 Use an array of  models with and without density 
dependence to bracket what might actually be occur-
ring and see if  management alternatives are robust to 
the model form used (Pascual et al. 1997).

When data quality and quantity do not allow the 
first approach (estimating the density dependence 
structure from the data), a combination of  the second 
and third approaches can be reasonable. Simple 
density-independent models should perform well in a 
wide variety of  conditions, such as the following (Sabo 
et al. 2004):



The dynamics of small and declining populations    233

Time series PVA models have typically been limited 
to assessing risk without explicitly addressing the 
second part of  the PVA definition of  weighing how 
management actions might reduce the threats to a 
population. Because covariates can be incorporated 
into time series analyses (e.g. Dennis & Otten (2000) 
include rainfall and density in an analysis of  kit fox 
trends), it should be possible to add management-
relevant covariates and use model selection to ascer-
tain which management actions most affect 
persistence. These approaches have been little used to 
date. The demographically explicit PVA method, de-
scribed next, is more commonly used to evaluate the 
efficacy of  various management techniques for recov-
ering populations.

Demographically explicit PVA

This class of  PVA model incorporates estimates of  
demographic vital rates, their variances and covari-
ances, and other biological information such as stage 
structure, density dependence, and costs of  inbreeding 
depression. A major benefit of  demographically explicit 
PVA methods is that they move beyond merely predict-
ing viability and allow constructive evaluation of  
actions that will most effectively reverse a declining 
population (Beissinger & Westphal 1998, Reed et al. 
2002). Therefore, these approaches quantify effects of  
various management actions, thereby addressing the 
second part of  the PVA definition (to give insights into 
factors that constitute the biggest threats).

As a striking example, consider the highly endan-
gered northern right whales, which declined to about 
300 worldwide due to female mortality from collisions 
with ships, entanglement with fishing gear, and fluc-
tuations in food. The small size of  the population 
means that every individual death has a large effect on 
survival. Ironically, therein also lies the hope: increas-
ing current survival rates by preventing the deaths of  
just two or three individual female whales each year 
could actually reverse the decline of  right whales and 
put them on the road to recovery (Fujiwara & Caswell 
2001). When populations are very small, individuals 
matter (some more than others) and demographically 
explicit analysis can help show the most efficient path 
to recovery.

The inclusion of  multiple interacting factors in a 
demographically explicit PVA almost always requires 
computer simulations, often following the framework 
of  matrix models (Chapter 6). The computer builds 

•	 Populations subject to density dependence are at 
abundance levels where density effects are not strong 
(e.g. at abundances well below K in cases of  negative 
density dependence).
•	 The effects of  density are similar in the past – when 
the parameters of  population growth rate and its vari-
ance are estimated – and the future for which predic-
tions are being made.
•	 The form of  density dependence is a ceiling (Chapter 
7), as might occur under competition for space such as 
nesting sites.
•	 The goal is to detect large declines as opposed to 
small ones.
•	 The population of  interest is declining or only slowly 
recovering.

These conditions cover many instances where we 
would be interested in performing a PVA in the first 
place. In such cases, a density-independent time-series 
PVA model is likely to either correctly predict future 
dynamics or err toward the side of  caution by overes-
timating the probability of  reaching a quasi-extinction 
threshold (Sabo et al. 2004). If, however, you are inter-
ested in estimating chances of  moderate declines, or if  
the population shows signs of  recovery, or if  biological 
intuition or sound data indicates the operation of  more 
complex forms of  density dependence with feedback 
across all population sizes (Chapter 7), then the best 
approach would use a density-independent model as 
well as different forms and shapes of  density depend-
ence. Figure 12.4(c) shows that logistic-type density 
dependence would decrease probabilities of  quasi-
extinction for the gray whales.

An extension of  density-independent time-series 
PVA models is called risk-based viable popu
lation monitoring (Staples et al. 2005). This 
approach uses annually updated estimates of  trend 
and variance to iteratively estimate probabilities of  
persistence or decline to a threshold of  concern, 
thereby efficiently describing both population status 
and risk of  potential future declines or extinction. In 
essence, trend and variance based on EGPN or EGSS 
estimators (Chapter 5) are used to estimate the prob-
ability that the population will fall below a specified 
quasi-extinction threshold within a specified time in 
the future; thus risk and recovery is not defined in a 
single long-term evaluation but rather as maintaining 
a low risk of  decline over multiple updated risk assess-
ments. Software is available to implement this method-
ology (Program PopGrow; http://www.cnr.uidaho.edu/
population_ecology).

http://www.cnr.uidaho.edu/population_ecology
http://www.cnr.uidaho.edu/population_ecology
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sible possibilities, including worst-case and best-case 
scenarios. Finally, as noted in the previous section, 
positive and negative density dependence can also af-
fect PVA predictions and can be included based on field 
data and by bracketing with density-independent and 
density-dependent what-if  scenarios (Mills et al. 1996).

