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AVVERTENZE:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : �3 −→� di legge f(x1,x2,x3) = x1x3
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si verifichi che (0,0,0) è un punto critico di f e se ne determini la natura,
iii. si trovi il massimo assoluto della funzione f ristretta su K = {x2

1 + x2
2 + x2

3 ≤ 1}.

ESERCIZIO 2 (punti: 3+3+2). Data la forma differenziale

é = x1
x2

1 + x2
2

dx1 + x2
x2

1 + x2
2

dx2 + dx3 ∈ C1(A) con A = {x2
1 + x2

2 , 0} ⊆�
3

i. si provi che é è chiusa,
ii. si provi che é è esatta,
iii. si calcoli l’integrale di é lungo l’elica regolare di parametrizzazione (cos(t),sin(t),2t), con t ∈ [0,2á].

ESERCIZIO 3 (punti: 2+3+3). Dato Er,R = {r ≤ x2
1 + x2

2 + x2
3 ≤ R} ⊆�

3 (con 0 < r < R), e il campo vettoriale

F(x1,x2,x3) = (x1,x2,x3)
x2

1 + x2
2 + x2

3
x ,O

i. si spieghi perché Er,R è limitato e misurabile secondo Lebesgue,
ii. si calcoli il volume m3(Er,R),
iii. si calcoli il flusso, attraverso la superficie �Er,R, del campo vettoriale F.

ESERCIZIO 4 (punti: 2+2+2+2). Dato il problema di Cauchy w′(x) = x2

1 – w(x)
w(0) = 0

si risponda ai seguenti quesiti esattamente nell’ordine in cui sono proposti
i. si spieghi perché il problema possiede un’unica soluzione locale w,
ii. si calcoli il polinomio di Taylor, di grado 2 con centro x0 = 0, della soluzione w,
iii. si spieghi perché la soluzione è monotona,
iv. si ricavi l’espressione esplicita di w e il suo dominio massimale.
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ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : �3 −→� di legge f(x1,x2,x3) = x1x3
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si verifichi che (0,0,0) è un punto critico di f e se ne determini la natura,
iii. si trovi il massimo assoluto della funzione f ristretta su K = {x2

1 + x2
2 + x2

3 ≤ 1}.

SVOLGIMENTO. i. La funzione f ∈ C∞(�3), essendo un polinomio, in particolare possiede le seguenti derivate
parziali

�1f(x) = x3 �2f(x) = 0 �3f(x) = x1

che sono polinomi, quindi funzioni regolari I(in particolare continue) su tutto lo spazio, quindi il teorema del
differenziale totale ci permette di concludere che f è differenziabile in �

3.
ii. Poiché abbiamo osservato che

∇f(x1,x2,x3) = (x3,0,x1) per ogni x ∈�3

è immediato concludere che i punti critici di f, cioè le soluzioni del sistema ∇f(x) = O, sono tutti i punti del tipo
P(t) = (0, t,0), per ogni t ∈ �, cioè l’asse x2, quindi (0,0,0) è un punto critico. Poiché i punti critici non sono
isolati sicuramente la matrice hessiana sarà una matrice semidefinita, come si ottene con alcuni calcoli

Hf(x) =
(
�ijf(x)

)
i,j=1,2,3 =

 0 0 1
0 0 0
1 0 0

 per ogni x ∈�3

Il polinomio caratteristico della matrice è

p(s) = s3 – s = s(s – 1)(s + 1)

e poiché l’hessiana ha un autovalore positivo e uno negativo possiamo concludere che O è un punto di sella.
D’altronde è anche sufficiente notare che f(e–k,0,–e–k) < 0 < f(e–k,0,e–k) e che (e–k,0,±e–k) −→ (0,0,0) per
poter concludere che O è un punto di sella.
iii. Tutti i punti critici liberi della funzione sono punti di sella, per quanto osservato in ii., quindi il massimo
assoluto che stiamo cercando deve essere assunto su �K, visto che il teorema di Weierstrass (si noti che f è
regolare e K = B(O, 1) compatto) ne garantisce l’esistenza. Per individuare i punti di massimo assoluto utilizziamo
i moltiplicatori di Lagrange, quindi studiamo

