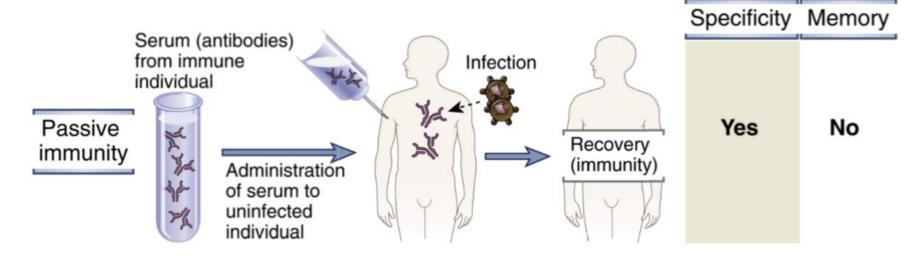
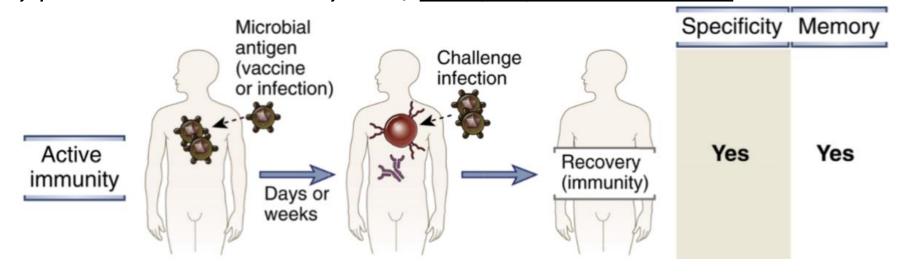

Schematic representation of host-pathogen interactions


IMMUNE SYSTEM

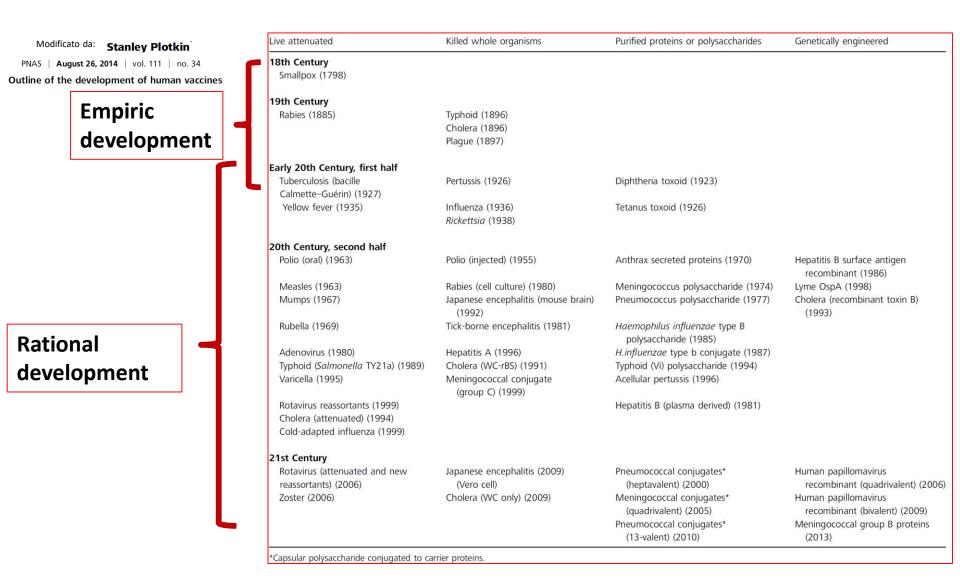
Active immunity (immunoprophylaxis) Protection conferred by person's own immune system, <u>lasts for years or decades</u>


Passive Immunity (immunotherapy) Protection transferred from another person or animal, <u>disappears after two-three weeks</u>

SPECIFIC PASSIVE IMMUNOTHERAPY WITH ANTIBODY			
infection	source of antibody	indication	
diphtheria tetanus varicella-zoster	human, horse human, horse human] prophylaxis,] treatment prophylaxis in	
gas gangrene botulism snake bite scorpion bite	horse	immunodeficiencies	
rabies hepatitis B	human human	post-exposure (plus vaccine) post-exposure	
hepatitis A measles] pooled human] immunoglobulin	prophylaxis (travel) post-exposure	

Fig. 35.2 Specific passive immunotherapy with antibody. Although not so commonly used as 50 years ago, passive injections of specific antibody can still be a life-saving treatment.

Active immunity (immunoprophylaxis) Protection conferred by person's own immune system, <u>lasts for years or decades</u>



A vaccine is a biological preparation that improves immunity to a particular disease

.....A vaccine typically contains an agent that resembles a diseasecausing microorganism The agent stimulates the body's immune system to recognize the agent as foreign, "destroy it, and remember it", so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters......

Vaccines have proved to be one of the most powerful and effective ways of reducing disease and vaccination is considered the most cost-effective medical intervention ever introduced

Rational development

1- ATTENUATION – attenuated vaccines

The idea of attenuation of virulent infections developed slowly over the course of centuries. **It was based on the idea that an agent virulent for animals might be attenuated in humans.** Serial propagation of a pathogen in inhabitual hosts may lead to "attenuation"

Old examples: Jenner's use of an animal poxvirus to prevent smallpox

<u>Cell cultures.</u> In 1948-1949, a revolution happened with the discovery that cells could be cultured in vitro and used as substrates for viral growth. **Passage in cell culture leads to adaptation to growth in that medium,** and the mutants best capable of growth have often lost or modified the genes that allow them to infect and spread within a human host.