How to conduct a demographically explicit PVA? In 
some cases, commercial or shareware PVA programs 
suffice. Two of  the most popular are the matrix-based 
RAMAS (Akçakaya et al. 2004) and the individual-
based VORTEX (Miller & Lacy 2003). In other cases, 
particular aspects of  proposed management options or 
of  the animal’s life history or behavior require develop-
ment of  species-specific PVA programs (e.g. for chee-
tahs (Kelly & Durant 2000), red-cockaded woodpeckers 
(Daniels et al. 2000, Walters et al. 2002), and African 
wild dogs (Vucetich & Creel 1999); see Fig. 12.6).

Perhaps most importantly, demographically explicit 
PVAs allow the user to take the next step of  evaluating 
efficacy of  management actions across political, eco-
nomic, and sociological contexts. Several case studies 
for practical sensitivity analyses to guide management 
based on PVA-like models are given in Chapter 6. 
Another example of  management through viability 
analysis married PVA science with field data and man-
agement decision-making for the endangered island 
fox (Urocyon littoralis) on the Channel Islands (Bakker 
& Doak 2009, Bakker et al. 2009). First, acceptable 
risk and recovery criteria were established in a public 
forum, accounting for the inevitably complex sociopo-
litical and biological considerations. Next, readily 
monitored population attributes were selected (e.g. 
adult population size and adult mortality) and linked 
to quasi-extinction thresholds via PVA. This step clari-
fied that uncertainty in the monitoring data will delay 
the delisting of  a recovering population, giving incen-
tives to all parties to reduce uncertainty. Finally, man-
agement actions that affect the population attributes 
were incorporated (e.g. how management of  golden 
eagle predation would achieve delisting).

The biggest disadvantage of  demographically ex-
plicit approaches is their need for extensive data. 
Clearly, there comes a point where ignorance of  input 
values leads to futility in parameterizing a complex 
model with poor or nonexistent data; in such cases the 
time-series approach or one of  the other approaches 
described below may be more appropriate. However, in 
the zone where the match between model needs and 
data availability is reasonable, one can embrace uncer-
tainty by acknowledging it explicitly and considering 

thousands of  “what if ” scenarios, with each replicate 
being a possible projection of  the population into the 
future. Replicates capture the many different paths a 
population could take, based on the real-world esti-
mates of  vital rates and other potential processes.

Factors that can be incorporated into demographi-
cally explicit PVAs include the many nuances of  
stochasticity, as well as inbreeding and density depend-
ence. Demographic and environmental stochasticity 
can be incorporated into the replicate projections (Box 
6.3), as can unusual fluctuations such as catastrophes 
with specified magnitudes and average timing for oc-
currence. Correlations among vital rates and over time 
(as discussed in Chapter 6) can also be incorporated 
(Fig. 12.5). Genetic stochasticity due to genetic drift 
and inbreeding depression can be incorporated by 
specifying how demographic rates decline with in-
creased inbreeding (Box 12.3). The range of  inbreeding 
expected for any species, as well as uncertainty in the 
shape of  the curve relating inbreeding to fitness, means 
that incorporating genetic stochasticity is the same as 
with any other uncertain parameter in PVA (includ-
ing, for example, dispersal rates, density dependence, 
breeding structure, correlations among rates and over 
time, and so on): you should include a range of  plau-

Fig. 12.5  Correlations among vital rates and over time 
can affect viability predictions. Based on data from the 
endangered Australian possum, the cumulative probability 
gives the risk that 30 possums will fall below some number 
of  possums in 5 years. The solid line assumes independence 
(no correlation) both among rates and over time and 
indicates a high likelihood of  persistence; for example, it 
appears that the chance of  falling to less than 40 possums 
in 5 years is very small. The dotted line assumes perfect 
positive correlation in rates over time and among vital rates, 
and shows a much higher likelihood of  declining to fewer 
than 40 possums, or even 30 possums, in 5 years. Modified 
from Ferson and Burgman (1995). Reproduced with 
permission from Elsevier.
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tion or coupling in environmental stochasticity is often 
facilitated by closer proximity. Correlations among 
population dynamics are also facilitated by movement 
of  individuals; for example, Canada lynx populations 
across western North America are connected by gene 
flow (Chapter 10), which may facilitate the relatively 
synchronous dynamics of  lynx populations at the 
continent-wide scale.

