Erwin Schrödinger (1927): ad una particella si può associare una *funzione* d'onda $\psi(x,y,z)$ che consente di calcolare la *probabilità* di trovare la particella in una determinata regione di spazio.

Es. nel caso di una particella di massa (m) che si muove <u>in una sola</u> <u>dimensione</u> (x), confinata su una lunghezza L dall'effetto di un'energia potenziale V(x), l'equazione di Schrödinger assume la forma

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)\psi(x) = \mathrm{E}\psi(x)$$

in cui la *funzione d'onda* ψ dipende solo da x e il suo quadrato $\psi(x)^2$ esprime la *probabilità* di trovare l'elettrone nel punto di coordinata x (essendo $0 \le x \le L$)

Analogamente, nelle tre dimensioni:

$$-\frac{\hbar^2}{2m}\left(\frac{d^2\psi(x,y,z)}{dx^2} + \frac{d^2\psi(x,y,z)}{dy^2} + \frac{d^2\psi(x,y,z)}{dz^2}\right) + V(x,y,z)\psi(x,y,z) = E\psi(x,y,z)$$

$$-\frac{\hbar^2}{2m}\left(\frac{d^2\psi(x,y,z)}{dx^2} + \frac{d^2\psi(x,y,z)}{dy^2} + \frac{d^2\psi(x,y,z)}{dz^2}\right) + V(x,y,z)\psi(x,y,z) = E\psi(x,y,z)$$

Le incognite dell'equazione di Schrödinger sono le energie (*E*) permesse per la particella e le corrispondenti funzioni d'onda $\psi(x,y,z)$

Se la particella è confinata nello spazio:

- l'equazione ha soluzioni solo quando *E* assume certi valori discreti (*autovalori*)
- le corrispondenti funzioni d'onda ψ (*autofunzioni*), che si annullano al di fuori della regione in cui la particella è confinata, descrivono gli *stati stazionari* consentiti per la particella
- ψ^2 descrive la *probabilità* di trovare la particella all'interno della regione di spazio in cui è confinata.
- *E* e ψ sono caratterizzate da numeri interi caratteristici (*numeri quantici*)

Vediamo un modo simbolico di scrivere l'equazione che esprime questi concetti nel caso in cui si abbia <u>un solo</u> numero quantico (n)

$$-\frac{\hbar^2}{2m}(\frac{d^2\psi(x,y,z)}{dx^2} + \frac{d^2\psi(x,y,z)}{dy^2} + \frac{d^2\psi(x,y,z)}{dz^2}) + V(x,y,z)\psi(x,y,z) = E\psi(x,y,z)$$

$$H \Psi_n(x,y,z) = E \Psi_n(x,y,z)$$

dove

$$H = \left[\frac{-\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(x, y, z)\right]$$

è l'**operatore Hamiltoniano** ed *n* è il numero quantico caratteristico che definisce gli autovalori (E_n) e le autofunzioni (Ψ_n) consentite

N.B. n scaturisce dalla soluzione dell'equazione

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER Particella in una scatola monodimensionale

Nel caso di una particella di massa (*m*) che si muove <u>in una sola</u> <u>dimensione</u> (*x*), confinata in un segmento (di lunghezza L) dall'effetto di un'energia potenziale V(*x*), che vale zero dentro la scatola ($0 \le x \le L$) e infinito fuori di essa (0 > x > L) la soluzione dell'equazione di Schrödinger

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)\psi(x) = \mathrm{E}\psi(x)$$

fornisce i seguenti risultati:

AUTOVALORIAUTOFUNZIONI $E_n = n^2 h^2 / 8mL^2$ $\Psi_n(x) = (2/L)^{1/2} \operatorname{sen} (n \pi x/L)$

con la condizione di quantizzazione: $n=1,2,3...\infty$ (N.B. non n=0)

Particella in una scatola monodimensionale

Particella in una scatola monodimensionale

n	Mondo	o nano	scopic	C	
	m _e (kg)	L (m)	n	E _n (rel. u.)	
	9,11E-31	1E-10	1	0,60	
	9,11E-31	1E-10	2	2,41	
	9,11E-31	1E-10	3	5,42	
	9,11E-31	1E-10	4	9,64	
	9,11E-31	1E-10	5	15,06	
	9,11E-31	1E-10	6	21,69	
	9,11E-31	1E-10	7	29,52	
	9,11E-31	1E-10	8	38,56	
	9,11E-31	1E-10	9	48,80	
	9,11E-31	1E-10	10	60,24	

Particella in una scatola monodimensionale

n	Mondo nanoscopico					Mondo macroscopico				
		m _e (kg)	L (m)	n	E _n (rel. u.)		m (kg)	L (m)	n	E _n (rel. u.)
		9,11E-31	1E-10	1	0,60		1,00E-06	0,01	1	5,49E-41
		9,11E-31	1E-10	2	2,41		1,00E-06	0,01	2	2,20E-40
	_	9,11E-31	1E-10	3	5,42		1,00E-06	0,01	3	4,94E-40
		9,11E-31	1E-10	4	9,64		1,00E-06	0,01	4	8,78E-40
		9,11E-31	1E-10	5	15,06		1,00E-06	0,01	5	1,37E-39
	_	9,11E-31	1E-10	6	21,69		1,00E-06	0,01	6	1,98E-39
		9,11E-31	1E-10	7	29,52		1,00E-06	0,01	7	2,69E-39
	_	9,11E-31	1E-10	8	38,56		1,00E-06	0,01	8	3,51E-39
		9,11E-31	1E-10	9	48,80		1,00E-06	0,01	9	4,45E-39
	_	9,11E-31	1E-10	10	60,24		1,00E-06	0,01	10	5,49E-39

Particella in una scatola monodimensionale

Aumenta m e/o L

Per l'atomo di **idrogeno** (H) e per gli atomi **idrogenoidi** (He⁺, Li²⁺, Be³⁺...) l'equazione di Schrödinger

 $H \Psi_n(x,y,z) = E \Psi_n(x,y,z)$

può essere risolta in modo esatto, fornendo tutti gli autovalori E_n e tutte le autofunzioni Ψ_n che descrivono completamente tutti gli stati stazionari dell'unico elettrone che si muove intorno al nucleo di carica Ze che genera un potenziale elettrostatico *sferico* espresso come $V(r) = -Ze^2/(4\pi\epsilon_0 r^2)$

Coordinate sferiche polari r, $\theta e \phi$

Funzione d'onda $\psi(r,\theta,\phi)$

Il suo quadrato $\psi(r,\theta,\phi)^2$ esprime la densità di probabilità di trovare l'elettrone nel punto P di coordinate $P(r,\theta,\phi)$

Per l'atomo di **idrogeno** (H) e per gli atomi **idrogenoidi** (He⁺, Li²⁺, Be³⁺...) le **funzioni d'onda** (autofunzioni o **ORBITALI**) risultano come il prodotto di due funzioni

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$$

Funzione *radiale*, dipende solo da *r* e dai **numeri quantici** *n* e *l* Funzione *angolare*, dipende solo da $\theta e \phi$ e dai **numeri quantici** *l* e *m*

Numero quantico principale n n = 1,2,3,4...∞
Numero quantico del momento angolare orbitale l l = 0,1,2,3...n-1 (per ogni n)
Numero quantico magnetico m m = -l...-2,-1,0,1,2...l (per ogni l)

Per l'atomo di **idrogeno** (H) e per gli atomi **idrogenoidi** (He⁺, Li²⁺, Be³⁺...) le **funzioni d'onda** (autofunzioni o **ORBITALI**) risultano come il prodotto di due funzioni

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$$

Funzione *radiale*, dipende solo da r e dai **numeri quantici** n e l

Funzione *angolare*, dipende solo da $\theta e \phi$ e dai **numeri quantici** *l* e *m*

Ad ogni funzione d'onda (*orbitale*) corrisponde un valore dell'energia (*autovalore*) espressa come

$$E_n = -R_H \frac{Z^2}{n^2} \qquad \text{(Bohr!)}$$

N.B. dipende solo da *n*

Numero quantico principale n n = 1,2,3,4...∞
Numero quantico del momento angolare orbitale l l = 0,1,2,3...n-1 (per ogni n)
Numero quantico magnetico m m = -l...-2,-1,0,1,2...l (per ogni l)

Per l'atomo di **idrogeno** (H) e per gli atomi **idrogenoidi** (He⁺, Li²⁺, Be³⁺...) le **funzioni d'onda** (*orbitali*) risultano come il prodotto di due funzioni

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{N} Y_{l,m}(\theta,\phi) \qquad E_n = -R_H \frac{Z^2}{n^2}$$

- a) Un *orbitale* è univocamente determinato da una terna di numeri quantici (n, l, m) ed ha un'energia caratteristica E_n
- b) Il *numero quantico principale* o *radiale* (n = 1,2,4...∞) determina l'energia dello stato e identifica quindi i *livelli energetici* dell'atomo (leggi *dell'elettrone nell'atomo*)
- c) Poiché l'energia dipende solo da n, tutti gli stati (n, l, m) con lo stesso valore di n, anche se aventi diversi valori di l e m, hanno la stessa energia ed appartengono quindi allo stesso *livello energetico*
- d) All'aumentare di n aumenta l'**energia** E_n del livello
- e) All'aumentare di *n* aumentano le **dimensioni** dell'orbitale; la regione di spazio in cui cade la massima probabilità di trovare l'elettrone si viene a trovare progressivamente più lontana dal nucleo (*vide infra*)

0.00 ----R_H /16 ---R_H /9 ---

-R. /4

-**R**_H-

Per l'atomo di **idrogeno** (H) e per gli atomi **idrogenoidi** (He⁺, Li²⁺, Be³⁺...) le **funzioni d'onda** (*orbitali*) risultano come il prodotto di due funzioni

- Il *numero quantico angolare* (*l* = 0,1,2,3...*n*-1, per ogni *n*) determina la *forma spaziale* di un orbitale
- Per convenzione il valore di *l* di un certo stato è indicato con una lettera:

