Nome, cognome e matricola: _

1. (MC) - Si consideri $\delta = 0.3$, $\omega \sim \text{Beta}(2,3)$ e $W_{\delta}(\omega) = 2 \cdot |\delta - \omega|$. Calcolare con MC il valore del criterio della soglia critica, assumendo $\lambda = 0.25$. [Suggerimento: $K_{sc} = \mathbb{P}[W_{\delta}(\omega) > \lambda]$]

Risultato:

Codice

2. (MC) - Modello Gamma(3, rate = 4). Calcolare con MC il valore atteso frequentista della statistica $m(\mathbf{Z}_n) = \frac{1}{n} \sum_{i=1}^n \ln(X_i)$, assumendo n = 20.

Risultato:

3. (MC) - Si consideri $X_i, \ldots, X_n | \theta \sim \operatorname{Ber}(\theta)$ i.i.d. e una distribuzione a priori Beta(4,6) per Θ . Supporre inoltre che n=20 e che la somma delle osservazioni sia pari a 10. Calcolare il valore atteso a posteriori $\mathbb{E}\left[-\Theta \cdot \ln(\Theta) - (1-\Theta) \cdot \ln(1-\Theta) | z_n\right]$ utilizzando il metodo Monte Carlo.

Risultato:

Codice

4. (MC) - $X_1, \ldots, X_n | \theta \sim \text{EN}(1/\theta), n = 10$. Assumendo $\theta = 5$, calcolare con MC la probabilità di copertura frequentista dell'intervallo

$$I_{\gamma} = \left[\frac{\overline{X}_n}{1.42}, \frac{\overline{X}_n}{0.62} \right]$$

Risultato:

5.	(MC) -	Con	riferimento	all'	Esercizio	4,	calcolare con	Monte	Carlo	la	lunghezza	attesa	dell'	interval lo	I_{γ}
precedentemente definito e confrontarla con la lunghezza attesa dell' intervallo															

$$\tilde{I}_{\gamma} = \left[\overline{X}_n \pm 1.28 \frac{\overline{X}_n}{\sqrt{n}} \right]$$

Risultato:

Codice

6. (Analitico + MC) - $X_1, \ldots, X_n | \theta \sim \operatorname{Pois}(\theta)$. Sia $d(\mathbf{Z}_n) = \overline{X}_n$. Sapendo che $d(\mathbf{Z}_n)$ è non distorto per θ , calcolare analiticamente $R(\theta, d)$ con perdita quadratica. Calcolare poi con MC il valore del rischio di Bayes $r_{\pi}(d) = \mathbb{E}_{\pi}[R(\Theta, d)]$ assumendo n = 8 e, come distribuzione a priori per Θ , una densità Gamma(7, rate = 5). [Suggerimento: usare MC per il valore atteso rispetto alla distribuzione a priori.]

Risultato:

7. (MC) - $X_i | \theta \sim N(4, \theta)$, i.i.d. - Calcolare con MC la probabilità che la statistica campionaria A_n sia minore di k = 40, dove $A_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^4$, ovvero $\mathbb{P}_{\theta}[A_n < k]$, supponendo che $\theta = 4$ e n = 25.

Risultato:

Codice

- 8. (MC) $X_1, \ldots, X_n | \theta \sim \text{EN}(\theta)$, n = 30. Si consideri un sistema di ipotesi del tipo $H_0: \theta = 3$ vs $H_1: \theta > 3$ con regione di rifiuto $R = \{z_n \in \mathcal{Z}: \sum_{i=1}^n X_i < k\}$, k = 7.2. Stimare con Monte Carlo:
 - a)la probabilità di errore di primo tipo α
 - b) il valore della funzione di potenza $\eta(\theta)$ in $\theta = 4$.

 $\alpha =$ $\eta(\theta = 4) =$

9. ESERCIZIO FACOLTATIVO. Con riferimento al Punto 4, considerare il generico intervallo

$$\tilde{I}_{\gamma} = \left[\overline{X}_n \pm z_{1-\gamma/2} \frac{\overline{X}_n}{\sqrt{n}} \right]$$

in cui $z_{1-\gamma/2}$ indica il quantile a livello $1-\frac{\gamma}{2}$ della N(0,1). Scrivere una funzione optimal = function(n) che calcoli la copertura media dell' intervallo al variare di n, assumendo $\gamma=0.05,\ M=10^4$ simulazioni di Monte Carlo e ponendo il seed pari a 123 all' interno della funzione stessa. Determinare, tramite la funzione precedentemente scritta, n^* pari al più piccolo n tale che la copertura media stimata sia > 0.85.

 n^{\star}