A different type of  PVA builds off  of  presence/
absence data across multiple populations over time. In 
the simplest form we might estimate the extinction 
probability to be the fraction of  populations occupied 
in the past but no longer occupied in the present (e.g. 
of  100 sites historically occupied only 40 are still occu-
pied, so the extinction probability is 1 − 40/100 = 0.6). 
However, there is an important wrinkle in the real 

scenarios across a range of  plausible values (Bakker  
et al. 2009).

PVA with multiple populations

The PVA approaches for single populations described 
above can be scaled up for multiple populations across 
the landscape (see Horne et al. 2011 for an example 
for endangered golden-cheeked warblers (Dendroica 
chrysoparia)). With sufficient data, multiple-population 
PVA models can be spatially explicit, incorporating 
exact locations of  populations or individuals or other 
features (Reed et al. 2002). Levels of  connectivity – 
and their positive and negative effects – as well as cor-
relation in dynamics among the populations (Chapter 
10) can be incorporated. The extent of  positive correla-

Box 12.3  Incorporating inbreeding costs into demographically explicit  
PVA models

Genetic drift in small populations can decrease heterozygosity and cause inbreeding depression 
(Chapter 9). The cost of inbreeding depression on fitness is incorporated in PVA models via lethal 
equivalents expressed either per gamete (per haploid genome) or per individual (per diploid 
genome; twice the number per gamete). Lethal equivalents include the effects of independently 
acting lethal alleles as well as the cumulative effects of partially deleterious alleles that would kill 
the individual if made homozygous. To bring this closer to home, humans have been found to carry 
enough deleterious alleles – lethal equivalents per individual – to kill each of us between two and 
five times over (Keller 1998). These deleterious alleles tend not to be expressed in individuals in 
large populations because natural selection holds them at low frequencies and they are usually 
recessive, so nondeleterious alleles mask their effects. However, inbreeding can increase expres-
sion of the deleterious recessive alleles, reducing survival or reproduction.

Lethal equivalents are estimated by determining (usually through regression) the relationship 
between the inbreeding coefficient and fitness. The difficulty of measuring both inbreeding level and 
fitness means that in many PVAs a range of values from other species are used to bracket possible 
effects. For example, for 40 different nondomestic mammal species in zoos the lethal equivalents 
per diploid individual for juvenile survival ranged up to 30.3, with a median of 3.1 (Ralls et al. 1988). 
Over the full range of lifetime reproductive success, field estimates of lethal equivalents may be 
closer to 12 (O’Grady et al. 2006).

When decrementing vital rates with loss of genetic variation in a PVA model, another considera-
tion includes whether or not the cost of inbreeding is constant. The shape of the curve relating 
inbreeding to fitness is a complex topic that includes whether fitness interactions among genetic 
loci are synergistic and whether there is a threshold level of inbreeding above which the costs get 
worse (see Frankham 1995), as well as the extent to which inbreeding depression is purged over 
time (see Chapter 9). Different PVA programs account for synergistic effects and purging in different 
ways (e.g. Mills & Smouse 1994, Miller & Lacy 2003).
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samples over time or space. After incorporating incom-
plete detection, the estimated occupancy at site i (site 
represents a patch or sampling cell), ψ̂ i, becomes the 
probability that the site is occupied by the target 
species.