More recent examples of attenuation" in vitro in cell culture: measles, rubella, mumps, grown in cell culture

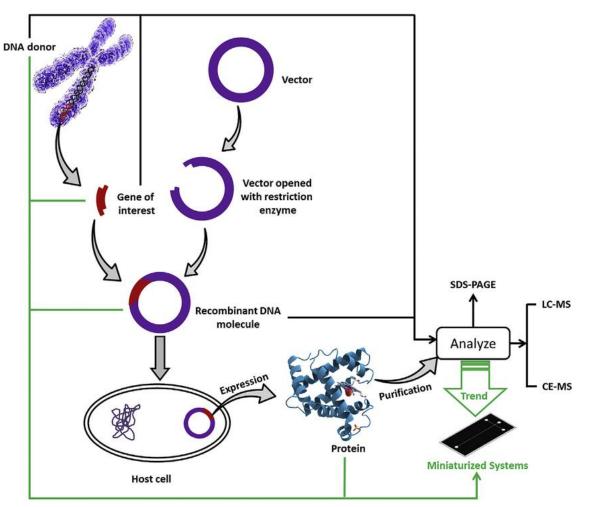
Rational development

2- INACTIVATION inactivated vaccines

Another discovery toward the end of the 19th century was that immunogenicity could be retained if microorganisms were carefully killed by heat or chemical treatment

3- PROTEIN-BASED VACCINES "subunit" vaccines

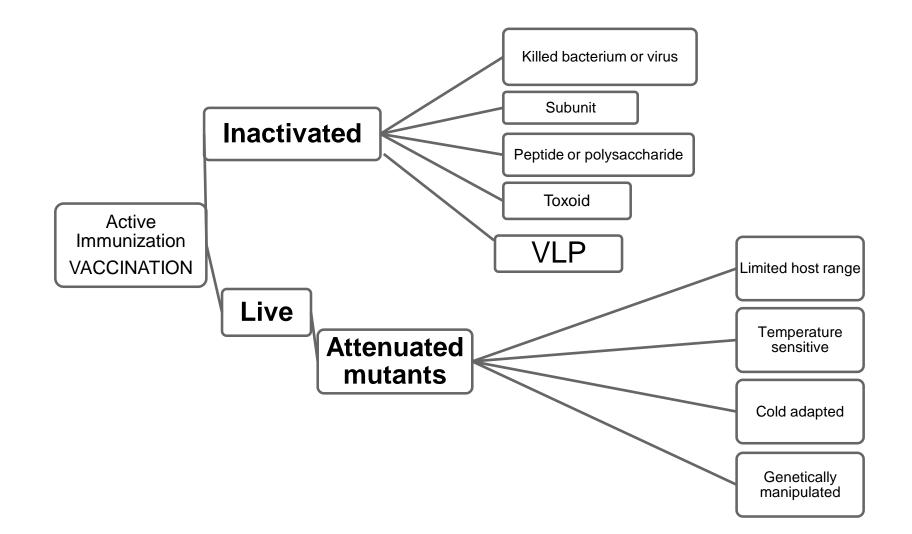
Some vaccines used today are **purified from microorganism preparation** or generated by growing the viruses in vitro and then breaking up the whole virus with detergents. Then viral protein is purified to serve as the vaccine antigen. Several vaccines consist of partly or fully purified proteins.

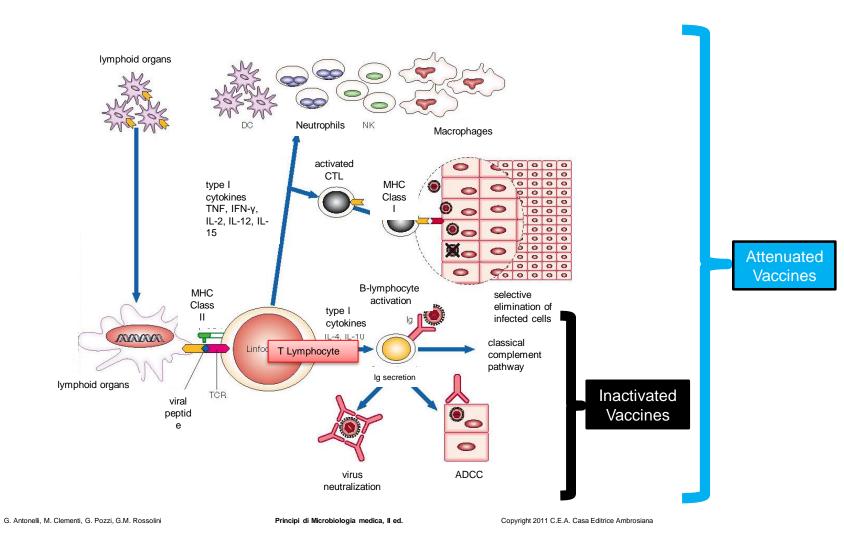

Sometimes tha vaccine is a "conjugated "vaccine. Conjugation is a procedure that combines a type of subunit vaccine (with a weak antigen) with a strong antigen (as a carrier) so that the immune system has a stronger response to the weak antigen.

4- GENETIC ENGINEERING

The revolution of genetic engineering toward the end of the 20th century has greatly impacted vaccine development. The first fruit of that revolution was the vaccine against hepatitis B.