L(x1,x2,x3,c) = x1x3 + c
(
x2

1 + x2
2 + x2

3 – 1
)

(x1,x2,x3,c) ∈�4

Cercando i punti stazionari di L otteniamo il sistema

∇L(x,c) =
(
x3 + 2cx1,2cx2,x1 + 2cx3,x2

1 + x2
2 + x2

3 – 1
)

= (0,0,0,0)

Dalla seconda equazione abbiamo che o c = 0 o x2 = 0.
Nel primo caso segue subito che x1 = x3 = 0 e, dall’equazione di�K, che x2 = ±1, questi punti non possono essere
di massimo assoluto visto che f(0,±1,0) = 0. Se x2 = 0 abbiamo il seguente sistema per le rimanenti variabili


x3 + 2cx1 = 0
x1 + 2cx3 = 0
x2

1 + x2
3 = 1

da cui


x3 = –2cx1
x1(1 – 4c2) = 0
x2

1 (1 + 4c2) = 1
cioè


x1(1 – 4c2) = 0
x1 = ± 1

[1 + 4c2]1/2

x3 = ∓ 2c
[1 + 4c2]1/2

La seconda equazioni implica che x1 , 0, quindi la prima equazione produce che c = ±1/2, da cui ricaviamo i
seguenti quattro punti critici vincolati

A(1/
√

2,0, 1/
√

2) B(1/
√

2,0,–1/
√

2) C(–1/
√

2,0, 1/
√

2) D(–1/
√

2,0,–1/
√

2)

osservando che f(A) = f(D) = 1/2 e che f(B) = f(C) = –1/2 possiamo affermare che maxK(f) = 1/2. □

ESERCIZIO 2 (punti: 3+3+2). Data la forma differenziale

é = x1
x2

1 + x2
2

dx1 + x2
x2

1 + x2
2

dx2 + dx3 ∈ C1(A) con A = {x2
1 + x2

2 , 0} ⊆�
3
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i. si provi che é è chiusa,
ii. si provi che é è esatta,
iii. si calcoli l’integrale di é lungo l’elica regolare di parametrizzazione (cos(t),sin(t),2t), con t ∈ [0,2á].

SVOLGIMENTO. i. La chiusura della forma differenziale è equivalente ad affermare che il campo vettoriale

G(x) = (G1(x),G2(x),G3(x)) =
 x1

x2
1 + x2

2
,

x2
x2

1 + x2
2
, 1


è irrotazionale in A. In ogni caso poiché valgono le seguenti identità

�2G1(x) = �1G2(x) = – 2x1x2
(x2

1 + x2
2)2

�3G1(x) = �1G3(x) = 0 �3G2(x) = �2G3(x) = 0

segue che é è chiusa.
ii. Notamo subito che A è connesso, ma non è semplicemente connesso, essendo lo spazio tridimensionale
privato di una retta (l’asse x3), quindi non è possibile ricorrere al teorema di Poincaré, però possiamo scrivere
che ∫

G1(x)dx1 =
∫

x1
x2

1 + x2
2

dx1 = 1
2 ln

(
x2

1 + x2
2
)

+ c(x2,x3)∫
G2(x)dx2 =

∫
x2

x2
1 + x2

2
dx1 = 1

2 ln
(
x2

1 + x2
2
)

+ c(x1,x3)∫
G3(x)dx3 =

∫
dx3 = x3 + c(x1,x2)

da cui otteniamo le primitive

U(x1,x2,x3) = 1
2 ln

(
x2

1 + x2
2
)

+ x3 + c c ∈�

che mostrano che é è esatta.
iii. Il calcolo dell’integrale richiesto è molto rapido visto che vale∫