Now, suppose you have historic data that indicates 
where populations were known to be. Then you return 
to those previously occupied sites and estimate ψ̂ i, the 
probability that it is still occupied in the present at  
that site. The extinction probability for that site is 
ˆ ˆEi i= −1 ψ . Finally, the average extinction probability 

world: a presence is a presence; it was there. Does an 
“absence” truly indicate an extinction or was the 
species present but simply not detected? Just as we saw 
that raw count data must be adjusted by individual 
detection probability to estimate abundance (Chapter 
4), with occupancy modeling we adjust raw counts 
of  species detections across patches by the estimated 
probability of  detecting a species (MacKenzie & Royle 
2005). For occupancy, the probability of  detecting a 
species that is actually present is derived from the 
pattern of  detections and nondetections in a string of  

Fig. 12.6  An example output for a demographically explicit PVA, addressing how both predators (lions) and diseases of  
differing virulence would affect African wild dog populations. The panels (modified from Vucetich & Creel 1999, reproduced 
with permission by John Wiley and Sons, Ltd.) show the probability of  persistence for 50 years for a population of  98 wild 
dogs, in cases where disease reduces wild dog survival by 10, 20, or 40%. The left-hand panels give results when wild dogs are 
in the presence of  moderate lion density (100 adult lions/1000 km2) and the right-hand panels represent high lion density 
(131 adult lions/1000 km2). The top panels show results with rabies, which affects all age classes equally, the middle panels 
show the outcome of  canine distemper, which primarily affects pups and yearlings (and adults only to a lesser extent), and the 
bottom panels are for canine parvovirus affecting only pups.
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ties arises from both process variance and sampling 
variance (or observation error). Sampling error will 
make nature seem more variable than it really is, 
which will tend to overestimate the predicted proba-
bility of  extinction. Also, if  your attempt to parame-
terize a complex model hemorrhages with missing 
data, do not try to force a model that requires those 
data.
(b)	 Remember that PVA is more useful as a compara-
tive tool for ranking management options than for 
making precise predictions of  extinction. Although the 
scientific process underpinning PVA can provide a 
sound basis for predicting actual population trajecto-
ries, such precise predictions will typically be limited 
by the quality and quantity of  data (Brook et al. 2000, 
2002). In general, data quality will rarely be ideal, 
especially for the more realistic (detailed) models, and 
we will almost always be ignorant about the specific 
future changes (natural or human-caused) that should 
be included. Using PVA to evaluate the relative merits 
of  different management options allows it to be incor-
porated into the decision-making that guides manage-
ment action and policy (Maguire 1991, Noon & 
McKelvey 1996, Bakker & Doak 2009). Box 12.4 pro-
vides a case study of  how a PVA was used to improve 
decision-making for Leadbeater’s possum, an endan-
gered marsupial at the center of  a contentious forestry 
debate in Australia.
(c)	 Embrace uncertainty by considering a range of  
possibilities for every step with doubt about a process, 
a functional relationship, or a measured parameter. 
The worst PVAs are those that take one set of  input 
data and provide one point estimate of  extinction prob-
abilities, while the best are those that consider a range 
of  biological and management-based inputs, and a 
range of  predictions (projection time span, probabili-
ties of  persistence, varying scenarios, etc.). Ideally, in 
addition to the range of  input values and output 
metrics, a PVA should be performed with multiple 
methods. Sensitivity analysis in the broad sense, evalu-
ating what inputs most affect the output, is perhaps 
one of  the most useful contributions of  PVA. Burgman 
and Possingham (2000:104) recall the epithet that 
“all models are wrong but some are useful” (from Box 
1979:202) to emphasize their point that:

. . . the only correct model is an entire reconstruc-
tion of  the actual system – whereupon it ceases to 
be a model. The utility of  a PVA is determined by 
several things, including the care taken to include 

for the species across all n sites that had previously 
been occupied is ˆ ˆ /E E ni

n
i= ∑ =1  (Karanth et al. 2010). 

This gives the estimated proportion of  sites at which 
local extinctions occurred.

A terrific example of  this approach builds on 
>30,000 historic records (from museums, taxidermy, 
etc.) to identify areas where 25 mammal species in 
India were known to be present in the last 200 years. 
By returning to those sites in the present (2006) and 
applying occupancy modelling approaches, Karanth  
et al. (2010) could estimate the proportion of  the his-
toric sites still occupied, correcting for incomplete 
detection. From this they estimated local extinction 
probabilites for the 25 species ranging from 0.14 
(jackal, Canis aureus) to 0.96 (lion, Panthera leo). They 
then modelled local species extinction rates relative to 
potentially important covariates and found that key 
variables led to decreased probabilities of  local extinc-
tion for at least some of  the species: the presence of  
protected areas (18 of  25 species), high forest cover (7 
species), high elevation (8 species), and lower human 
population density (13 species). Extinction probabili-
ties were higher for animals that were large-bodied, 
rare, and habitat specialists. Clearly, these approaches 
can be used to model population viability rigorously in 
cases where the only available data are presence and 
absence.