Vaccino - Proteine ricombinanti


This technique is based on the possibility to allow the cells of the subject to be immunized to directly produce the antigens against which we want to induce an immune response. This is possible using a cDNA encoding the protein of interest carried by a plasmid



Gianini Morbioli G. et all tica Chimica Acta · September 2016

Strategies for the development of vaccines

PROCEDURE	EXAMPLES
attenuation, inactivation, grown	
and purification	many
recembinent DNA technology	
recombinant DNA technology	HBV, HPV
conjugation tooknology	Llaamanhilua influanzaa D
conjugation technology	Haemophilus influenzae B
	Streptococcus pneumoniae (different serotypes)
	Neisseria meningitidis A

General Rule

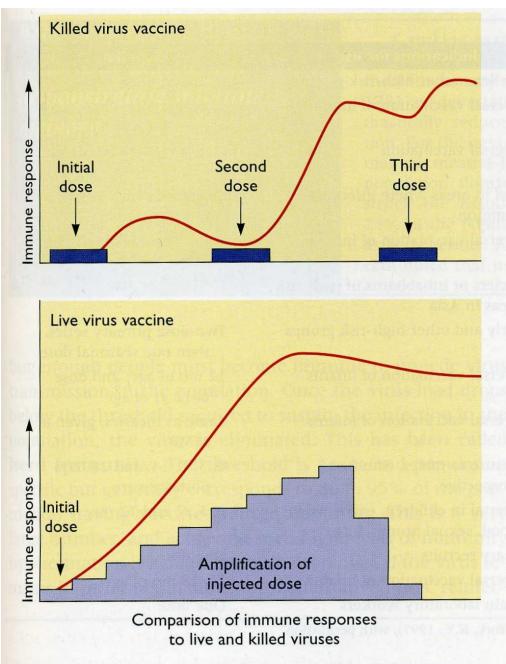
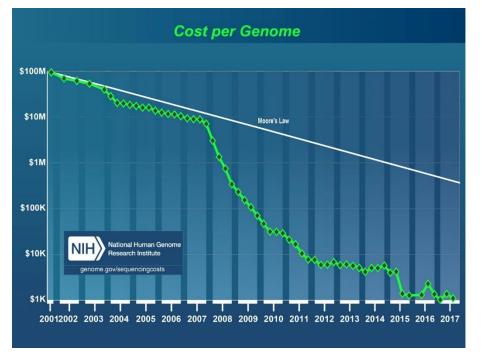


Figure 19.2 Comparison of the predicted immune responses to live and killed viruses used in vaccine protocols.

Further challenges for vaccinologists


Challenges (examples)	Determinants (examples)	Microorganism (Examples)
Severe infections	No availabilty of curative drugs,	HIV, HCV
Severe infections	Variability of the pathogen	Influenza
Climata changes	Incidence, frequency and distribution	vector-borne diseases,
Climate changes	of several infection infections	ancient bacteria and viruses
Population growth and urbanization	Population density	mosquito-trasmitted diseases,
in developing countries		leptospirosis, rabies, etc.
		Mathiaillin registant stankulages sus aurous
Antibiotic resistance	Hospital acquired infections	Methicillin-resistant staphyloccocus aureus (MRSA)
	Misuse of antibiotics	Pseudomonas aeruginosa
		Clostridium difficile
Emerging infections	The number of omorging viruses	Norovirus, SARS-CoV-1, MERS, SARS-CoV-2
	The number of emerging viruses is significantly increasing	NOIDVIIUS, SANS-COV-1, MENS, SANS-COV-2
	is significantly increasing	

Year of first description	Name	Deaths	Comments
1918	'Spanish influenza'	In the range of about 50 million to 100 million	1918: H1N1; other pandemics in 1957-1958 (H2N2), 1968 (H3N2) and 2009 (H1N1)
1931	Rift Valley Fever	Overall CFR < 1%; ~50% for hemorrhagic fever	Contact with blood or organs of infected animals and mosquito-borne; several outbreaks in 1977, 1997-1998, 2000–2016
1937	West Nile fever	CFR~5%	Mosquito-borne; worldwide outbreaks (most recent 1999-2010, USA)
1967	Marburg hemorrhagic fever	~470; very high CFR (24-88%, WHO)	Contact with African green monkey; numerous outbreaks in Africa 1969–2018
1969	Lassa fever	~5,000 deaths annually; CFR 1–2%; Nigerian CFR 25%	Contact with rodents or contaminated food or items; mostly in West Africa (Nigeria 2018)
1969	Acute hemorrhagic conjunctivitis	Rare	First identified in 1969; pandemic in 1981; frequent outbreaks worldwide
1976-2020	Ebola hemorrhagic fever	>15,000; CFR 75%	First identified in 1976; first major outbreak in 2013-2016 in West Africa and in 2018 in Democratic Republic of Congo; 29 regional epidemics in 2020 in West and Central Africa
1981	HIV/AIDS	~37 million	Ongoing pandemic
1996	Avian flu	High CFR (60%)	H5N1 and H7N9 viruses from poultry; several outbreaks worldwide; last outbreak in China in 2018
1999	Nipah fever	<1,000?; very high CFR	Outbreaks in Malaysia, Singapore, Bangladesh and India
2002	SARS	813; CFR ~ 10%	Contained—did not turn into pandemic
2009	H1N1; H7N9 'swine flu'	284,000; CFR 2.9-9%	Pandemic
2012	MERS	935; CFR 34.4%	Major outbreak in 2012–2019; ongoing (camels, humans); detected in 27 countries but mostly in Middle Eastern countries
2014	Chikungunya	Rare	Mosquito-borne
2015	Zika	Unknown	Mosquito-borne
2019-ongoing	COVID-19 (SARS-CoV-2)	>2.3 million; CFR 2-10%; high in elderly and individuals with comorbidities	Pandemic—animal-to-animal, animal-to-human and human-to-human transmission

Table 2 Examples of different vaccine platforms and vaccines currently developed or under development for emerging viral
infectious diseases