Valore di <i>l</i> :	0	1	2	3	4
Orbitale tipo:	S	р	d	f	g

- Il *numero quantico magnetico* (m = -l...-2, -1, 0, 1, 2...l, per ogni *l*) determina l'orientazione nello spazio di orbitali aventi lo stesso valore di *l*

Valori permessi dei numeri quantici *l* e *m* per i valori di *n* compresi fra 1 e 4

Notare il *numero di orbitali* in ogni *strato (o livello, o guscio) elettronico n* (pari a n^2) e in ogni *sottostrato (o sottolivello) elettronico nl* (pari a 2l + 1)

п	N. di orbitali nello strato <i>n</i> ²	Valori permessi di <i>l</i> <i>l=n</i> -1	Valori permessi di <i>m</i> <i>m= -l</i> +1,,0+ <i>l</i> -1,+ <i>l</i>	N. di orbitali nel sottostrato	Nome sottostrato
1	1	0	0	1	15
2	4	0	0	1	25
2 4	-	1	-1, 0, 1	3	2 <i>p</i>
3		0	0	1	35
	9	1	-1, 0, 1	3	3 <i>p</i>
		2	-2, -1, 0, 1, 2	5	4 <i>p</i>
4 16		0	0	1	4 <i>s</i>
	16	1	-1, 0, 1	3	4 <i>p</i>
		2	-2, -1, 0, 1, 2	5	4 <i>d</i>
		3	-3, -2, -1, 0, 1, 2, 3	7	4 <i>f</i>

Sequenza degli strati, sottostrati ed orbitali permessi per i livelli energetici da n = 1 a n = 3

Diagramma energetico degli orbitali degli atomi monoelettronici (idrogeno e atomi idrogenoidi) da n = 1 a n = 3

- Per ogni valore di *n*, *l* e *m*, il quadrato della funzione d'onda (*orbitale*) $\psi_{n,l,m}(r,\theta,\phi)$ rappresenta la probabilità di trovare l'elettrone nei punti di coordinate *r*, $\theta \in \phi$ rispetto al nucleo (posto al centro di un sistema di assi cartesiano)
- Consideriamo separatamente la parte radiale e quella angolare dell'orbitale:

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$

- Per la parte radiale si riporta la funzione $R_{n,l}(r)$, oppure il suo quadrato $R_{n,l}(r)^2$, il quale esprime la probabilità radiale (*dimensioni dell'orbitale*)
- Per la parte angolare si riporta la $Y_{l,m}(\theta,\phi)$, o il suo quadrato $Y_{l,m}(\theta,\phi)^2$ in funzione di $\theta \stackrel{a}{=} \phi \ costante$, il quale esprime la probabilità angolare (*forma dell'orbitale*)
- N.B. Possono anche essere rappresentate le cosiddette *superfici di contorno*:
 - probabilità come «nuvola di punti»
 - identificazione di superfici di isodensità che definiscono volumi intorno al nucleo in cui è alta la probabilità di trovare l'elettrone (90%, 95% o 99%)

 $\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) Y_{l,m}(\theta,\phi)$

Orbitali di tipo s: per gli orbitali di tipo s (l = 0; m = 0), la parte angolare $\Psi_{0,0}(\theta, \phi)$ non dipende da θ e da ϕ (orbitali a *simmetria sferica*), quindi conta solo la probabilità radiale $R_{n,0}(r)^2$

Per l'orbitale 1s si ha

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$

- L'orbitale *1s* ha simmetria sferica, perciò può essere rappresentato da *superfici circolari di isodensità* in uno qualsiasi dei piani *xy*, *xz* o *yz* (Fig. a), oppure da una sfera nello spazio *xyz* (Fig. b)
- Tali superfici delimitano la porzione di piano o di spazio contenente il 99% della probabilità di trovare l'elettrone (in quel piano o nello spazio tridimensionale)

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$

Orbitali di tipo ns: hanno tutti simmetria sferica, ma per n > 1 presentano n - 1 nodi (valori di *r* in cui la Ψ , e quindi anche Ψ^2 , si annullano)

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$

Orbitali di tipo ns: hanno tutti simmetria sferica, ma per n > 1 presentano n - 1 nodi (valori di *r* in cui la Ψ , e quindi anche Ψ^2 , si annullano)

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{V_{l,m}(\theta,\phi)}$

Orbitali di tipo ns: hanno tutti simmetria sferica, ma per n > 1 presentano n - 1 nodi (valori di *r* in cui la Ψ , e quindi anche Ψ^2 , si annullano)

$$\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) Y_{l,m}(\theta,\phi)$$

Orbitali di tipo p

- (l=1) la funzione angolare ha tre componenti (m = -1, 0, +1)
- le tre funzioni $Y_{l,-l}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$ e $Y_{l,l}(\theta,\phi)$: **non** hanno simmetria sferica (sono identiche fra loro e «orientate» lungo gli assi *x*, *y*, *z*)

Es. per l'*orbitale*
$$p_z$$
, curve di isodensità **nel piano** xz ($\phi = 0$):

a) $Y_{p,z}(\theta, \phi)$ b) $Y_{p,z}(\theta, \phi)^2$

N.B.₂ la probabilità è massima lungo l'asse z e nulla nel **piano nodale** *xy*

Dato che $Y_{p,z}(\theta, \phi)$ non risulta dipendente da ϕ , superfici di isodensità nello spazio: c) $Y_{p,z}(\theta, \phi)$ d) $Y_{p,z}(\theta, \phi)^2$

$$\psi_{n,l,m}(r,\theta,\phi) = \mathbf{R}_{n,l}(r) Y_{l,m}(\theta,\phi)$$

Orbitali di tipo p

- (l=1) la funzione angolare ha tre componenti (m = -1, 0, +1)
- le tre funzioni $Y_{l,-l}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$ e $Y_{l,l}(\theta,\phi)$: **non** hanno simmetria sferica (sono identiche fra loro e «orientate» lungo gli assi *x*, *y*, *z*)

Analogamente, per gli *orbitali* p_x e p_y nello spazio tridimensionale risulta:

$$\psi_{n,l,m}(r,\theta,\phi) = \mathbf{R}_{n,l}(r) Y_{l,m}(\theta,\phi)$$

Orbitali di tipo p

- (l=1) la funzione angolare ha tre componenti (m = -1, 0, +1)
- le tre funzioni $Y_{l,-l}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$ e $Y_{l,l}(\theta,\phi)$: **non** hanno simmetria sferica (sono identiche fra loro e «orientate» lungo gli assi *x*, *y*, *z*)

Rappresentazione dei tre orbitali p rispetto al nucleo atomico posto all'origine degli assi

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER Atomi monoelettronici - funzioni d'onda per gli orbitali di tipo p

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{Y_{l,m}(\theta,\phi)}$$

Tutti gli orbitali p ($n \ge 2$, l = 1, m = -1,0,+1) hanno la stessa parte angolare dell'orbitale 2p e possono quindi essere rappresentati da superfici di isodensità aventi la stessa forma bilobata.

			ORBITALE			
Р	ARTE	RADIALE	E PRODOTTO DELLE PARTI ANGOLARI D	I O. ATOMICI PER ATOMI IDR	OGENOIDI	
n	l	m	R(r)	$\Theta(\vartheta) \varPhi(\phi)$	livello	
1	0	0	$2\left(\frac{Z}{a_0}\right)^{3/2} \exp\left[-\frac{Zr}{a_0}\right]$	$\left(\frac{1}{4\pi}\right)^{1/2}$	1s	
2	0	0	$\left(\frac{Z}{2a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) \exp\left[-\frac{Zr}{2a_0}\right]$	$\left(\frac{1}{4\pi}\right)^{1/2}$	2 <i>s</i>	
2	1	0	$\frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) \exp\left[-\frac{Zr}{2a_0}\right]$	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\vartheta$	2 <i>p</i> _s	$a_0 = \frac{h^2}{4\pi^2 m \epsilon}$
2	1	±1	$\frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) \exp\left[-\frac{Zr}{2a_0}\right]$	$\left(\frac{3}{4\pi}\right)^{1/2}$ sen $\vartheta \cos \phi$	2 <i>p</i> _x	
2	1	±1	$\frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) \exp\left[-\frac{Zr}{2a_0}\right]$	$\left(\frac{3}{4\pi}\right)^{1/2}$ scn ϑ scn ϕ	$2p_g$	

Tuttavia, all'aumentare di *n*, si riscontra un aumento delle *dimensioni* (e dell'*energia*) dell'orbitale, e quindi dell'estensione spaziale dei due lobi.

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R_{n,l}(r)}{Y_{l,m}(\theta,\phi)}$$

Orbitali di tipo d

- $(l \ge 2)$ la funzione angolare ha 5 componenti (m = -2, -1, 0, +1, +2)
- le 5 funzioni $Y_{l,-2}(\theta,\phi)$, $Y_{l,-1}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$, $Y_{l,1}(\theta,\phi)$ e $Y_{l,2}(\theta,\phi)$ **non** hanno simmetria sferica

4 di questi orbitali sono quadrilobati, di cui:

- 3 hanno i lobi diretti lungo le bisettrici dei piani xy (orbitale d_{xy}), xz (orbitale d_{xz}) e yz (orbitale d_{yz})
- il quarto ha i 4 lobi diretto e lungo gli assi x e y (orbitale d_{x-y}^{2})

Il quinto ha invece due lobi diretti lungo l'asse z, con una piccola densità aggiuntiva toroidale nel piano xy (orbitale d_z^2)

$$\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) Y_{l,m}(\theta,\phi)$$

Orbitali di tipo f

- $(l \ge 3)$ la funzione angolare ha 7 componenti (m = -3, -2, -1, 0, +1, +2, +3)
- le 7 funzioni $Y_{l,-3}(\theta,\phi)$, $Y_{l,-2}(\theta,\phi)$, $Y_{l,-1}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$, $Y_{l,0}(\theta,\phi)$, $Y_{l,1}(\theta,\phi)$, $Y_{l,2}(\theta,\phi)$ e $Y_{l,3}(\theta,\phi)$ non hanno simmetria sferica

Hanno rilevanza solo nei lantanidi (57 $\leq Z \leq$ 71) e negli attinidi (89 $\leq Z \leq$ 103) Ancora più marginale è il ruolo degli orbitali *g* (*l* \geq 4) o superiori

SPIN ELETTRONICO E NUMERO QUANTICO DI SPIN

L'equazione di Schrödinger non interpreta alcune evidenze sperimentali:

- ciascuna riga dello spettro dell'atomo di idrogeno è in realtà un *doppietto* (due righe molto vicine fra di loro) se analizzate ad alta risoluzione
- Otto Stern e Walter Gerlach (1921): un fascio di atomi di argento, fatto passare in un opportuno campo magnetico, viene sdoppiato in due fasci distinti di uguale intensità

SPIN ELETTRONICO E NUMERO QUANTICO DI SPIN

L'unico elettrone non accoppiato degli atomi di argento (l'elettrone nell'orbitale 5s) si comporta *come se fosse* una piccola sfera ruotante su sé stessa attorno ad un asse (*dipolo magnetico*) i cui poli nord e sud sono allineati all'asse di rotazione.