Big-picture thoughts about PVA

The primary benefit of  using PVA to quantify viability 
is that it forces us to be explicit about the threats to a 
population. It puts assumptions on the table so that 
people can honestly debate and disagree. Sometimes 
the important factors for management focus turn out 
to be nonintuitive, emerging only when multiple 
factors are analyzed in the synthetic framework of  a 
PVA. For the same reasons, PVAs also help identify 
surprising gaps in knowledge to target with research.

Practical advice for PVA may be found in Akçakaya 
and Sjögren-Gulve (2000), Burgman and Possingham 
(2000), and Reed et al. (2002). From these works and 
others, and from personal experience, I will distill three 
overlapping take-home messages.
(a)  Remain acutely aware of  the quality of  the data 
available, and the match between the data and the 
model (Ludwig 1999, Fieberg & Ellner 2000, Sæther 
& Engen 2002). As we have seen in this book, varia-
tion in vital rates, abundances, and carrying capaci-
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Box 12.4  An example of PVA as an input to decision analysis

The primary threat to Leadbeater’s possums in Australia is loss of nest sites in trees over 150 years 
old. Early this century, fires burned more than 60% of the forest within the range of the species and 
clearcut logging subsequently occurred over 75% of its known distribution. The species now occu-
pies an area 60 km by 50 km in the central highlands of the state of Victoria in southeastern Australia, 
where management avoids cutting in certain areas (including old growth patches) and allows it in 
others; areas that burn in the future may be salvage logged.

The viability of this species was assessed subject to current and potential future management 
options (Fig. 12.7) (Possingham et al. 2002). For each option, the number gives the percentage 
chance of extinction over the next 150 years (shown in parentheses in the figure) and over a period 
in the future when the forest has reached an equilibrium with the management actions (think of this 
as the period 500–650 years from now, assuming constant conditions).

Under current management, possums would be expected to persist for the next 150 years (only 
38% chance of extinction), but not into the future (100% chance of extinction). If existing old-growth 
forest were not allowed to be salvage logged, the extinction risk decreases because damaged but 

Fig. 12.7  Assessment of the viability of possums subjected to management options. From Possingham et al. 
(2002). Reproduced with permission of the University of Chicago Press.
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Pacific northwest of  the US (e.g. Thomas et al. 1993) 
and continued to evolve after FEMAT (Marcot et al. 
1997). Expert opinion or other subjective approaches 
to assess viability are problematic because humans are 
inherently bad at guessing risks, even when they are 
informed guesses. We are led astray by how visible or 
controllable the risk appears and by the consequences 
of  the risks (Burgman et al. 1993). Thus, we overesti-
mate many low-level risks (e.g. death by tornado or 
anthrax) and underestimate high-level risks (e.g. death 
by heart disease or automobile accident). Also, subjec-
tive decision-making is idiosyncratic to the experiences 
of  the expert making the decision: the term severe  
risk will mean different things to different people. This 
means subjective judgment decisions are neither 
transparent nor amenable to testing their logic, mech-
anisms, predictor variables, or sources of  uncertainty 
(McCarthy et al. 2004). In short, expert-opinion 
assessments of  viability remain an uncomfortable and 
insufficient last resort.

Therefore, to close the discussion of  viability assess-
ment, we will consider two less data-intensive methods 
that are not part of  PVA per se, but that can be used to 
assess viability when detailed population data are not 
available.

Rules of thumb

Rule-of-thumb approaches assign qualitative rankings 
of  risk based on specified, operational criteria. Two 
widely used programs based on rule-of-thumb viability 
assessments include those developed by the Nature 
Conservancy (Master et al. 2000, Samson 2002) and 
the World Conservation Union (the International 

all ecological intuition faithfully, the care taken to 
represent all views (hypotheses) as structural alter-
natives, the detail and transparency of  statements 
about assumptions, and the role of  the model within 
the decision-making framework. One of  the most 
important steps in establishing the credibility of  a 
PVA is to communicate the uncertainties embedded 
in the model and its assumptions.