Vaccine platform	Other specifications	Developed for	Under development or stopped ^a for	Shortcomings and advantages
Live attenuated		Influenza; yellow fever; poliomyelitis	COVID-19; RVF (veterinary and human use) Lassa fever; chikungunya	Biosafety level 3 manufacturing plant for handling dangerous viruses
Whole inactivated	With or without adjuvant	Influenza; poliomyelitis; COVID-19	SARSª; Zika; RVF (veterinary use); chikungunya	Biosafety level 3 manufacturing plant for dangerous viruses; needs adjuvant; HPB regimens possible
DNA	Electroporation; adjuvant		SARSª; MERS; Zika; Lassa fever; COVID-19	Poorly immunogenic; electroporation requires device; difficult use for rollout; HPB regimens possible
mRNA		COVID-19	Lassa fever; disease X	Rapidly adaptable to new emerging viruses; HPB regimens possible; ultracold chain currently unpractical for large-scale use in resource-limited settings
Recombinant vectors				
Nonreplicating				
Ad5			COVID-19	Preexisting immunity to Ad5
ChAd3			Ebola	Cell-line-produced;
ChAdOx1		COVID-19	MERS; RVF; Lassa fever; Nipah; Zika; chikungunya	adaptable construct to emerging virus in 5-6 months; HPB regimens possible
Ad26		Ebola; COVID-19		
Live attenuated				
MVA		Ebola	MERS	
VSV		Ebola	COVID-19ª; Lassa fever; Nipah	
Measles			MERS; Lassa fever; Nipah; chikungunya; COVID-19ª	
Protein based				Requires more time to adapt to new
Virus-like particle	With adjuvant	COVID-19	COVID-19	emerging viruses; likely needs adjuvant; HPB regimens possible
Monomer; dimer; trimer	With adjuvant		COVID-19; RFV; Nipah	
Molecular clamp	With adjuvant		Influenza; MERS; COVID-19ª	

Next generation sequencing and the metagenomic revolution

Sequencing technology				
year	time needed	cost	needs	
ycui			necus	
2000	10 years	1 billion US dollars	world-wide teams	
2010	10 days	50,000 US dollars	1 laboratory group	
	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
now	1 day	1,000 US dollars		

Strategies for the development of new vaccines

Using the computer to rationally design vaccines starting with information present in the genome, without the need to grow the specific microorganisms.

Strategies for the development of vaccines

PROCEDURE	EXAMPLES
growth, isolation, inactivation	many
recombinant DNA technology	HBV, HPV
conjugation technology	Haemophilus influenzae B
conjugation technology	Streptococcus pneumoniae (different serotypes)
	Neisseria meningitidis A
genomics; genome-based	Ebolo vinue, Influenzo vinue, SADS CoV/2
approach	Ebola virus, Influenza virus, SARS-CoV-2

Vaccini a DNA - vettore adenovirale

Questa tecnica si basa sulla possibilità di far produrre direttamente alle cellule dell'individuo da immunizzare gli antigeni contro i quali si vuol indurre una risposta immunitaria. Questo è possibile utilizzando un cDNA che codifica la proteina di interesse veicolata da un virus non citopatico o difettivo (vettore virale)

A cDNA encoding the protein of interest carried by a noncytopathic or defective virus (viral vector)

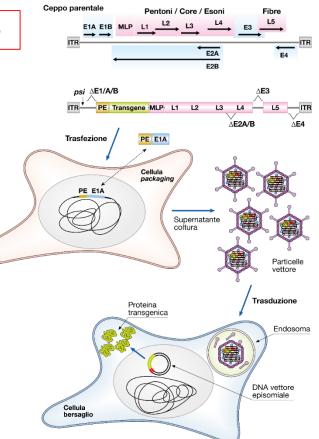
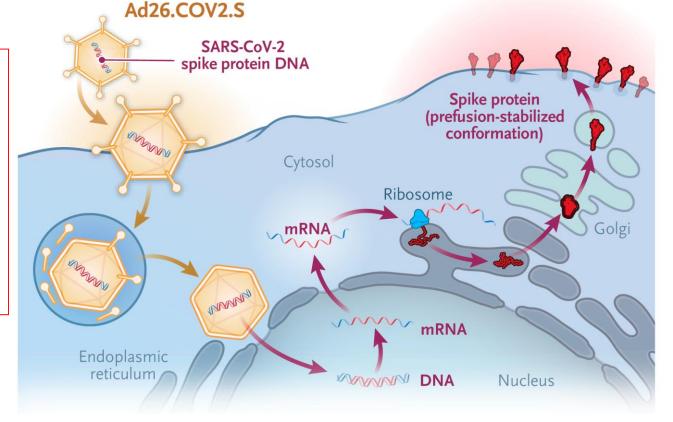
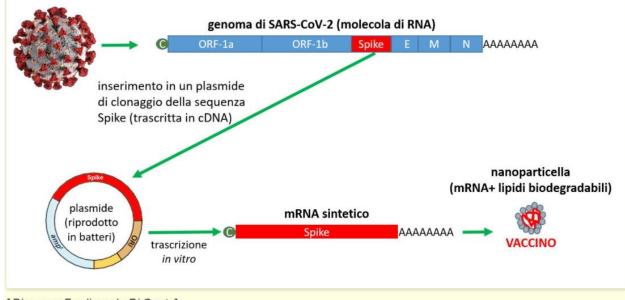



Figura 70.3 Produzione e trasduzione con vettore adenovirale.

Vaccini a DNA/vettore adenovirale per SARS-CoV-2

Questa tecnica si basa sulla possibilità di far produrre direttamente alle cellule dell'individuo da immunizzare la proteina S del SARS-CoV-2 contro la quale si vuol indurre una risposta immunitaria. Questo è possibile utilizzando un cDNA che codifica la proteina di interesse veicolata da un adenovirus difettivo.

