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5 ANALISI VETTORIALE

In questo capitolo presentiamo i risultati che, tradizionalmente, costituiscono i principali risultati che vanno sotto il nome di analisi vettoriale. La trattazione
è decisamente lacunosa, rispetto ad un testo tradizionale e per la difficoltà dei concetti da affrontare e per alcune idee ostiche che compaiono in alcune
dimostrazioni. Per una presentazione più organica e completa rimandiamo ai molti e ottimi testi citati in bibliografia, in ogni caso desideriamo evidenziare la
presenza (alla fine del capitolo) di alcuni risultati interessanti che, usualmente, non sono inclusi in un libro di analisi matematica, ma che possono arricchire ed
essere utili.

5.1 Analisi vettoriale nel piano

TEOREMA 5.1 (FORMULE DI GAUSS-GREEN (G. GREEN)) SiaD⊆ � 2 un dominio con frontiera regolare a tratti e A,B due funzioni di classe C1 (A), con A⊆ � 2

aperto contenenteD, allora vale

(5.1)
Z

D
∂1B(x1,x2)dx1dx2 =

Z

∂+D
B(x1,x2)dx2

Z

D
∂2A(x1,x2)dx1dx2 = –

Z

∂+D
A(x1,x2)dx1

Dimostrazione. Dimostriamo il teorema supponendo che sia possibile descrivere il dominio nei seguenti due modi, cioè che esistano quattro funzioni
continue e di classe C1 a tratti tali che

D = {(x1,x2) : x1 ∈ (a,b),c(x1)< x2 < d(x1)} = {(x1,x2) : a(x2)< x1 < b(x2),x2 ∈ (c,d)}⊆ � 2

Per dimostrare la tesi verificheremo direttamente l’uguaglianza degli integrali che compaiono in (5.1). Cominciamo dal primo integrale in due dimensioni. Grazie
alle proprietà del dominio D e alle formule di riduzione degli integrali possiamo scrivere che

Z

D
∂1B(x1,x2)dx1dx2 =

Z d

c



Z b(x2)

a(x2)
∂1B(x1,x2)dx1


dx2 =

Z d

c

�B(b(x2),x2) – B(a(x2),x2)
�dx2

e, analogamente, vale
Z

D
∂2A(x1,x2)dx1dx2 =

Z b

a



Z d(x1)

c(x1)
∂2A(x1,x2)dx2


dx1 =

Z b

a
[A(x1,d(x1)) – A(x1,c(x1))]dx1

L’integrale di linea richiede un po’ di lavoro in più, infatti dobbiamo scrivere una parametrizzazione, regolare a tratti e correttamente orientata, del bordo. Per
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quanto abbiamo ipotizzato su D possiamo affermare che ∂+D = ∪4i=1γi = ∪4i=1ηi dove gli archi regolari sono descritti dalle seguenti parametrizzazioni

γ1 = {φ1(t) = (t,c(t)) : t ∈ [a,b]} φ′1(t) = (1,c
′(t))

γ2 = {(b, t) : t ∈ [c(b),d(b)]} φ′2(t) = (0, 1)
γ3 = {φ3(t) = (–t,d(–t)) : t ∈ [–b,–a]} φ′3(t) = (–1,–d

′(–t))
γ4 = {φ4(t) = (a,–t) : t ∈ [–d(a),–c(a)]} φ′4(t) = (0,–1)
η1 = {ψ1(t) = (t,c) : t ∈ [a(c),b(c)]} ψ′1(t) = (1,0)
η2 = {ψ2(t) = (b(t), t) : t ∈ [c,d]} ψ′2(t) = (b

′(t), 1)
η3 = {ψ3(t) = (–t,d) : t ∈ [–b(d),–a(d)]} ψ′3(t) = (–1,0)
η4 = {ψ4(t) = (a(–t),–t) : t ∈ [–d,–c]} ψ′4(t) = (–a

′(–t),–1)

Ricordando la definizione di integrale di linea di una forma differenziale abbiamo che
Z

∂+D
A(x1,x2)dx1 =

¼

i

Z

γi

A(x1,x2)dx1 =
Z b

a
A(t,c(t))dt –

Z –a

–b
A(–t,d(–t))dt =

Z b

a
A(t,c(t))dt +

Z a

b
A(s,d(s))ds =

Z b

a
[A(t,c(t)) – A(t,d(t))]dt

Z

∂+D
B(x1,x2)dx2 =

4¼

i=1

Z

ηi

B(x1,x2)dx2 =
Z d

c
B(b(t), t)dt –

Z –c

–d
B(a(–t),–t)dt =

Z d

c
B(b(t), t)dt +

Z c

d
B(a(t), t)dt =

Z d

c
[B(b(t), t) – B(a(t), t)]dt

le ultime relazioni scritte completano la dimostrazione delle formule (5.1).