Õ
é = U(cos(2á),sin(2á),4á) – U(cos(0),sin(0),0) = 4á

in alternativa è possibile risolvere direttamente l’integrale∫
Õ
é =

∫ 2á

0

 3¼
i=1

Gi(æ(t))æ′i (t)
dt

=
∫ 2á

0

[
cos(t)

cos2(t) + sin2(t)
· (–sin(t)) + sin(t)

cos2(t) + sin2(t)
· (cos(t)) + 2

]
dt = 4á

dove abbiamo indicato con Õ il sostegno dell’elica e con æ la parametrizzazione della curva. □

ESERCIZIO 3 (punti: 2+3+3). Dato Er,R = {r ≤ x2
1 + x2

2 + x2
3 ≤ R} ⊆�

3 (con 0 < r < R), e il campo vettoriale

F(x1,x2,x3) = (x1,x2,x3)
x2

1 + x2
2 + x2

3
x ,O

i. si spieghi perché Er,R è limitato e misurabile secondo Lebesgue,
ii. si calcoli il volume m3(Er,R),
iii. si calcoli il flusso, attraverso la superficie �Er,R, del campo vettoriale F.

SVOLGIMENTO. i. Osserviamo che

Er,R = {r ≤ x2
1 + x2

2 + x2
3 ≤ R} = B

(
O,
√

R
)
\B

(
O,
√

r
)

quindi Er,R ⊆ B
(
O,
√

R + 1
)
, il che mostra che l’insieme è limitato, inoltre l’insieme è anche chiuso e, di conse-

guenza, misurabile secondo Lebesgue perché compatto.
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ii. La precedente osservazione e il fatto che vale m(E \ F) = m(E) – m(F), se F ⊆ E sono due insiemi misurabili
secondo Lebesgue, ci permette di scrivere che

m3
(
Er,R

)
= m3

(
B
(
O,
√

R
))

– m3
(
B
(
O,
√

r
))

= 4
3á

(
R3/2 – r3/2)

dove abbiamo utilizzato la nota espressione del volume della palla tridimensionale. Chiaramente è anche
possibile eseguire il calcolo per integrazione nel seguente modo

m3
(
Er,R

)
=
∫

Er,R

dx =
∫ á

0

∫ 2á

0

∫ √R

√
r

â2 sin(æ)dâdÚdæ =
∫ √R

√
r

â2dâ
∫ 2á

0
dÚ

∫ á

0
sin(æ)dæ

=
[

1
3â

3
]√R

√
r

[
Ú
]2á
0

[
– cos(æ)

]á
0

= 4
3á

[
R3/2 – r3/2]

passando dalle variabili euclidee alle coordinate sferiche, infatti il termine â2 sin(æ) è il valore assoluto del
determinante della matrice jacobiana del cambio di variabili.
iii. Come scritto in i., l’insieme Er,R è una corona sferica, questo significa che il suo bordo è una superficie regolare
(a tratti) composta di due sfere disgiunte e concentriche, e poiché l’insieme ha chiusura contenuta nell’aperto
A = {x , O} e F ∈ C1(A,�3), possiamo applicare il teorema della divergenza per il calcolo del flusso. Quindi
abbiamo che

Ð�Er,R (F) =
∫
�Er,R

F(x) ·n(x)dã =
∫

Er,R

∇ · F(x)dx =
∫

Er,R

1
x2

1 + x2
2 + x2

3
dx1dx2dx3

=
∫ á

0

∫ 2á

0

∫ √R

√
r

1
â2 â

2 sin(æ)dâdÚdæ = 4á
[
R1/2 – r1/2]