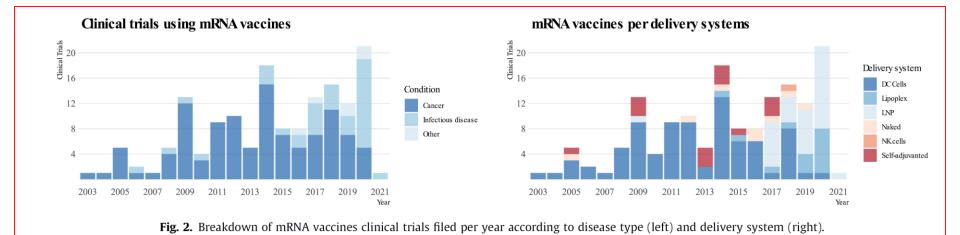


A cDNA encoding the S-protein of SARS_CoV-2 carried by a non-cytopathic or defective virus (viral vector) Sadoff J et al. DOI: 10.1056/NEJMoa2101544

Vaccini a RNA – SARS-CoV-2 RNA messaggero

Questa tecnica si basa sulla possibilità di far produrre direttamente alle cellule del soggetto vaccinato gli antigeni contro i quali si vuol indurre una risposta immunitaria.

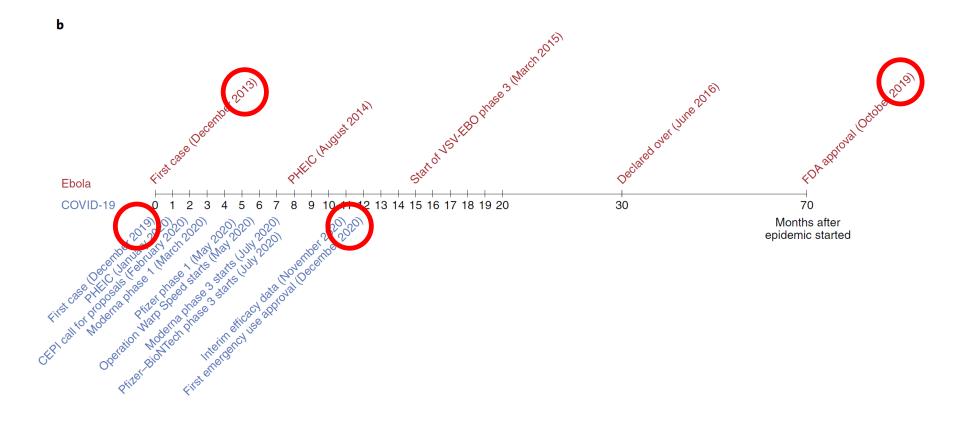
Questo è possibile utilizzando un RNA messaggero corrispondente alla proteina S di SARS-CoV-2 veicolata da un liposoma per far entrare l'RNA nella cellula.


[Disegno: Ferdinando Di Cunto]

I **liposomi** sono vescicole con un diametro fra i 25 nm e 1 μ m le cui pareti sono composte da colesterolo e lipidi e sono in grado di veicolare al loro *interno* diverse sostanze, ad esempio farmaci o vaccini.

I **virosomi** sono strutture assimilabili ai liposomi che contengono proteine presenti sulla superficie dei virus, sia incapsulate al loro interno sia al loro esterno.

a messenger RNA corresponding to the protein of interest carried by a virosome or liposome to let the RNA enter the cell. SARS-CoV-2: Frontiere della ricerca


S.S. Rosa, D.M.F. Prazeres, A.M. Azevedo et al.

Vaccine 39 (2021) 2190-2200

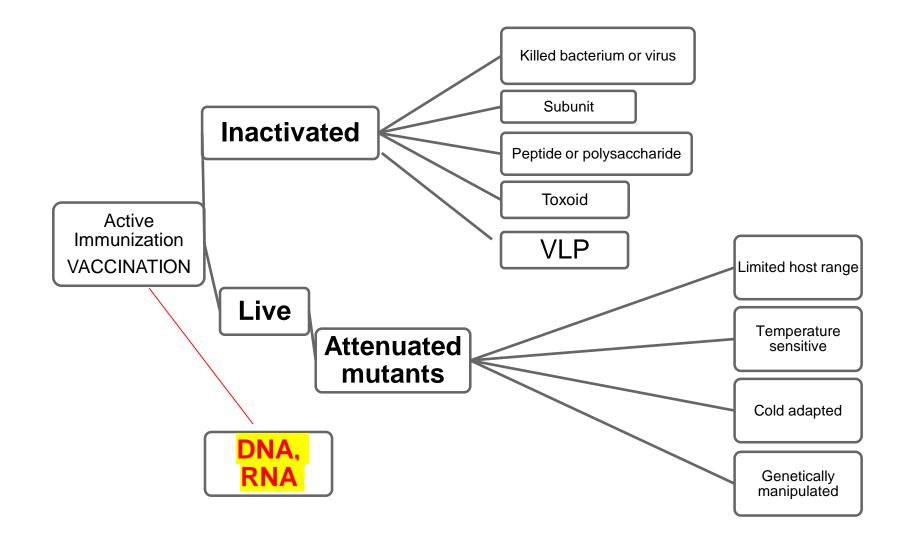
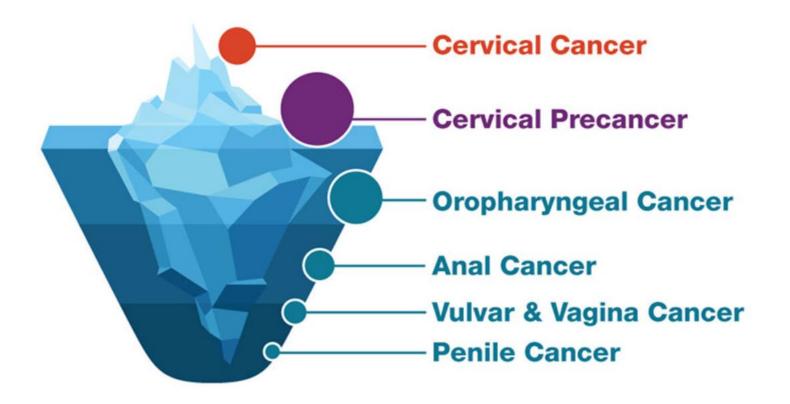