OTHER APPROACHES TO ASSESSING 
VIABILITY

The worst-case scenario for a biologist is to conduct an 
assessment of  viability when time is short and data are 
scarce to nonexistent. However, it is not unusual for 
biologists to be asked to conduct a PVA with neither 
the time nor the data to conduct quantitative PVA 
using the time-series, demographically explicit, or 
multiple population models and analyses described 
above. For example, in 1993, President Clinton 
appointed a Forest Ecosystem Management Assess-
ment Team (FEMAT) to evaluate the effects of  large-
scale timber-harvest options on wildlife species in 
western Washington, Oregon, and northern California 
(Meslow et al. 1994, Thomas 1994). More than 1000 
plant and animal species were to be included in the 
assessment, even though little was known about many 
of  the species. The team had 3 months to complete the 
job.

In the case of  the 1000 species assessed as part of  
FEMAT, the best that could be done was a subjective 
expert-panel-type approach to assess viability. This 
method had evolved from earlier use in analyses in the 

alive trees remain. The next option also prevents salvage logging of other areas that can grow into 
old growth (see Fig 12.7, third box), further increasing possum viability.

Two popular suggestions for further aiding this species, to increase rotation times and to make 
more reserves, were considered next. Although increasing rotation time does reduce extinction 
probabilities, it requires an almost complete halt of logging for the next 150 years, hardly a politically 
realistic possibility. By contrast, setting aside reserves improves viability even more but reduces 
logging very little; for example, setting aside just six 50-ha reserves (5% of the forest block) reduces 
the extinction probability to 18% over the long term but reduces logging by only 5% at most. With 
the identification of additional permanent reserves as a viable approach, a number of scenarios 
were considered, trading off size and number of reserves. The authors assessed the sensitivity of 
conclusions by modeling a range of possibilities for processes about which they were uncertain. 
The recommendations emerging from this work have been implemented on the ground.
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in abundance, (ii) reduction or fluctuation in geo-
graphic range or number of  populations, (iii) small 
population size coupled with decline or fluctuations, 
(iv) very small or restricted population, or (v) quantita-
tive analysis (Fig. 12.8b). Each of  these criteria are 
based on specified, operational, rule-of-thumb thresh-
olds. For example, the first criteria assesses declines  
in the past 10 years or three generations (whichever is 
longer); if  the causes of  reduction have stopped and 
are reversible then triggers into risk categories are: 
90% decline = critically endangered, 70% decline = 

Union for the Conservation of  Nature and Natural 
Resources, IUCN) Red List Categorization system (Mace 
et al. 2008, IUCN 2011; www.iucnredlist.org).

I will focus on the IUCN system, which forms the 
basis for Red Lists assessing the conservation status of  
more than 25,000 vertebrate species worldwide (Hoff-
mann et al. 2010). The IUCN approach assigns species 
to one of  nine categories (Fig. 12.8a). To be placed in 
one of  the three categories at risk of  extinction (criti-
cally endangered, endangered, or vulnerable) at least 
one operational criterion must apply: (i) deep declines 

Fig. 12.8  The IUCN Red List population-assessment procedures. (a) Evaluated species are classified into one of  nine 
categories. The three categories at risk of  extinction are shown in bold. Modified from IUCN (2011). (b) The five rule-of-thumb 
criteria are used to place a species in one of  the three categories of  risk, see the highlighted categories in panel (a). 
Categories are from Mace et al. (2008) and IUCN (2011).
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endangered, and 50% decline = vulnerable; if  the 
causes of  decline have not stopped or may not be 
reversible the triggers are: 80% decline = critically 
endangered, 50% decline = endangered, and 30% 
decline = vulnerable (IUCN 2011). The fifth criterion 
for assigning species – quantitative analysis – may 
include a PVA if  sufficient data exist, but may also use 
other analyses that directly quantify obvious threats; 
for example, if  an endemic forest-dependent species 
occupies an area slated to be clearcut within 20 years 
(Mace et al. 2008).

A recent assessment of  25,780 vertebrate species 
worldwide – including all described bird, mammal, and 
amphibian species on earth – indicates that almost one-
fifth fall into one of  the at-risk categories (critically 
endangered, endangered, or vulnerable), with amphib-
ians the group with the highest risk (Fig. 12.9). Further-
more, threatened vertebrates are disproportionately 
concentrated in tropical regions, where large numbers 
of  species with restricted distributions coincide with 
high anthropogenic pressures (Hoffmann et al. 2010).