Il momento angolare intrinseco dell'elettrone è detto *spin*, dall'inglese *to spin* (ruotare) e costituisce il quarto numero quantico, *numero quantico di spin* (*s*) associato all'elettrone

Può assumere solo due valori, convenzionalmente scelti pari a +1/2, detto spin su (\uparrow), e -1/2 detto spin giù (\downarrow)

Concludiamo dicendo che a ciascun elettrone della materia sono associati complessivamente 4 numeri quantici, tre dei quali (n,l,m) associati al suo moto orbitale attorno al nucleo dell'atomo cui appartiene ed uno (s) intrinseco ed associato al suo «moto» di spin.

- a) Negli atomi polielettronici, ciascun elettrone risente non solo dell'effetto attrattivo del nucleo, ma anche dell'effetto repulsivo degli altri elettroni
- b) L'equazione di Schrödinger deve tener conto di entrambi i contributi, ma ciò rende matematicamente impossibile la soluzione esatta dell'equazione
- c) Una soluzione *approssimata* del «moto» degli elettroni in un atomo polielettronico, si basa sul *metodo SCF* (Self-Consistent Field)
- d) Il metodo SCF assume che ogni elettrone si muove sottoposto ad un potenziale dovuto a due contributi; 1) l'attrazione esercitata dal nucleo e 2) la repulsione *media* esercitata da tutti gli altri elettroni
- e) Quindi, nell'equazione di Schrödinger il potenziale coulombiano di attrazione nucleare, $V(r) = -Ze^2/(4\pi e_0 r^2)$, è sostituito da un potenziale effettivo V_{eff}(r) che tiene conto di questi due fattori, *ma che mantiene ancora una simmetria sferica*
- f) Questo approccio permette di scrivere le soluzioni di tale equazione classificandole con gli stessi tre numeri quantici n, l ed m visti per l'atomo di idrogeno
- g) Inoltre, gli orbitali di un atomo polielettronico possono ancora essere descritti come prodotto di una parte radiale e di una angolare, essendo in particolare quest'ultima esattamente identica a quella dell'atomo di idrogeno

$$\psi_{n,l,m}(r,\theta,\phi) = \frac{R*_{n,l}(r)}{N} Y_{l,m}(\theta,\phi)$$

 $\psi_{n,l,m}(r,\theta,\phi) = R^*_{n,l}(r) Y_{l,m}(\theta,\phi)$

- 1) Pertanto, gli orbitali degli atomi polielettronici hanno la *stessa forma ed orientamento spaziale degli orbitali idrogenoidi* e possono quindi essere ancora classificati come orbitali di tipo *s*, *p*, *d*, *f*, etc
- 2) Tuttavia, a differenza degli atomi idrogenoidi, le parti *radiali* $R^*_{n,l}(\mathbf{r})$, sono diverse: le dimensioni, la struttura interna e l'energia degli orbitali degli atomi polielettronici dipendono, infatti, non solo dal numero quantico *n*, come negli atomi idrogenoidi, ma anche dal *numero quantico l*
- 3) Di conseguenza, in un atomo polielettronico, i sottostrati (*l*) di uno stesso livello (*n*) hanno energie diverse (*non sono degeneri*)
- 4) In generale, in uno stesso livello n: a) l'energia dei sottostrati aumenta all'aumentare del numero quantico l; b) tutti i 2l + 1 orbitali di un sottostrato con un dato valore di l restano invece degeneri (hanno quindi la stessa energia i tre orbitali p, i cinque orbitati d ed i sette orbitali f di uno stesso strato n)

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER *atomi polielettronici: livelli energetici – confronto fra idrogeno e potassio*

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R*_{n,l}(r)}{N} Y_{l,m}(\theta,\phi)$

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER atomi polielettronici: livelli energetici

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R*_{n,l}(r)}{N} Y_{l,m}(\theta,\phi)$

ORDINE DI RIEMPIMENTO DEI SOTTOSTRATI NEGLI ATOMI POLIELETTRONICI

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER atomi polielettronici: livelli energetici

 $\psi_{n,l,m}(r,\theta,\phi) = \frac{R*_{n,l}(r)}{N} Y_{l,m}(\theta,\phi)$

ORDINE DI RIEMPIMENTO DEI SOTTOSTRATI NEGLI ATOMI POLIELETTRONICI

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER *atomi polielettronici: configurazione elettronica*

- a) Per determinare la *struttura elettronica* di un atomo polielettronico si deve assegnare ogni elettrone ad uno degli orbitali atomici
- b) Lo stato (stazionario) di ciascun elettrone in un atomo è completamente determinato da quattro numeri quantici, tre dei quali (n, l, m) individuano l'orbitale ed il quarto la componente intrinseca di spin (s) dell'elettrone
- c) Wolfgang Pauli (**1925**) *principio di esclusione*: in un atomo non possono esistere elettroni descritti dagli stessi quattro numeri quantici *n*, *l*, *m* e *s*
- d) Di conseguenza, ciascun orbitale (*n*, *l*, *m*) può essere occupato al massimo da due elettroni, aventi spin opposto

Ad esempio, l'orbitale di più bassa energia, *Is*, può essere occupato al massimo da due elettroni descritti, rispettivamente, dai numeri quantici

$$n = 1, l = 0, m = 0, s = +1/2$$
 $n = 1, l = 0, m = 0, s = -1/2$

Un terzo eventuale elettrone dovrà quindi necessariamente occupare un orbitale *più alto in energia*, quale il 2s o successivi

La distribuzione degli elettroni fra i vari orbitali disponibili è detta configurazione elettronica

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER atomi polielettronici: configurazione elettronica

La configurazione elettronica degli atomi viene descritta ordinando per energia i sottostrati occupati ed indicando ad apice il numero di elettroni presenti (1 o 2)

Ad esempio, per il litio (Z = 3) neutro e allo *stato fondamentale* : $1s^22s^1$

mentre un possibile *stato elettronicamente eccitato* del litio neutro è: 1s¹2s¹2p¹

Sottostrato	Valore di <i>l</i>	Numero di orbitali (2 <i>l</i> +1)	Numero massimo di elettroni 2 (2 <i>l</i> +1)
\$	0	1	2
р	1	3	6
d	2	5	10
f	3	7	14

NUMERO MASSIMO DI ELETTRONI PER I VARI TIPI DI SOTTOSTRATI ATOMICI
MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER atomi polielettronici: configurazione elettronica (diagramma orbitalico)

Gli orbitali sono rappresentati come linee orizzontali, quadratini o cerchietti e gli elettroni come frecce dirette verso l'alto (s = +1/2) o verso il basso (s = -1/2)

Gli orbitali possono essere inoltre disposti in una scala verticale di energia crescente dal basso verso l'alto, oppure in orizzontale, in ordine di energia crescente da sinistra verso destra

DIAGRAMMI ORBITALICI PER LE CONFIGURAZIONI ELETTRONICHE DEL LITIO VISTE NELLA PRECEDENTE DIAPOSITIVA

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER *atomi polielettronici: configurazione elettronica (diagramma orbitalico)*

Gli orbitali sono rappresentati come linee orizzontali, quadratini o cerchietti e gli elettroni come frecce dirette verso l'alto (s = +1/2) o verso il basso (s = -1/2)

Gli orbitali possono essere inoltre disposti in una scala verticale di energia crescente dal basso verso l'alto o in orizzontale, in ordine di energia crescente da sinistra verso destra

DIAGRAMMI ORBITALICI PER LE CONFIGURAZIONI ELETTRONICHE DEL LITIO VISTE NELLA PRECEDENTE DIAPOSITIVA

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER *atomi polielettronici: configurazione elettronica (Le regole di Aufbau)*

Configurazione elettronica dello stato fondamentale degli atomi: regole di *Aufbau* (costruire in tedesco)

- 1) gli elettroni vengono assegnati ai vari sottostrati in ordine di energia degli orbitali crescente, partendo dall'orbitale *ls*
- 2) ciascun orbitale può ospitare al massimo due elettroni aventi spin opposto o antiparallelo (*principio di esclusione di Pauli*)
- 3) dovendo occupare orbitali degeneri di un certo sottostrato, essi vengono riempiti così da avere il maggior numero possibile di elettroni con spin parallelo (*regola di Hund*)

Configurazione elettronica e diagrammi orbitalici degli elementi del primo (n = 1) e secondo *periodo* (n = 2)

Atomo	Numero	Configurazione		Diagr	amma orl	oitalico		
	Z	elettronica	1s	2s	2p _x	2p _y	2p _z	
Н	1	1s ¹	\uparrow					
Не	2	1s ²	$\uparrow \downarrow$					Guscio chiuso
Li	3	1s ² 2s ¹	$\uparrow \downarrow$	\uparrow				
Ве	4	1s ² 2s ²	$\uparrow \downarrow$	$\uparrow \downarrow$				
В	5	1s ² 2s ² 2p ¹	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow			
С	6	1s ² 2s ² 2p ²	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		
Ν	7	1s ² 2s ² 2p ³	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	
0	8	1s ² 2s ² 2p ⁴	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	
F	9	1s ² 2s ² 2p ⁵	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\downarrow \uparrow$	\uparrow	
Ne	10	1s ² 2s ² 2p ⁶	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	Guscio chiuso