. 3		<i>′</i> ।	· ·
Institution	mRNA technology	Partners	Indication (disease target)
Argos Biotechnology	mRNA neoantigens (Arcelis platform)	NA	Individualized cancer vaccines, HIV-1
BioNTech RNA Pharmaceuticals	Nucleoside-modified mRNA	Genentech/Roche	Individualized cancer vaccines
GmbH	(IVAC Mutanome, FixVAC)	Bayer AG	Veterinary vaccines
CureVac AG	Sequence-optimized, purified mRNA (RNActive, RNArt, RNAdjuvant)	Boehringer Ingelheim GmbH	Cancer vaccines (lung cancer)
		Johnson & Johnson	Viralvaccines
		Sanofi Pasteur	Infectious disease vaccines
		BMGF	Infectious disease vaccines
		IAVI	HIV vaccines
eTheRNA Immunotherapies	Purified mRNA (TriMix)	NA	Cancer (melanoma, breast), viral vaccines (HBV and/or HPV)
GlaxoSmithKline/ Novartis	Self-amplifying mRNA (SAM) (alphavirus replicon)	NA	Infectious disease vaccines
Moderna Therapeutics	Nucleoside-modified mRNA	Merck & Co.	Individualized cancer vaccines, viral vaccines
		BMGF, DARPA, BARDA	Viral vaccines (influenza virus, CMV, HMPV, PIV, chikungunya virus, Zika virus)
University of Pennsylvania	Nucleoside-modified, purified mRNA	NA	Infectious disease vaccines


Table 4 | Leading mRNA vaccine developers: research focus, partners and therapeutic platforms

BARDA, Biomedical Advanced Research and Development Authority; BMGF, Bill & Melinda Gates Foundation; CMV, cytomegalovirus; DARPA, Defense Advanced Research Projects Agency; HBV, hepatitis B virus; HMPV, human metapneumovirus; HPV, human papillomavirus; IAVI, International AIDS Vaccine Initiative; NA, not available; PIV, parainfluenza virus.

NATURE MEDICINE | VOL 27 | APRIL 2021 | 591-600 |

Viral Vaccines


Virus	Vaccines Components	Who Should Receive Vaccinations
Polio, inactivated	Trivalent (Salk vaccine)	Children
Attenuated polio	Live (oral polio vaccine, Sabin vaccine)	Children
Measles	Attenuated	Children
Mumps	Attenuated	Children
Rubella	Attenuated	Children
Varicella-zoster	Attenuated	Children
Rotavirus	Human-bovine hybrids Attenuated	Infants
Human papilloma-virus	VLP	Girls aged 9-26 yr
Influenza	Inactivated Attenuated (nasal spray)	Children, adults, especially medical personnel, and the elderly 2-50 yr
Hepatitis B	Subunit (VLP)	Newborns, health care workers, high risk groups (e.g. sexually promiscuous, intravenous drug users)
Hepatitis A	Inactivated	Children, child care workers, travelers to endemic areas, Native Americans and Alaskans
Adenovirus	Attenuated	Military personnel
Yellow fever	Attenuated	Travelers at risk to exposure, military personnel
Rabies	Inactivated	Anyone exposed to virus Preexposure: veterinarians, animal handlers
Smallpox	Live vaccinia virus	Protection from bioterrorism, military
Japanese encephalitis	Inactivated	Travelers at risk to exposure

Advantages and Disadvantages of Live versus Inactivated Vaccines			
Property	Live	Inactivated, "Subunit", DNA, RNA	
Route of administration	Natural or injection	Injection	
Dose of virus, cost	Low	High	
Number of doses, amount	Single, low	Multiple, high	
Need for adjuvant	No	Yes	
Duration of immunity	Long-term	Short-term	
Antibody response	IgG, IgA	IgG	
Cell-mediated immune response	Good	Poor	
Potential lability	Yes	No	
Interference	Occasional	None	
Side effects	Occasional mild symptoms	Rare	
Reversion to virulence	Rarely	None	

Modified From Murray et al Medical Microbiology Elsevier 2016

HPV is a common virus that can lead to certain types of cancer later in life.

Getting your 11-12 year-old child two doses of the HPV vaccine can prevent these cancers.

CDC recommends HPV vaccination for children at ages 11 or 12 years to protect against HPV infections that can cause some cancers later in life. Vaccination can be started at age 9 and is recommended through age 26 years for those who did not get adequately vaccinated when they were younger.

Vaccine Composition 9-valent HPV vaccine (<u>Gardasil-9 [23 pages]</u>) is a non-infectious recombinant vaccine prepared from the purified virus-like particles (VLPs) of the major capsid (L1) protein of HPV types 6, 11, 16, 18, 31, 33, 45, 52, and 58.