Sophisticated methods for making uncertainty 
explicit in the risk-assessment procedure have been 
proposed for IUCN categorization (Akçakaya et al. 
2000, Taylor et al. 2002). The IUCN uses the precau-
tionary principle as one way to deal with uncertain-
ties: the credible estimate that gives the highest risk  
of  extinction is used, so that uncertainties favor more 
cautious management approaches.

Another key philosophy behind the IUCN approach 
underscores an important general point about man-
agement of  small populations: a distinction is made 
between assessing the severity of  threat and setting 
conservation priorities (Mace 1994, 1995, Gärdenfors 
et al. 2001). Categories of  threat established by the 
rules of  thumb are just one piece of  information used 
to set conservation priorities. Other important criteria 
might include the likelihood of  success in restoring the 
species, the number of  other threatened species occu-
pying the same habitat, taxonomic uniqueness, avail-
ability of  funds, and the legal and political framework 
for conserving a particular species.

Despite obvious limitations to any rule-of-thumb 
approach, they may be the best available method at 
times. Mace and Hudson (1999:244) report that

. . . although the IUCN system may be efficient at 
picking up different species facing diverse threats, it 
is not designed to be an accurate tool for measuring 
extinction risk, for projecting population status, or 

Fig. 12.9  Proportion of  25,780 vertebrate species 
assigned to various IUCN Red List categories. Included are 
all extant mammals, birds, and amphibians, and 
representative samples of  reptiles and fish (the number of  
species assessed in each group is at the top of  each bar). The 
bars, from the bottom up, represent Critically Endangered 
(CR), Endangered (EN), vulnerable (VV), Data Deficient (DD), 
and Least Concern/Near Threatened categories (LC + NT). 
The horizontal line in each bar represents the estimated 
percentage of  species that would be considered at risk of  
extinction (i.e. placed in critically endangered, endangered, 
or vulnerable categories) if  the data-deficient species were 
assigned to categories in the same percentage as data-
sufficient species. Modified from Hoffmann et al. (2010). 
(See Color Plate 11)
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ated with alternative courses of  actions can be 
explored. For example, viability of  28 species was 
assessed as part of  land planning for the 58 million ha 
Interior Columbia River basin (see Wisdom et al. 
(2002) for an assessment of  greater sage-grouse and 
Rowland et al. (2003) for wolverine).

Marcot et al. (2001:29–30) describe both the utility 
and limitations of  these approaches, noting that when 
scant scientific data are available but decision-making 
is nevertheless moving forward:

. . . the experts must provide their best professional 
evaluation or step aside and let activities proceed 
without their input . . . Our [Bayesian belief  
network] models of  wildlife population response, 
however, do not substitute for empirically based, 
quantitative, stochastic analyses of  population 
demography, genetics, and persistence such as those 
used in population viability analysis . . . [the Baye-
sian belief  network approach is] most useful when 
empirical data on population trends, demography, 
and genetics are unavailable.

SUMMARY

Often the most vulnerable wildlife populations have 
high susceptibility to human-caused stressors, have 
gone from being large to being small, and have high 
variability relative to growth rate. In such cases, the 
most important actions are to reverse the decline and 
increase numbers. However, a population that has 
become small may also be sucked into the extinction 
vortex, whereby demographic, environmental, and 
genetic randomness exacerbate the potential for 
extinction even if  the causes of  decline are reversed. 
Viability assessment procedures provide a framework 
to capture the intuition, theory, and field data compris-
ing the extinction vortex. The quantitative branch  
of  viability assessment, known as population viability 
analyis (PVA), incorporates multiple interacting 
factors, providing transparent and often nonintuitive 
outcomes of  management.

Quantitative PVAs are often conducted with time 
series or with demographically explicit models. Time-
series analysis estimates quasi-extinction probability 
(decline to numerical thresholds of  importance) based 
on counts of  abundance over time. By contrast, quasi-
extinction probabilities for demographically explicit 
PVAs are based on a range of  vital rates and their  

for designing population management plans. Its  
role is to highlight species exhibiting one of  several 
symptoms of  pending extinction and to classify 
species according to the relative severity of  the 
apparent threat. The Red List is a useful conserva-
tion tool only when listing leads to measures to 
assess the causes of  threat and to develop, where 
necessary, appropriate management responses and 
species recovery plans. In short, the IUCN Red List 
criteria are designed to be robust and precautionary 
across a wide range of  circumstances, to operate 
when data are scarce, and to pinpoint species in 
need of  attention.