TAVOLA PERIODICA DEGLI ELEMENTI

Bk

1.1"

Am

1. PT

Configurazione elettronica e diagrammi orbitalici degli elementi del terzo periodo (n = 3)

Atomo	Numero	Configurazione	[Diagram	nma ork	oitalico		
	atomico Z	elettronica	Core	3s	Зр _х	Зр _у	3p _z	
Na	11	1s ² 2s ² 2p ⁶ 3s ¹	[Ne]	\uparrow				7s 7p 6d 5f
Mg	12	1s ² 2s ² 2p ⁶ 3s ²	[Ne]	$\downarrow \uparrow$				6s 6p 5d 4f
AI	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	[Ne]	$\downarrow \uparrow$	\uparrow			5s $5p$ $4d$
Si	14	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne]	$\downarrow \uparrow$	\uparrow	\uparrow		$\begin{bmatrix} b_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_7 \\ a_$
Р	15	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne]	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	3s $4s$ $4p$ $4d$ $4t$
S	16	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	$2s \qquad \qquad 5s \qquad 5\rho \qquad 5d \qquad 5f \\ 6s \qquad 6\rho \qquad 6d \qquad 6d$
Cl	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	15
Ar	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	Ar guscio chiuso
	1 1.008 H Idrogeno 3 6.941 4 9 Li Beril 11 22.99 12 2 Na M Sodio Magn 19 39.10 20 4 K Ca	N.B. Gli molto pi esterni (a partecipa scandio Titanio Vanadio	elettr ù bas elettro ano all 24 52.00 25 Cr N Grame Mar	oni (si in oni di a rea	di ca ene <i>i val</i> i ttivit	ore (e rgia enza) tà chi	elettr rispe , di mica	roni interni), etto a quelli norma non a dell'atomo I 8 16.00 9 19.01 10 20.18 o F Ne Neo Neo Neo o Ga Ge As Se Cl Ar o Ga Ge As Se Br Kr Znco Gallio Germanic Arsenico Selenic Bromo Kripto

Configurazione elettronica e diagrammi orbitalici degli

N.B. Il livello n = 3 include anche il sottostrato *3d* contenente 5 orbitali degeneri, i quali sono però meno stabili del sottostrato 4s, che quindi viene riempito prima del *3d*, producendo così la configurazione elettronica [*Ar*]4s¹ del potassio **K** (Z = 19), quindi la [*Ar*]4s² del calcio **Ca** (Z = 20) e solo allora cominceremo a popolare di elettroni gli orbitali *3d* (Sc, Ti, V, etc)

Mg	12	1s ² 2s ² 2p ⁶ 3s ²	[Ne]	$\downarrow \uparrow$					6p -	5d	4f
Al	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	[Ne]	$\downarrow \uparrow$	\uparrow				5p 5s	4d	.15
Si	14	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne]	$\downarrow \uparrow$	\uparrow	\uparrow		Energi	4p •	3d	2s 2p .3s 30 .3d
Ρ	15	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne]	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	-	3s		45 40 4d 4t
S	16	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow		25)	55 5p 5d 5f 65 6p 6d
Cl	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow		15		√ 7ś
Ar	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[Ne]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	Ar	guscio c	hiuso	
	1 1.008 H Idrogeno 3 6.941 4 9 Litio Ber 11 22.99 12 1 Na N Sodio Magr 19 39.10 20 4 K C Potassio Cal	N.B. Gli molto pi esterni (e partecipa to scandio Titanio Vanadio	elettr ù bas elettro no all ²⁴ ^{52.00} ²⁵ Cr N Gromo Man	oni (si in oni di a rea	di cc ene <i>i val</i> a ttivit .85 27 58.93 Cobalto	ore (e rgia enza) cà chi Ni Nichel	rispe rispe , di mica ^{19 63.55} ³⁰ Cu	etto nor del	<i>interni</i>), a quelli rma non l l'atomo Gallo Germanio Arse	Ne 1 8 16.00 9 0 0 0 0 0 0 0 0 0 0 0 0 0	guscio chiuso 19.0 10 20.18 F Ne Neo 35.45 Neo 35.45 Neo Cl Ar Cloro Argo 79.90 36 83.80 Br Kr Kripto

Configurazione elettronica e diagrammi orbitalici degli elementi del quarto periodo (n = 4)

Atomo	Numero	Configurazione				Diagr	amma or	bitalio	:0									
	atomico Z	elettronica	core	3d _{xy}	3d _{xz}	$\mathrm{3d}_{\mathrm{yz}}$	$3d_{x}^{2}{y}^{2}$	3d _z ²	4s	4p _x	4p _y	4p _z						
К	19	[Ar]4s ¹	[Ar]						\uparrow									
Са	20	[Ar]4s ²	[Ar]						$\downarrow \uparrow$									
Sc	21	[Ar]3d ¹ 4s ²	[Ar]	\uparrow					$\downarrow \uparrow$				75	7p		6d		5f
Ti	22	[Ar]3d ² 4s ²	[Ar]	\uparrow	\uparrow				$\downarrow \uparrow$				65	6p		5d		4f
V	23	[Ar]3d ³ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$				03	5p		4d	_	
Cr	24	[Ar]3d ⁵ 4s ¹	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow			<u>.</u>	5s			14		15
Mn	25	[Ar]3d ⁵ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$			Fnero	4s	4p		3d	~	2s 2p
Fe	26	[Ar]3d ⁶ 4s ²	[Ar]	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				<u>3s</u>	Зр			~	35 3p 3d
Со	27	[Ar]3d ⁷ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				2s	2р	6			45 4p 40 41 5s 5p 5d 5f
Ni	28	[Ar]3d ⁸ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	$\downarrow \uparrow$				_				~	6s 6p 6d
Cu	29	[Ar]3d ¹⁰ 4s ¹	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow				15				*	75
Zn	30	[Ar]3d ¹⁰ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$									
Ga	31	[Ar]3d ¹⁰ 4s ² 4p ¹	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow						A	r gu	iscio chiuso
Ge	32	[Ar]3d ¹⁰ 4s ² 4p ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow							2 4.003
As	33	[Ar]3d ¹⁰ 4s ² 4p ³	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow				I		Elio
Se	34	^{[Ar]3c} Elen	nent	ti (m	neta	lli) d	i trar	nsizi	ion	e (I	ser	ie)	5 10.8	C	7 14.01 N	8 16.00 O	9 19.00 F	Ne
Br	35	[Ar]3c				, .				- (-			Boro 13 26.9	Carbonio 8 14 28.09	Azoto 15 30.97	Ossigeno 16 32.07	Fluoro 17 35	Neo 18 39.95
Kr	36	[Ar]3c											Allumini	Si	P	S	Cl	Ar
	19 39.10	20 40.08 21 44.96 22	47.87	23 50.94	24 52.0	0 25 54.9	4 26 55.85	27 58	.93 28	58.69	63.55	30 65.3	31 69.7	2 32 72.59	33 74.92	34 78.96	35 79.90	0 36-00-00
	K Potassio	Ca Sc Calcio Scandio T	Ti itanio	V Vanadio	Cromo	Manganes	Ferro	Cobalt	to Ni	Vi chel	Cu Rame	Zn Zinco	Gallio	Germanio	As Arsenico	Selenio	Bromo	Kr Kripto

Configurazione elettronica e diagrammi orbitalici degli elementi del quarto periodo (n = 4)