All HPV vaccines have been found to have high efficacy (close to 100%) for prevention of HPV vaccine type-related persistent infection, cervical intraepithelial neoplasia (CIN) 2/3, and adenocarcinoma in situ (AIS) in clinical trials in analyses limited to persons without evidence of infection with the vaccine types at the time of vaccination.

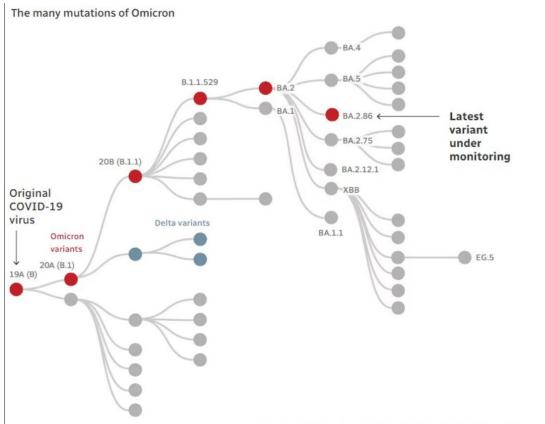
RSV, is a common respiratory virus that usually causes mild, cold-like symptoms. Most people recover in a week or two, but RSV can be serious. Infants and older adults are more likely to develop severe RSV and need hospitalization. Vaccines are available to protect older adults from severe RSV. Monoclonal antibody products are available to protect infants and young children from severe RSV.

CDC Recommendations Adults aged 60 years and older

•Adults aged 60 years and older may receive a single dose of RSV vaccine using shared clinical decision-making.

Infants and young children

To prevent severe RSV disease in infants, CDC recommends either maternal RSV vaccination or infant immunization with RSV monoclonal antibody is recommended. Most infants will not need both.


Vaccination for pregnant people

•1 dose of maternal RSV vaccine during weeks 32 through 36 of pregnancy, administered immediately before or during RSV season. Abrysvo is the only RSV vaccine recommended during pregnancy.

Immunization for infants and young children

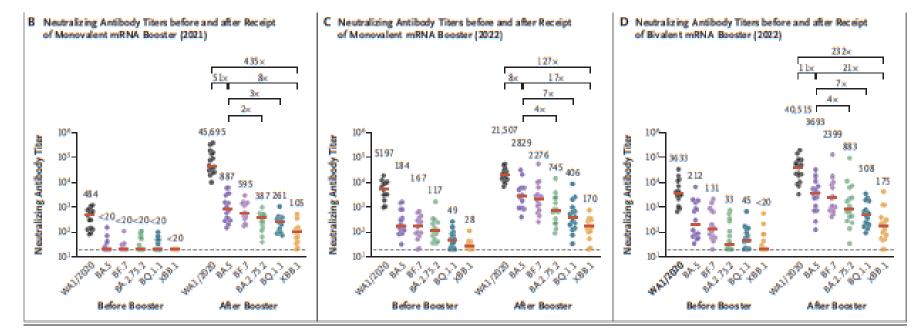
•1 dose of nirsevimab for all infants aged 8 months and younger born during or entering their first RSV season.

RSVpreF (Abrysvo, Pfizer) consists of a recombinant RSV F protein antigen (based on both the RSV-A and RSV-B subtypes), stabilized in the prefusion conformation (preF).

Sources: Centers for Disease Control and Prevention, Nextstrain (CBC)

BA.2.86 Variant- September 2023

BA.2.86 Variant hyper-mutated variant has shown up in many places now. To date, the BA.2.86 variant has been detected in Israel, Denmark (3 individuals), the UK, the US (2 individuals, one coming back from Japan), and South Africa (2 individuals). It has also been detected in wastewater in 1 region in Switzerland (2% level), along with wastewater detection in Ohio and in Thailand. It's safe say that BA.2.86's presence is widespread across the world at this point.


BA.2.86 has probably been circulating in a region of the world with poor viral surveillance and

has now been repeatedly exported to other places in the world

The lineage seems to be descended from an Omicron subvariant called BA.2, which caused large case spikes in early 2022. However, the BA.2.86 spike protein carries 34 changes relative to BA.2. Large numbers of spike mutations have been observed in people with long-term SARS-CoV-2 infections, and it is likely that BA.2.86 emerged from one such chronic infection

Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1 and XBB.1

Jessica Miller, NENGLJ MED 388;7 NEJM.ORG FEBRUARY 16, 2023

BQ.1.1 and XBB.1 variants escaped neutralizing antibodies substantially more effectively than the BA.5 variant by factors of 7 and 17, respectively, after monovalent mRNA boosting and by factors of 7 and 21, respectively, after bivalent mRNA boosting

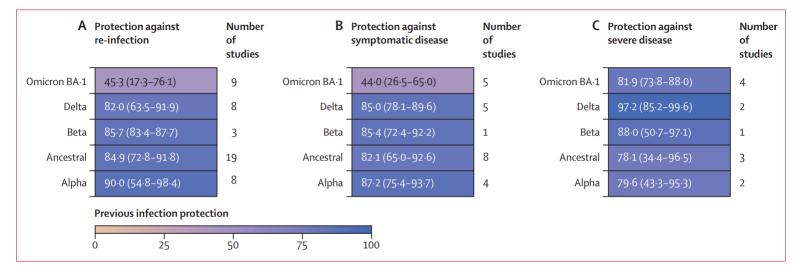
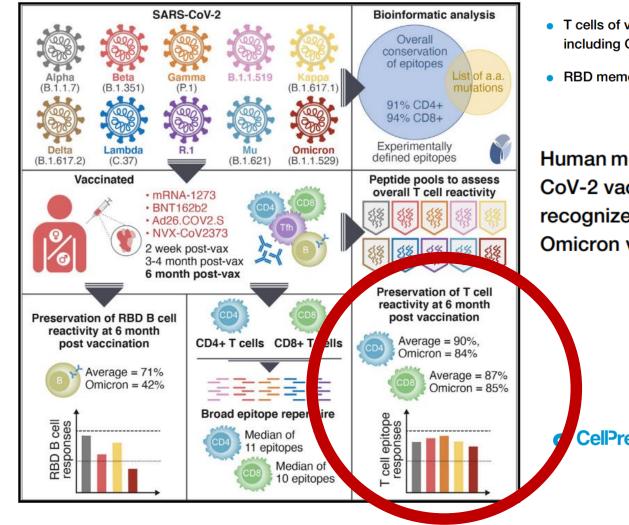