Approaches based on habitat and other 
information

The presence of  habitat alone cannot constitute an 
assessment of  population viability. As Kent Redford 
(1992) noted for wildlife in tropical forests: “The pres-
ence of  soaring, buttressed tropical trees, however, 
does not guarantee the presence of  resident fauna  
. . . although satellites passing overhead may reassur-
ingly register them as forest, they are empty of  much 
of  the faunal richness valued by humans. An empty 
forest is a doomed forest.” Habitat is necessary, but not 
sufficient, to guarantee population persistence or to 
predict what will happen to the population in the 
future. In the US this principle was captured in legisla-
tion when the first federal Endangered Species Act of  
1966, which focused entirely on habitat and ignored 
taking and commercial activities on wildlife popula-
tions, was modified to include population-level impacts 
(Goble 2006).

Nevertheless, for certain species at certain times 
more information exists for habitat relations than for 
demographic vital rates, and the habitat information 
alone can contribute useful information to assess-
ments of  viability (Boyce 1992). Habitat associations 
can be combined with other information for region-
wide or species-wide assessments in a Bayesian belief  
network (Marcot et al. 2001, Suring et al. 2011). The 
inputs include associations with habitat and other 
variables, as well as expert opinion and ancillary 
models (including true PVA models), incorporated in a 
transparent way. Using a Bayesian statistical frame-
work (Chapter 2), input variable values are combined 
to estimate our belief, represented as a probability, of  a 
response relevant to population status. Risks associ-
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correlations, density dependence, inbreeding costs, 
and other information relevant to population dynam-
ics. Demographically explicit scenarios are also pre-
adapted to provide what-if  scenarios or sensitivity 
analysis to identify specific management actions of  
greatest benefit to species persistence, and perhaps 
highest economic or political efficiency. Quantitative 
PVAs can be extended across multiple populations, 
where persistence can also be modeled with presence/
absence data in an occupancy modeling framework.

In more data-sparse situations, less quantitative 
approaches are often used to assess viability. For 
example, the IUCN Red List method assigns qualitative 
ranks of  risk using specified, rule-of-thumb thresholds 
based on trend, abundance, fluctuations, and degree 
of  connectivity. Bayesian belief  networks provide a  
different framework to consolidate and make transpar-
ent field data, expert opinion, and models for manage-
ment decision-making. Although these methods do 
not fall under the formal rubric of  quantitative PVA, 
they accommodate uncertainty, make input explicit, 
and assess risks associated with alternative courses of  
action.

Small-population management includes peeking 
into the crystal ball to fathom how particular scenarios 
will affect the likelihood of  extinction. In so doing, we 
should (i) remain acutely aware of  data quality, (ii) use 
models as comparative tools, and (iii) embrace uncer-
tainty, using all of  the data and population-biology 
concepts and theory at our disposal to make good  

predictions while acknowledging and making trans-
parent the assumptions underlying the assessments. 
Through viability assessment, population biology can 
and should be a vital part of  decision-making for small 
and declining populations.

FURTHER READING

Bakker, V.J., Doak, D.F., Roemer, G.W., et al. (2009) Incorpo-
rating ecological drivers and uncertainty into a demo-
graphic population viability analysis for the island fox. 
Ecological Monographs 79, 77–108. Along with the Bakker 
and Doak (2009) article cited in the text, this comprises  
the best, state-of-the-art demographic approach available, 
accounting for sampling and process variance, other forms 
of  uncertainty, and management constraints.

Beissinger, S.R. and McCullough, D.R. (2002) Population 
Viability Analysis. University of  Chicago Press, Chicago. An 
edited volume containing timely syntheses and cutting 
edge analyses of  concepts across the social and biological 
spectrum.

Mace, G.M., Collar, N.J., Gaston, K.J., et al. (2008) Quantifica-
tion of  extinction risk: IUCN’s system for classifying threat-
ened species. Conservation Biology 22, 1424–42. A terrific 
overview of  the well-considered and widely used IUCN 
rules-of-thumb for assessing species risk.

Staples, D.F., Taper, M.L.,and B. B. Shepard, B.B. (2005)  
Risk-based viable population monitoring. Conservation 
Biology 19, 1908–16. A nice overview of  time-series PVA 
approaches and a provocative proposal for a new way to 
conduct them.