Atomo	Numero	Configurazione				Diagr	amma or	bitalic	0									
	atomico Z	elettronica	core	3d _{xy}	$3d_{xz}$	$\mathrm{3d}_{\mathrm{yz}}$	$3d_x^2 - \frac{2}{y^2}$	3d _z ²	4s	4p _x	4p _y	4p _z						
К	19	[Ar]4s ¹	[Ar]						\uparrow									
Са	20	[Ar]4s ²	[Ar]						$\downarrow \uparrow$									
Sc	21	[Ar]3d ¹ 4s ²	[Ar]	\uparrow					$\downarrow \uparrow$				75	7p		6d		5f
Ti	22	[Ar]3d ² 4s ²	[Ar]	\uparrow	\uparrow				$\downarrow \uparrow$				65	6p		5d		4f
V	23	[Ar]3d ³ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$					5p		4d	_	
Cr	24	[Ar]3d ⁵ 4s ¹	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow				5s	40			15	
Mn	25	[Ar]3d ⁵ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				4s		_	3d	2s 2p	
Fe	26	[Ar]3d ⁶ 4s ²	[Ar]	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				35	Зр			35 3p	30
Со	27	[Ar]3d ⁷ 4s ²																
Ni	20		er	gli	ele	mer	nti d	al	Ga	a	K	r ø	li or	bita	li 30	d (pi	ieni) ve	ngono
INI	28	[Ar]3d°4s ²	CI	0								' ס						
Cu	28	[Ar]3d°4s ²	ote	vol	me	nte	stab	oiliz	zat	i f	inc) a	tro	vars	i m	olto	più b	assi in
Cu Zn	28 29 30	[Ar]3d ¹⁰ 4s ¹	ote ner	vol gia	me ris	nte pett	stab o ag	oiliz li o	zat rbi	i f tali	inc i 4s	a a	tro 4p, (vars cioè	i m dive	olto entar	più b no elett	assi in roni di
Cu Zn Ga	28 29 30 31	[Ar]3d ¹⁰ 4s ¹ [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² 4] [Ar]3d ¹⁰ 4s ² 4] [Ar]3d ¹⁰ 4s ² 4] [Ar]	ote ner ore	vol gia p	me ris er	nte pett que	stab o ag sti (oiliz li o elei	zat rbi me	i f tali nti	inc i <i>4s</i>		tro 4p, (cui	vars cioè prop	i m dive oriet	olto entar à cł	più b no elett nimiche	assi in roni di sono
Cu Zn Ga Ge	28 29 30 31 32	[Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² 4F [Ar]3d ¹⁰ 4S ¹⁰ 4F [Ar]3d ¹⁰ F	ote ner ore ete	vol gia po rmi	me ris er inat	nte pett que te da	stab o ag sti o agli e	oiliz li o ele: let	zat rbi me tro	i f tali nti ni (inc 4s , 1	a e vale	tro 4p, o cui enza	vars cioè prop) 4s	i m dive oriet e 4p	olto entar à cł	più b no elett nimiche	assi in roni di sono
Cu Zn Ga Ge As	28 29 30 31 32 33	[Ar]3d°4s² I [Ar]3d ¹⁰ 4s ¹ I [Ar]3d ¹⁰ 4s² I [Ar]3d ¹⁰ 4s²4f I [Ar]3d ¹⁰ 4s²4f I [Ar]3d ¹⁰ 4s²4f I [Ar]3d ¹⁰ 4s²4f I	ote ner ore ete	vol gia p rm	me ris er inat	nte pett que te da	stab o ag sti o agli e	oiliz li o elei let	zat rbi me tro	i f tali nti ni (inc 4s , 1 (di	a ; e ; e vale	tro 4p, o cui enza	vars cioè prop) <i>4s</i>	i m dive oriet e <i>4p</i>	olto entar à ch	più b no elett nimiche	assi in roni di sono
Cu Zn Ga Ge As Se	28 29 30 31 32 33 34	[Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² 4F C [Ar]3d ¹⁰ 4s ² 4F C	ote ner ore ete	vol gia po rmi	me ris er inat	nte pett que te da	stab o ag sti o agli e i tran	oiliz li o elei let	zat rbi me tro	i f tali nti, ni (e (I	inc i 4s i 4s di ser	e (vale	tro 4p, o cui enza	vars cioè prop) 4s	i m dive oriet e <i>4p</i>	olto entar à ch	più b no elett nimiche 9 19.00 10 20.18 F Ne	assi in roni di sono
Cu Zn Ga Ge As Se Br	28 29 30 31 32 33 34 35	[Ar]3d°4s² I [Ar]3d ¹⁰ 4s ¹ I [Ar]3d ¹⁰ 4s² I [Ar]3d ¹⁰ 4s²4F I [Ar]3c Elem [Ar]3c I	ote ner ore ete	vol gia p rmi	me ris er inat	nte pett que te da Ili) d	stab o ag sti o agli e i tran	oiliz li o elei let	zat rbi me tro	i f tali nti, ni (e (l	inc 4s di di ser	ie)	tro 4p, 0 cui enza 5 10.8 Boro 13 26.9	vars cioè prop) 4s ¹¹ 6 12.01 Carbonio 88 14 28.09	i m dive oriet e 4p	olto entar à ch	più b no elett nimiche 9 19.00 10 20.18 Filuoro Neo 17 35.45 18 39.95	assi in roni di sono
Cu Zn Ga Ge As Se Br Kr	28 29 30 31 32 33 34 35 36	[Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² [Ar]3d ¹⁰ 4s ² 4F [Ar]3c [Ar]3c [Ar]3c [Ar]3c [Ar]3c [Ar]3c	ote ner ore ete	vol gia pr rmi	me ris er inat	nte pett que te da	stab o ag sti o agli e i tran	oiliz li o elei let	zat rbi me tro	i f tali nti, ni (inc 4s di ser	ie)	tro 4p, o cui enza 5 10.6 Boro 13 26.9 Al	vars cioè prop) 4s 11 6 12.01 Carbonio 88 14 28.09 ci	i m dive oriet e 4p	olto entar à ch	più b no elett nimiche	assi in roni di sono

Configurazione elettronica e diagrammi orbitalici degli elementi del quarto periodo (n = 4)

Atomo	Numero	Configurazione				Diagr	amma or	bitalic	0										
	atomico Z	elettronica	core	$3d_{xy}$	$3d_{xz}$	3d _{yz}	$3d_x^2 - y^2$	3d _z ²	4s	4p _x	4p _y	4p _z							
К	19	[Ar]4s ¹	[Ar]						\uparrow										
Ca	20	[Ar]4s ²	[Ar]						$\downarrow \uparrow$										
Sc	21	[Ar]3d ¹ 4s ²	[Ar]	\uparrow					$\downarrow \uparrow$				70	7p		6d		5	f
Ti	22	[Ar]3d ² 4s ²	[Ar]	\uparrow	\uparrow				$\downarrow \uparrow$				73	6р		5d		4	f
V	23	[Ar]3d ³ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$				65	5p		10	_		
Cr	24	[Ar]3d ⁵ 4s ¹	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow			ġ	55			40		ls /	
Mn	25	[Ar]3d ⁵ 4s ²	[Ar]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$			Energ	2 4s	4p	_	3d	~	2s 2p	
Fe	26	[Ar]3d ⁶ 4s ²	[Ar]	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				35	Зр				3s 3p	30
Со	27	[Ar]3d ⁷ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$				2s	2р				5s 5p	5d 5f
Ni	28	[Ar]3d ⁸ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	$\downarrow \uparrow$									6s 6p	6d
Cu	29	[Ar]3d ¹⁰ 4s ¹	[Ar]	$\downarrow \uparrow$	\uparrow				15				ri	75	-				
Zn	30	[Ar]3d ¹⁰ 4s ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$														
Ga	31	[Ar]3d ¹⁰ 4s ² 4p ¹	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow													
Ge	32	[Ar]3d ¹⁰ 4s ² 4p ²	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow				19			2 4.003					
As	33	[Ar]3d ¹⁰ 4s ² 4p ³	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow			T	Zra	1160	io ch	iuso				
Se	34	[Ar]3d ¹⁰ 4s ² 4p ⁴	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	5 10.81 B	C 12.01		N g	usci		iusu				
Br	35	[Ar]3d ¹⁰ 4s ² 4p ⁵	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	Boro 13 26.98	Carbonio 8 14 28.09	Azoto 15 30.97	Ossigeno 16 32.07	Fluoro 17 35.45	Neo 18 39.95					
Kr	36	[Ar]3d ¹⁰ 4s ² 4p ⁶	[Ar]	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	Aluminio	Silicio	P	S	Clara	Ar					
	19 39.10	20 40.08 21 44.96 22	47.87	23 50.94	24 52.	00 25 54.9	4 26 55.85	27 58	.93 28	58.69	63.55	30 65.3	9 31 69.72	2 32 72.59	33 74.92	34 78.96	35 79.90	36 83.80	
	R	Ca Sc Calcio Scandio T	itanio	Vanadio	Cromo	Manganes	Fe Ferro	Co		chel	Cu	Zn	Gallio	Germanio	As	Selenio	Bromo	Kripto	

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 5): riempimento orbitali 5s, 4d, 5p

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 5): riempimento orbitali 5s, 4d, 5p

Zr

Zirconio

Rb

Rubidio

Sr

Stronzio

Nb

Niobio

Мо

Molibdeno

Tc

Tecnezio

Ru

Rutenio

Rh

Rodio

Pd

Palladio

Ag

Argento

Cd

Cadmio

Sn

Stagno

In

Indio

Sb

Antimonio

Te

Tellurio

Iodio

Xe

Xeno

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 6): riempimento orbitali 6s, 4f, 5d, 6p

Xe guscio chiuso

	37 85.47	38 87.62	39 88.90	40 91.22	41 92.91	42 95.94	43 98.91	44 101.1	45 102.9	46 106.4	47 107.9	48 112.4	49 114.8	50 118.7	51 121.8	52 127.6	53 126.9	54 131.
	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	Rubidio	Stronzio	Ittrio	Zirconio	Niobio	Molibdeno	Tecnezio	Rutenio	Rodio	Palladio	Argento	Cadmio	Indio	Stagno	Antimonio	Tellurio	Iodio	лено
I	55 132.9	56 137.3	57 138.9	72 178.5	73 180.9	74 183.9	75 186.2	76 190.2	77 192.2	78 195.1	79 197.0	80 200.6	81 204.4	82 207.2	83 209.0	84 210.0	85 (210)	86 (222)
	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Cesio	Bario	Lantanio	Afnio	Tantalio	Tungsteno	Renio	Osmio	Iridio	Platino	Oro	Mercurio	Tallio	Piombo	Bismuto	Polonio	Astato	Rado

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 6): riempimento orbitali 6s, 4f, 5d, 6p

Atomo	Numero	Configurazione				Dia	gramma orbitalico)									
	atomico Z	elettronica	core	5d _{xy}	5d _{xz}	5d _{yz}	$5d_{x}^{2}{y}^{2}$	5d _z ²	6s	6p _x	6p _y	6p _z					
Cs	55	[Xe]6s ¹	[Xe]						\uparrow								
Ва	56	[Xe]6s ²	[Xe]						$\downarrow \uparrow$								
La	57	[Xe]5d ¹ 6s ²	[Xe]	\uparrow					$\downarrow \uparrow$		Î	7p		6d			5f
	58-71	Riempim	ento progr	essivo d	egli or	bitali 4f –	LANTANI	DI (vedi	Tabella	2.8)	7s	60					
Hf	72	[Xe]4f ¹⁴ 5d ² 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow				$\downarrow \uparrow$		6s		_	5d			4f
Та	73	[Xe]4f ¹⁴ 5d ³ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$		5s	5р	_	4d	r		
W	74	[Xe]4f ¹⁴ 5d ⁴ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow	\uparrow		$\downarrow \uparrow$	cioro				3d		15	
Re	75	[Xe]4f ¹⁴ 5d ⁵ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$	ú		Зр	_			35 34	3d
Os	76	[Xe]4f ¹⁴ 5d ⁶ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$		38	0.7	_			4s 4	5 4d 4f
Ir	77	[Xe]4f ¹⁴ 5d ⁷ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$		2s	20				5s 51	5d 5f
Pt	78	[Xe]4f ¹⁴ 5d ⁹ 6s ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow		15					6s 6¢	6d
Au	79	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow\uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow						L		
Hg	80	[Xe]4f ¹⁴ 5d ¹⁰ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$												
TI	81	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow\uparrow$	\uparrow											
Pb	82	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow										
Bi	83	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ³	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow		ζеσ	1160	vio ch	iuso				
Ро	84	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	1	v 5	usc		lusu				
At	85	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	18.7	51 121.8	52 127.6	53 126	.9 54 131					
Rn	86	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁶	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	↓↑ <mark>1</mark>	Sb Antimonio	Te Tellurio	lodio	Xe					
	55 132	2.9 56 137.3 57 138.9 72 178.	5 73 180.9 7	/4 183.9	75 186.2	76 190.2 7	7 192.2 78	195.1 79	197.0 8	0 200.6	81 204.	4 82 207.2	83 209.0	84 210.0	85 (21	0) 86 (222)	
	Cs Cesio	Ba La Hf Bario Lantanio Afnio	Ta Tantalio T	W	Renio	Os Osmio	Ir Iridio P	Pt I latino	Au Oro I	Hg	Tallio	Pb Piombo	Bi Bismuto	Po Polonio	At Astato	Rn Rado	