sfruttando, come in ii., le coordinate sferiche, in quanto vale

∇ · F(x) = �1

 x1
x2

1 + x2
2 + x2

3

 +�2

 x2
x2

1 + x2
2 + x2

3

 +�3

 x3
x2

1 + x2
2 + x2

3


=

x2
2 + x2

3 – x2
1(

x2
1 + x2

2 + x2
3
)2 +

x2
1 + x2

3 – x2
2(

x2
1 + x2

2 + x2
3
)2 +

x2
1 + x2

2 – x2
3(

x2
1 + x2

2 + x2
3
)2 = 1

x2
1 + x2

2 + x2
3

□

ESERCIZIO 4 (punti: 2+2+2+2). Dato il problema di Cauchy w′(x) = x2

1 – w(x)
w(0) = 0

si risponda ai seguenti quesiti esattamente nell’ordine in cui sono proposti
i. si spieghi perché il problema possiede un’unica soluzione locale w,
ii. si calcoli il polinomio di Taylor, di grado 2 con centro x0 = 0, della soluzione w,
iii. si spieghi perché la soluzione è monotona,
iv. si ricavi l’espressione esplicita di w e il suo dominio massimale.

SVOLGIMENTO. i. il problema di Cauchy che stiamo studiando coinvolge un’equazione del primo ordine in
forma normale con f(x,s) = x2/(1 – s), notiamo subito che f ∈ C∞(A) ⊆ C1(A) con A = {s , 1} ⊆ �

2, quindi la
funzione f è continua nell’aperto A e localmente lipschitziana nella seconda variabile, visto che ha derivate
continue, in ultimo (0,0) ∈ A. L’osservazione appena fatta ci permette di affermare che il teorema di Picard e
Lindelöff si applica e prova l’esistenza e l’unicità della soluzione del sistema.
ii. Ricordiamo l’espressione del polinomio di Taylor di ordine 2 centrato nel punto x0

T2,w(x,x0) = w(x0) + w′(x0)(x – x0) + 1
2 w′′(x0)(x – x0)2

Dalla precedente formula deduciamo la necessità di calcolare i valori di w(0), w′(0) e w′′(0) per rispondere alla
rchiesta del testo, d’altronde il problema di Cauchy contiene le seguenti informazioni

w(0) = 0 w′(0) = 02

1 – w(0) = 0
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e deriviamo l’equazione per ricavare il valore della derivata seconda in x0 = 0

w′′(x) = 2x(1 – w(x)) – x2(–w′(x))
(1 – w(x))2 da cui w′′(0) = 0

quindi il polinomio desiderato ha la seguente espressione T2,w(x,x0) = 0.
iii. Notiamo che la funzione f non è definita per il suo secondo argomento s = 1, questo implica che il grafico
delle soluzioni dell’equazione differenziale deve appartenere solo ad una delle due componenti connesse in
cui A è diviso, cioè A = A–∪̇A+, dove vale A± = {s ≷ 1} ⊆ �

2. In particolare questo significa che w(x) < 1 per ogni
x ∈ dom(w), quindi otteniamo che

w′(x) = x2

1 – w(x) ≥ 0 per ogni x ∈ dom(w)

il che significa che la soluzione è monotona non decrescente.
iv. Per ricavare l’espressione della legge di w seguiamo la strategia risolutiva delle equazioni differenziali a
variabili separabili, quindi (spostata l’incognita w a primo membro) abbiamo che

(1 – w(x))w′(x) = x2 e passando alle primitive w(x) – 1
2 w2(x) = 1

3 x3 + C = 1
3 x3

dove, ponendo x = 0, si ricava che C = 0. La relazione ottenuta può essere riscritta come segue

w2(x) – 2w(x) + 2
3 x3 = 0 da cui w1,2(x) = 1∓

√
1 – 2

3 x3

si noti che la formula risolutiva del’equazione di secondo grado contiene le espressioni delle due funzioni che
si ottengono restringendo opportunamente la funzione quadratica che coinvolge w in modo da poter scrivere
la funzione inversa. Abbiamo osservato che la nostra soluzione produce risposte in A–, quindi la soluzione che
stiamo cercando è

w(x) = 1 –
√

1 – 2
3 x3

il segno + fornisce la soluzione del problema di Cauchy relativo al dato iniziale w(0) = 2, il cui grafico è contenuto
in A+. □