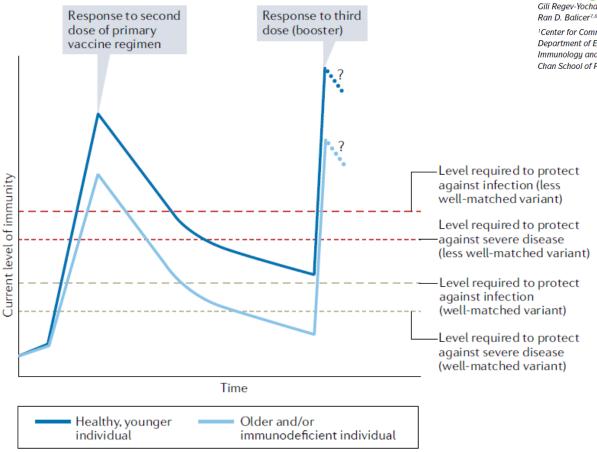
Figure 2: Pooled estimate of protection from past SARS-CoV-2 infection against re-infection, symptomatic disease, and severe disease by variant, and number of included studies in each meta-analysis estimate

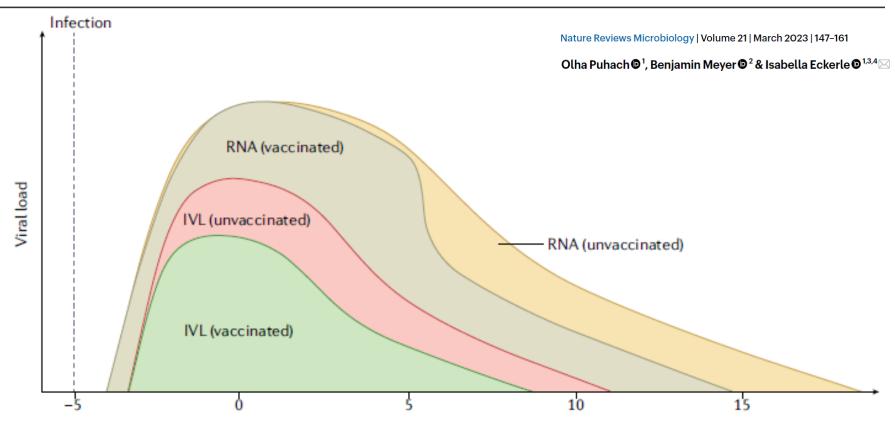
Data are pooled estimate (95% uncertainty interval). Estimates of protection against re-infection (A), symptomatic disease (B), and severe disease (C).

www.thelancet.com Vol 401 March 11, 2023

- T cells of vaccinees recognize SARS-CoV-2 variants, including Omicron
- RBD memory B cells' recognition of Omicron is reduced

Human memory T cells induced by SARS-CoV-2 vaccines maintain the ability to recognize viral variants, including the Omicron variant.


CellPress Ma


Tarke et al., 2022, Cell 185, 847–859 March 3, 2022 © 2022 Elsevier Inc. https://doi.org/10.1016/j.cell.2022.01.015

60 | JANUARY 2022 | VOLUME 22

Marc Lipsitch 1[©], Florian Krammer 1^{©,2,3}, Gili Regev-Yochay^{4,5}, Yaniv Lustig^{5,6} and Ran D. Balicer^{7,8}

¹Center for Communicable Disease Dynamics, Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Time since symptom onset (days)

Vaccination against infectious diseases: challenges

- Are broadly neutralizing antibodies an absolute necessity?
- We do not know how to generate long-lasting protective antibodies at mucosal surfaces
- There are multiple viral serotypes/genotypes and antigenic variation requires constant updating of vaccine formulations;
- For some infectious diseases, no validated immunological correlates of immunity (protective or pathological) do exist

The 'best' vaccine

Any effort to rank the vaccines must take into account their reported effectiveness, but also:

- their ability to fend off emerging viral variants
- the durability of the protection they offer
- the logistics of deploying them
- the supply and cost issues

Vaccines train your immune system to create antibodies, just as it does when it's exposed to a disease. However, because vaccines contain only killed or weakened forms of germs like viruses or bacteria, they do not cause the disease or put you at risk of its complications.

Vaccines protect against many different diseases, including:

- cervical cancer
- cholera
- COVID-19
- pneumoniapolio

rabies

rotavirus

tetanus

- diphtheria
- hepatitis B
- influenza
 - ... rubella
- Japanese encephalitis
- malaria
- measles
- typhoidvaricella
- Vo
 - yellow fever
- mumpspertussis

meningitis

Some other vaccines are currently being piloted, including those that protect against Ebola or malaria, but are not yet widely available globally.

Not all these vaccinations may be needed in your country. Some may only be given prior to travel, in areas of risk, or to people in high-risk occupations. Talk to your healthcare worker to find out what vaccinations are needed for you and your family.