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 6): riempimento orbitali 6s, 4f, 5d, 6p

Atom	o Numero	Configurazione				Diag	ramma o	orbitalico)							
	atomico Z	elettronica	core	5d _{xy}	4f _a	4f _b	4f _c	4f _d	4f _e	4f _f	4f _g	6s				
La	57	[Xe]5d ¹ 6s ²	[Xe]	\uparrow								$\downarrow \uparrow$				
	58-71		Riem	pimento	progres	sivo degl	i orbitali	4f - LAN	TANIDI							
Ce	58	[Xe]4f ¹ 5d ¹ 6s ²	[Xe]	\uparrow	\uparrow							$\downarrow \uparrow$				2 4 0 0 2
Pr	59	[Xe]4f ³ 5d ⁰ 6s ²	[Xe]		\uparrow	\uparrow	\uparrow					$\downarrow \uparrow$				He
Nd	60	[Xe]4f ⁴ 5d ⁰ 6s ²	[Xe]		\uparrow	\uparrow	\uparrow	\uparrow				$\downarrow \uparrow$	7 14.01	8 16.00	9 19.00	Elio
Pm	61	[Xe]4f ⁵ 5d ⁰ 6s ²	[Xe]		\uparrow	\uparrow	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$	Ν	0	F	Ne
Sm	62	[Xe]4f ⁶ 5d ⁰ 6s ²	[Xe]		\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow		↓↑ 📙	Azoto 15 30.97	Ossigeno 16 32.07	Fluoro 17 35.45	Neo 18 39.95
Eu	63	[Xe]4f ⁷ 5d ⁰ 6s ²	[Xe]		\uparrow	$\downarrow \uparrow$	Р	S	Cl	Ar						
Gd	64	[Xe]4f ⁷ 5d ¹ 6s ²	[Xe]	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	↓↑ 59	33 74.92	34 78.96	35 79.90	Argo 36 83.80
Tb	65	[Xe]4f ⁹ 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$	As	Selenio	Bromo	Krinto
Dy	66	[Xe]4f ¹⁰ 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	↓↑ 7	51 121.8	52 127.6	53 126.9	54 131.3
Но	67	[Xe]4f ¹¹ 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	√↑,	Sb Antimonio	Tellurio	Iodio	Xe Xeno
Er	68	[Xe]4f ¹² 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	\uparrow	\uparrow	↓↑ '2	83 209.0	84 210.0	85 (210)	86 (222)				
Tm	69	[Xe]4f ¹³ 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	\uparrow	$\downarrow \uparrow$	Bismuto	Polonio	Atato	Rado					
Yb	70	[Xe]4f ¹⁴ 5d ⁰ 6s ²	[Xe]		$\downarrow \uparrow$	$\uparrow \downarrow$	↓↑ 9)	115 (288) Mc	116 (289)	117 - Ts	118 (293)					
Lu	71	[Xe]4f ¹⁴ 5d ¹ 6s ²	[Xe]	\uparrow	$\downarrow \uparrow$	↓↑ •	Moscovio	Livermorio	Tennessino	Oganesso						
LAN	TANID	58	140.1 59 14	0.9 60 14	4.2 61 144	.9 62 150.	4 63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	68 168.9	70 173.0	71 175.0	
FR	RE RA	RE)	Ce Pr Cerio Praseodi	mio Neodin	Promez	io Samario	Eu Europio	Gadolinio	Tb Terbio	Dy Disprosio	Ho	Erbio	Tm Tulio	Yb	Lu	
			Th Pa			// 54 235. Du	1 35 (245)	50 (24)	Pk	50 (252) Cf	55 (232) Ec	Em	Md	No.	105 (202)	┝━━┛
			orio Protoatt	inio Urani	Nettuni	o Plutonic	Americio	Curio	Berchelio	Californio	ES	Fermio	Mendelevio	Nobelio	Laurenzio	

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 6): riempimento orbitali 6s, 4f, 5d, 6p

Atomo	Numero	Configurazione				Dia	gramma orbitalico								
	atomico Z	elettronica	core	5d _{xy}	5d _{xz}	5d _{yz}	$5d_x^2 - y^2$	5d _z ²	6s	6p _x	6р _у	6p _z			
Cs	55	[Xe]6s ¹	[Xe]						\uparrow						
Ва	56	[Xe]6s ²	[Xe]						$\downarrow \uparrow$						
La	57	[Xe]5d ¹ 6s ²	[Xe]	\uparrow					$\downarrow \uparrow$		Î	_	7p	6d	5f
	58-71	Riempim	ento progre	essivo d	egli ork	oitali 4f –	LANTANI	DI (vedi	Tabella	2.8)	7s	_	60		
Hf	72	[Xe]4f ¹⁴ 5d ² 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow				$\downarrow \uparrow$		6s	_		5d	4f
Та	73	[Xe]4f ¹⁴ 5d ³ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow			$\downarrow \uparrow$		5s		5р	4d	-
W	74	[Xe]4f ¹⁴ 5d ⁴ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow	\uparrow		$\downarrow \uparrow$	ornio		_	4p	3d	- ^{1s}
Re	75	[Xe]4f ¹⁴ 5d ⁵ 6s ²	[Xe] 4f ¹⁴	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$	ù	ī _	-	Зр		35 3p 3d
Os	76	[Xe]4f ¹⁴ 5d ⁶ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\downarrow \uparrow$		35	_			45 4p 4d 4f
Ir	77	[Xe]4f ¹⁴ 5d ⁷ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	$\downarrow\uparrow$		2s		2р		5s 5p 5d 5f
Pt	78	[Xe]4f ¹⁴ 5d ⁹ 6s ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow		15				6s 6p 6d
Au	79	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	\uparrow		1								
Hg	80	[Xe]4f ¹⁴ 5d ¹⁰ 6s ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$										
TI	81	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow\uparrow$	\uparrow									
Pb	82	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ²	[Xe] 4f ¹⁴	$\downarrow \uparrow$	$\downarrow \uparrow$	\uparrow	\uparrow								
Bi	83	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6b ³	[Xe] 4f ¹⁴	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow		Rn σ	uscio chiuso				
Ро	84	^{[Xe]4f¹⁴} Elemer	nti (me	talli) di 1	trans	izione	e (III	seri	e)	\uparrow	\uparrow		INI S	
At	85	[Xe]4f ¹⁴						- (-	-1	$\downarrow \uparrow$	\uparrow	18.7 51 12	21.8 52 127.6	53 126.9 54 131.3
Rn	86	[Xe]4f ¹⁴									$\downarrow \uparrow$	$\downarrow \uparrow$	n Sk	o Tellurio	I Xe
	55 132	2.9 56 137.3 57 138.9 72 178.	5 73 180.9 7	4 183.9	75 186.2	76 190.2 7	7 192.2 78	195.1 79	197.0 8	0 200.6	81 204	.4 82	207.2 83 20	09.0 84 210.0	85 (21) 86 (222)
	Cs	Ba La Hf	Та	W	Re	Os	Ir	Pt /	Au	Hg	TI	P	b Bi	i Po	At Rn
	Cesio	Bario Lantanio Afnio	Tantalio T	ungsteno	Renio	Osmio	Iridio Pl	atino	Oro N	viercurio	Tallio	Pior	nbo Bismu	uto Polonio	Astato Rado

Configurazione elettronica e diagrammi orbitalici degli elementi del quinto periodo (n = 7): riempimento orbitali 7s, 5f, 6d, 7p

Ì	1 1000	1.12	20		2	32	5270											2 4.002
	L 1008																	4.005
																		пе
	Idrogeno	4 0.013	Ê.										E 10.01	6 13.01	7 44.04	0 16 00	0 10.00	Elio
	3 6.941	4 9.012											5 10.81	6 12.01	/ 14.01	8 16.00	9 19.00	10 20.18
	LI	ве											в	C	N	0	F	Ne
	Litio	Berillio											Boro	Carbonio	Azoto	Ossigeno	Fluoro	Neo
	11 22.99	12 24.31	2										13 26.98	14 28.09	15 30.97	16 32.07	17 35.45	18 39.95
	Na	Mg											AI	Si	P	S	CI	Ar
	Sodio	Magnesio											Alluminio	Silicio	Fosforo	Zolfo	Cloro	Argo
	19 39.10	20 40.08	21 44.96	22 47.87	23 50.94	24 52.00	25 54.94	26 55.85	27 58.93	28 58.69	29 63.55	30 65.39	31 69.72	32 72.59	33 74.92	34 78.96	35 79.90	36 83.80
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Potassio	Calcio	Scandio	Titanio	Vanadio	Cromo	Manganese	Ferro	Cobalto	Nichel	Rame	Zinco	Gallio	Germanio	Arsenico	Selenio	Bromo	Kripto
	37 85.47	38 87.62	39 88.90	40 91.22	41 92.91	42 95.94	43 98.91	44 101.1	45 102.9	46 106.4	47 107.9	48 112.4	49 114.8	50 118.7	51 121.8	52 127.6	53 126.9	54 131.3
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	Rubidio	Stronzio	Ittrio	Zirconio	Niobio	Molibdeno	Tecnezio	Rutenio	Rodio	Palladio	Argento	Cadmio	Indio	Stagno	Antimonio	Tellurio	lodio	Xeno
	55 132.9	56 137.3	57 138.9	72 178.5	73 180.9	74 183.9	75 186.2	76 190.2	77 192.2	78 195.1	79 197.0	80 200.6	81 204.4	82 207.2	83 209.0	84 210.0	85 (210)	86 (222)
	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Cesio	Bario	Lantanio	Afnio	Tantalio	Tungsteno	Renio	Osmio	Iridio	Platino	Oro	Mercurio	Tallio	Piombo	Bismuto	Polonio	Astato	Rado
	87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (266)	107 (272)	108 (265)	109 (265)	110 (261)	111 (272)	112 (277)	113 -	114 (289)	115 (288)	116 (289)	117 -	118 (293)
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
	Francio	Radio	Attinio	Rutherfordio	Dubnio	Seaborgio	Bohrio	Hassio	Meitnerio	Darmstadio	Roentgenio	Copernicio	Nihonio	Flerovio	Moscovio	Livermorio	Tennessino	Oganesso
				58 140.1	59 140.9	60 144.2	61 144.9	62 150.4	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	68 168.9	70 173.0	71 175.0	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	
					Proceedimic				_				0					
				90 232.0	91 231.0	92 238.2	93 (237)	94 239.1	95 (243)	96 (247)	97 (247)	98 (252)	99 (252)	100 (257)	100 (258)	102 (259)	103 (262)	
4	TT	NID		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Em	Md	No	Ir	
						-												
				Torio	Protoattinio	Uranio	Nettunio	Plutonio	Americio	Curio	Berchelio	Californio	Einstenio	Fermio	Mendelevio	Nobelio	Laurenzio	

TAVOLA PERIODICA *Dmitrij Mendeleev (circa 1870)*

		18 co	lonn	e (gr	uppi)): sin	nili 🛛	prop	rietà	ator	mich	e					
1 1.008	,	7 rig	he (n	orind	h) · v	ariaz	vioni	simi	li de	lle ni	ronri	ietà s	atom	iche			2 4.003
Idrogeno		/ 115				u1 1az		51111	II UC	ne pi	opr						Flip
3 6.941	4 9.012				•					C0		5 10.81	6 12.01	7 14.01	8 16.00	9 19.00	10 20.18
Li	Be	Rit	letto	no la	simi	ilituo	line	delle	con	tigur	·a-	В	С	N	0	F	Ne
Litio	Berillio	zio	ni ele	ettro	niche	e este	erne	nei v	ari g	run	ni	Boro	Carbonio	Azoto	Ossigeno	Fluoro	Neo
11 22.99	12 24.31											13 26.98	14 28.09	15 30.97	16 32.07	17 35.45	18 39.95
Na	Mg	Sisio Alluminio Si P S Alluminio Silicio Fosforo Zolfo															Ar
Sodio 19 39.10	Magnesio 20 40.08	Algenesio Alluminio Silicio Fosforo Zolfo Cloro Argo 0 40.08 21 44.96 22 47.87 23 50.94 24 52.00 25 54.94 26 55.85 27 58.93 28 58.69 29 63.55 30 65.39 31 69.72 32 72.59 33 74.92 34 78.96 35 79.90 36 83.80															
к	Ca	21 44.96 22 47.87 23 50.94 24 52.00 25 54.94 26 55.85 27 58.93 28 58.69 29 63.55 30 65.39 31 69.72 32 72.59 33 74.92 34 78.96 35 79.90 36 83.80 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr															
Potassio	Calcio	Scandio	Titanio	Vanadio	Cromo	Manganese	Ferro	Cobalto	Nichel	Rame	Zinco	Gallio	Germanio	Arsenico	Selenio	Bromo	Kripto
37 85.47	38 87.62	39 88.90	40 91.22	41 92.91	42 95.94	43 98.91	44 101.1	45 102.9	46 106.4	47 107.9	48 112.4	49 114.8	50 118.7	51 121.8	52 127.6	53 126.9	54 131.3
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Rubidio	Stronzio	Ittrio	Zirconio	Niobio	Molibdeno	Tecnezio	Rutenio	Rodio	Palladio	Argento	Cadmio	Indio	Stagno	Antimonio	Tellurio	Iodio	Xeno
55 132.9	56 137.3	57 138.9	72 178.5	73 180.9	74 183.9	75 186.2	76 190.2	77 192.2	78 195.1	79 197.0	80 200.6	81 204.4	82 207.2	83 209.0	84 210.0	85 (210)	86 (222)
Cs	ва	La	HT	Ia	W	Re	Os	Ir	Pt	Au	Hg	11	PD	BI	PO	At	Rn
87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (266)	107 (272)	108 (265)	109 (265)	110 (261)	111 (272)	112 (277)	113 -	114 (289)	115 (288)	116 (289)	Astato 117 -	118 (293)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FL	Mc	Lv	Ts	Og
Francio	Radio	Attinio	Rutherfordio	Dubnio	Seaborgio	Bohrio	Hassio	Meitnerio	Darmstadio	Roentgenio	Copernicio	Nihonio	Flerovio	Moscovio	Livermorio	Tennessino	Oganesso
				100 4400													0

I	58 140.1	59 140.9	60 144.2	61 144.9	62 150.4	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	68 168.9	70 173.0	71 175.0
Ce		Pr	Nd	Pm Sm		Eu	Gd	Gd Tb		Но	Er	Tm	Yb	Lu
	Cerio	Praseodimio	Neodimio	Promezio	Samario	Europio Gadolinio		Terbio	Disprosio	Olmio	Erbio	Tulio	Itterbio	Lutezio
	90 232.0	91 231.0	92 238.2	93 (237)	94 239.1	95 (243)	96 (247)	97 (247)	98 (252)	99 (252)	100 (257)	100 (258)	102 (259)	103 (262)
Th		Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
I	Torio	Protoattinio	Uranio	Nettunio	Plutonio	Americio	Curio	Berchelio	Californio	Einstenio	Fermio	Mendelevio	Nobelio	Laurenzio

TAVOLA PERIODICA *sottolivelli esterni (di valenza)*

Gli elementi dei blocchi s e p sono anche detti elementi dei gruppi principali (1,2 e 13-18)

TAVOLA PERIODICA

Gruppo 1 (**metalli alcalini**): configurazione elettronica esterna **ns**¹. Perdono facilmente l'elettrone esterno. Sono metalli teneri e molto reattivi, che formano esclusivamente composti ionici in cui compaiono come monocationi M⁺ (**N.B.** no H).

Gruppo 2 (**metalli alcalino-terrosi**): configurazione elettronica esterna **ns**². Sono metalli relativamente teneri e reattivi, che formano quasi esclusivamente composti ionici in cui compaiono come dicationi M²⁺.

Gruppo 18 (**gas nobili**): configurazione elettronica esterna **ns²np⁶** (per l'elio **1s²**) con energia molto minore di (*n*+1)*s*, quindi molto poco reatti *i*.

58 140.1	59 140.9	60 144.2	61 144.9	62 150.4	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	68 168.9	70 173.0	71 175.0
Ce	Pr	Nd	Pm Sm		Eu Gd		Tb	Dy	Но	Er	Tm	Yb	Lu
Cerio	Praseodimio	Neodimio	Promezio	Samario Europio		Gadolinio	Terbio	Disprosio	Olmio	Erbio	Tulio	Itterbio	Lutezio
90 232.0	91 231.0	92 238.2	93 (237)	94 239.1	95 (243)	96 (247)	97 (247)	98 (252)	99 (252)	100 (257)	100 (258)	102 (259)	103 (262)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Torio	Protoattinio	Uranio	Nettunio	Plutonio	Americio	Curio	Berchelio	Californio	Einstenio	Fermio	Mendelevio	Nobelio	Laurenzio

MECCANICA QUANTISTICA ED EQUAZIONE DI SCHRÖDINGER

UN MODELLO È UN MODELLO

1) Dimensioni atomiche: sono ricavate misurando la distanza (r) fra i nuclei di due atomi adiacenti in un campione dell'elemento (*raggio covalente*).

I metalli del gruppo 1 mostrano i valori più alti mentre i gas nobili presentano i valori più bassi

L'aumento di Z_{eff} lungo un periodo giustifica la parallela diminuzione delle dimensioni degli atomi

1) Dimensioni atomiche: sono ricavate misurando la distanza (r) fra i nuclei di due atomi adiacenti in un campione dell'elemento (raggio covalente).

Due andamenti generali:

- lungo ciascun gruppo, il raggio atomico aumenta con il numero del periodo (n)
- 2) lungo ciascun periodo, il raggio atomico diminuisce all'aumentare del numero atomico (Z_{eff})

Invece nelle serie di transizione il raggio atomico varia molto meno (si riempiono gli orbitali dche sono «quasi di core» (Z_{eff} quasi costante nella serie)

Raggi atomici (pm) degli elementi dei gruppi principali riportati come cerchi in scala (metalli in azzurro, non metalli in rosso, semimetalli in viola)

2) Energia di ionizzazione: é l'energia minima per rimuovere l'elettrone più esterno da un atomo neutro in fase gassosa e formare uno ione positivo secondo il processo: A_(g) → A⁺_(g) + e⁻ (N.B. è espressa in J mol⁻¹)

I metalli del gruppo 1 mostrano i valori minori mentre i gas nobili presentano i valori più elevati Lungo un gruppo, l'energia di ionizzazione generalmente diminuisce all'aumentare del numero atomico (aumenta n) e la distanza dell'elettrone ns^1 dal nucleo (è meno trattenuto)

Andando da sinistra a destra lungo un periodo non cambia n, il numero quantico principale dell'orbitale occupato più esterno non cambia; tuttavia aumenta Z_{eff} di cui risente l'elettrone più esterno (è più trattenuto)

2) Affinità elettronica: è la variazione di energia (positiva o negativa) che accompagna il processo in cui un atomo neutro in fase gassosa acquista un elettrone, collocandolo nell'orbitale disponibile più stabile, per formare uno ione negativo:

 $A_{(g)} + e^{-} \rightarrow A^{-}_{(g)}$ (N.B. è espressa in J mol⁻¹)

La maggior parte degli atomi ha affinità elettronica negativa (libera energia) $-10^1 \div -10^2$ kJ mol⁻¹ (gli alogeni, gruppo 17, liberano più energia, seguiti dagli elementi del gruppo 16)

Valori positivi risultano $\simeq 10^1$ kJ mol⁻¹ (gas nobili e metalli alcalino-terrosi)

L'affinità elettronica non varia di molto nel gruppo, mentre diventa via via più negativa lungo il periodo con *anomalie* nei passaggi del 2° e 15° gruppo (rispettivamente sottostrato ns^2 completo e sottostrato np^3 *semi*completo)

METALLI, NON METALLI E SEMIMETALLI

I **metalli** sono solidi duttili e malleabili, dalla caratteristica lucentezza e presentano una elevata conducibilità termica ed elettrica. Tendono a perdere elettroni (formano *cationi*). I **non metalli** sono invece per lo più solidi friabili o gas e non conducono elettricità e calore. Tendono ad acquisire elettroni (formano *anioni*).

I semimetalli presentano caratteristiche intermedie.

L'atomo neutro di un qualsiasi elemento E si trova nello stato di ossidazione zero.

Togliendo o aggiungendo uno o più elettroni all'atomo neutro, questo diventa uno ione.

Togliendo 1, 2, 3... elettroni si ottengono i *cationi* E^+ , E^{2+} , E^{3+} ..., per i quali lo *stato di ossidazione* é +1, +2, +3....

Se invece aggiungiamo 1, 2, 3... elettroni si ottengono gli *anioni* E⁻, E²⁻, E³⁻..., per i quali lo *stato di ossidazione* é -1, -2, -3....

Quindi, per le specie monoatomiche lo stato di ossidazione coincide con la loro carica.

Gli ioni più stabili sono quelli che presentano una configurazione elettronica a guscio chiuso.

Cationi

Metalli del blocco s (gruppi 1 e 2): hanno configurazione elettronica esterna ns^1 e ns^2 Perdono facilmente 1 e 2 elettroni di valenza, rispettivamente, *raggiungendo così la configurazione elettronica a guscio chiuso del gas nobile che li precede* (la carica del catione coincide con il numero del gruppo):

 $Na([Ne]3s^1) \rightarrow Na^+([Ne]) + e^ Mg([Ne]3s^2) \rightarrow Mg^{2+}([Ne]) + 2e^-$

Cationi Elementi metallici dei gruppi del blocco *p* (in basso dal gruppo 13 al 15).

Tutti i metalli del gruppo 13 possono perdere i tre elettroni di valenza. Ad esempio per Al:

 $\operatorname{Al}([Ne]3s^23p^1) \rightarrow \operatorname{Al}^{3+}([Ne]) + 3e^{-1}$

Cationi Elementi metallici dei gruppi del blocco *p* (in basso dal gruppo 13 al 15)

Se i metalli Sn e Pb (gruppo 14) oppure Sb e Bi (gruppo 15) perdessero tutti gli elettroni di valenza genererebbero cationi con carica molto elevata (instabili):

 $\mathbf{Sn}([Kr]4d^{10}5s^{2}5p^{2}) \rightarrow \mathbf{Sn}^{4+}([Kr]4d^{10}) + 4e^{-}$ $\mathbf{Sb}([Kr]4d^{10}5s^{2}5p^{3}) \rightarrow \mathbf{Sb}^{5+}([Kr]4d^{10}) + 5e^{-}$

Quindi questi elementi tendono piuttosto a *condividere* gli elettroni di valenza con gli atomi con cui si legano (*legami covalenti polari*).

Cationi Elementi metallici dei gruppi del blocco *p* (in basso dal gruppo 13 al 15)

Dal *quinto periodo* in poi, gli elementi metallici dei gruppi dal 13 al 15 *possono* inoltre limitarsi a *perdere* i soli elettroni negli orbitali *np*, mantenendo così due elettroni nell'orbitale *ns*. Ad esempio, per gli elementi del quinto periodo si ha:

 $In([Kr]4d^{10}5s^{2}5p^{1}) \rightarrow In^{+}([Kr]4d^{10}5s^{2}) + e^{-} Sn([Kr]4d^{10}5s^{2}5p^{2}) \rightarrow Sn^{2+}([Kr]4d^{10}5s^{2}) + 2e^{-}$ $Sb([Kr]4d^{10}5s^{2}5p^{3}) \rightarrow Sb^{3+}([Kr]4d^{10}5s^{2}) + 3e^{-}$

TAVOLA PERIODICA DEGLI ELEMENTI																	
н													He				
Li	Ве		MET						NON			в	с	N	ο	F	Ne
Na	Mg			ALLI	SEIVIIIVIETALLI			METALLI			AI	Si	Р	S	CI	Ar	
к	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	La	

Anioni **Elementi dei gruppi 17 e 16**

Sono tutti non metalli, *acquistano* 1 e 2 elettroni, rispettivamente, per dare i corrispondenti anioni di carica -1 e -2, che sono particolarmente stabili, in quanto possiedono la configurazione elettronica del gas nobile che li segue:

 $\mathbf{Cl}([Ne]3s^23p^5) + e^- \rightarrow \mathbf{Cl}([Ne]3s^23p^6) \qquad \mathbf{S}([Ne]3s^23p^4) + 2e^- \rightarrow \mathbf{S}^2 \cdot ([Ne]3s^23p^6)$

Anioni **Elementi dei gruppi 15 e 14**

Lo stesso comportamento è più raro per i non metalli dei gruppi 15 e (soprattutto) 14. Di fatto si trova che l'azoto e (in misura minore) il fosforo, possono formare anioni di carica –3:

$$N([He]2s^22p^3) + 3e^- \rightarrow N^3 \cdot ([He]2s^22p^6)$$
 $P([Ne]3s^23p^3) + 3e^- \rightarrow P^3 \cdot ([Ne]3s^23p^6)$

mentre per il C (gruppo 14) lo stato di ossidazione -4 è stabilizzato solo dai metalli alcalini

$$\mathbf{C}([He]2s^22p^2) + 4e^{-} \rightarrow \mathbf{C}^{4-}([He]2s^22p^6)$$

Ioni dei metalli di transizione

I metalli di transizione possono formare cationi M^{n+} perdendo da uno fino a cinque elettroni sia da orbitali di tipo *ns* (*meno stabili*) che da orbitali di tipo (*n*-1)*d* (*più stabili*).

Quindi si perdono prima gli elettroni nell'orbitale *ns* (formando in genere cationi M^{2+}), che poi possono eventualmente perdere ulteriori elettroni (n-1)d per dare ioni di carica maggiore. Ad esempio, per il ferro:

$$\mathbf{Fe}([Ar]3d^{6}4s^{2}) \rightarrow \mathbf{Fe}^{2+}([Ar]3d^{6}) + 2e^{-} \qquad \mathbf{Fe}([Ar]3d^{6}4s^{2}) \rightarrow \mathbf{Fe}^{3+}([Ar]3d^{5}) + 3e^{-}$$

Ioni dei metalli di transizione

Solo gli elementi del **gruppo 3**, ed in parte dei **gruppi 4 e 5**, perdono tutti gli elettroni *nd* così da raggiungere la configurazione elettronica del gas nobile che li precede. Ad esempio:

$$\mathbf{Sc}([Ar]3d^{1}4s^{2}) \rightarrow \mathbf{Sc}^{3+}([Ar]) + 3e^{-} \qquad \mathbf{Ti}([Ar]3d^{2}4s^{2}) \rightarrow \mathbf{Ti}^{4+}([Ar]) + 4e^{-} \mathbf{V}([Ar]3d^{3}4s^{2}) \rightarrow \mathbf{V}^{5+}([Ar]) + 5e^{-}$$

Tuttavia i cationi dei **gruppi 4 e 5** con cariche +4 e +5 non sono stabili come tali e tendono a formare composti con legami a carattere *covalente polare*.

Ioni dei metalli di transizione

Gli elementi del **gruppo 11** hanno configurazione elettronica $(n-1)d^{10}ns^1$ e perdono l'unico elettrone nell'orbitale *ns* per dare ioni M⁺ stabili.

Possono anche perdere uno o due ulteriori elettroni dagli orbitali nd per dare ioni M²⁺ e M³⁺.

Gli elementi del **gruppo 12** hanno configurazione elettronica $(n-1)d^{10}ns^2$ e perdono esclusivamente i due elettroni dell'orbitale *ns* per dare ioni M²⁺ (la configurazione $(n-1)d^{10}$, con il sottostrato *d* completo, conferisce a questi cationi una particolare stabilità).

4) Raggi ionici: le dimensioni degli ioni si ottengono misurando la distanza fra i nuclei di due ioni adiacenti di carica opposta in un cristallo ionico.

N.B. è spesso espressa in Angstrom $(1 \text{ Å} = 10^{-10} \text{ m})$

L'andamento periodico dei *raggi ionici* è simile a quello osservato per i *raggi atomici* (per le stesse ragioni)

Il raggio dei cationi (anioni) é sempre minore (maggiore) di quello degli atomi neutri corrispondenti

PROPRIETA' MAGNETICHE

Le proprietà magnetiche di una sostanza riflettono la configurazione elettronica degli elementi di cui questa è costituita, in quanto lo *spin* di ciascun elettrone genera un suo proprio campo magnetico.

- Le sostanze *diamagnetiche* risultano debolmente respinte da un campo magnetico esterno (generano un piccolo momento magnetico diretto in verso opposto al campo applicato). Sono costituite da atomi o molecole che non hanno un momento magnetico proprio.
- 2) Le sostanze *paramagnetiche* e *ferromagnetiche* sono invece costituite da atomi o molecole che presentano un momento magnetico proprio. In presenza di un campo magnetico esterno, i singoli momenti magnetici atomici tendono ad allinearsi lungo la direzione del campo applicato, rinforzandolo (debolmente per le sostanze paramagnetiche, fortemente per quelle ferromagnetiche). Di conseguenza, queste sostanze sono attratte da un campo magnetico applicato.
- 3) Se due elettroni occupano uno stesso orbitale con spin antiparalleli, i loro momenti magnetici si elidono. Quando invece un elettrone occupa singolarmente un orbitale, esso genera un momento magnetico diverso da zero.
- 4) Ne consegue che una sostanza in cui tutti gli elettroni sono accoppiati sarà diamagnetica, mentre una sostanza in cui uno o più elettroni sono spaiati sarà paramagnetica o ferromagnetica.