TEOREMA 5.2 (DEL ROTORE (G.G. STOKES)) Sia D ⊆ � 2 un dominio aperto con frontiera regolare a tratti e F ∈ C1(A,� 2) un campo vettoriale definito su un
aperto A contenenteD, allora vale

Z

D
[rot(F)]3 dx1dx2 =

Z

∂+D
[F · T](x1,x2)ds

Dimostrazione. Come noto vale

rot(F) = ∂2F3 – ∂3F2,∂3F1 – ∂1F3,∂1F2 – ∂2F1
� = 0,0,∂1F2 – ∂2F1

�

quindi la terza componente del vettore rotore è [rot(F)]3 = ∂1F2 – ∂2F1. Grazie alle formule (5.1) (pensando B = F2 e A = F1) possiamo scrivere
Z

D
[rot(F)]3 dx1dx2 =

Z

D
(∂1F2 – ∂2F1)dx1dx2 =

Z

∂+D
F1dx1 + F2dx2 =

Z

∂+D
[F · T](x1,x2)ds

e l’ultima uguaglianza segue dalla definizione di integrale di linea, quindi l’affermazione è provata.
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TEOREMA 5.3 (DELLA DIVERGENZA (J.C.F. GAUSS)) SiaD⊆ � 2 un dominio aperto con frontiera regolare a tratti e F ∈ C1(A,� 2) un campo vettoriale definito
su un aperto A contenenteD, allora

(5.2)
Z

D
div(F) (x1,x2)dx1dx2 =

Z

∂+D
[F ·n](x1,x2)ds

Dimostrazione. Anche il teorema della divergenza segue dalle formule di Gauss-Green, infatti ponendo (B,A) = F le (5.1) sommate ci permettono di scrivere
Z

D
div[F] (x1,x2)dx1dx2

Z

D
[∇ · F] (x1,x2)dx1dx2 =

Z

D
(∂1F1+∂2F2)dx1dx2 =

Z

∂+D
F1dx2–F2dx1 =

Z

∂+D
(–F2,F1)·(T1,T2)ds =

Z

∂+D
(F1,F2)·(–T2,T1)ds =

Z

∂+D
F·nds

visto che la normale uscente da D, cioè il vettore n, può essere ottenuto dal vettore T, il versore tangente alla frontiera ∂D percorsa in senso antiorario, tramite
una rotazione di π/2 in senso orario.

Dimostrazione. Includiamo a questo punto della discussione una dimostrazione alternativa del teorema della divergenza nel piano. Per raggiungere lo scopo
considereremo un dominio particolarmente semplice descritto dal seguente disegno.

γ2

γ1

γ3

γ4

D⊆ � 2?

-

6

	

?

� -

B
BM

Mettiamo qualche puntino sulle i: innanzitutto supponiamo che la frontiera del dominio D⊆ � 2 sia una curva chiusa semplice, unione di quattro curve di classe
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C1 aventi le seguenti parametrizzazioni:

γ1 = {(a,–t), t ∈ [–d(a),–c]}
γ2 = {(t,c), t ∈ [a,b]}
γ3 = {(b, t), t ∈ [c,d(c)]}
γ4 = {(–t,d(–t)), t ∈ [–b,–a]}

con d ∈ C1[a,b] funzione strettamente crescente tale che d(x1)≥ c.
Osserviamo subito che D è un dominio normale rispetto ad entrambe le variabili e che possiede un solo ”lato” non rettilineo: γ4. Le varie frecce rappresentate
nel disegno indicano i versori normali esterni al dominio su γi, i = 1, ...,4, e il verso antiorario di percorrenza del bordo ∂D, come espresso anche dalle para-
metrizzazioni dei singoli cammini. Entriamo nel vivo della seconda dimostrazione ricordando la definizione di alcuni oggetti che useremo. Scrivendo il campo
vettoriale per esteso F(x1,x2) =

F1(x1,x2),F2(x1,x2)
� possiamo scrivere la sua divergenza per esteso nel seguente modo

divF(x1,x2)
� = ∇ · F(x1,x2)

� = ∂1F1(x1,x2) + ∂2F2(x1,x2)

Inoltre possiamo scrivere i versori ni (i = 1, ...,4), le normali uscenti dal dominio sui tratti che compongono la frontiera ∂D. Dal disegno segue immediatamente
che

n1 = (–1,0) n2 = (0,–1) n3 = (1,0)

Il calcolo di n4 è leggermente più elaborato, poiché γ4 = {(–t,d(–t)) , t ∈ [–b,–a]}, sappiamo calcolare facilmente il versore tangente alla curva che si scrive nel
seguente modo

T4 =

�
–1,–d′(–t)

�

p
1 + |d′(–t)|2

a questo punto si ottiene il versore normale alla curva semplicemente scambiando le componenti e cambiandone di segno una nel seguente modo

n4 =

�
–d′(–t), 1

�

�
1 + |d′(–t)|2

�1/2

ci si può convincere che sia la scelta giusta provando a ragionare sulla figura precedente o scrivendo la matrice relativa alla rotazione di π/2 in senso orario.
A questo punto possiamo cominciare a scrivere per esteso gli integrali coinvolti in (5.2). Usando il fatto che D è un dominio normale rispetto ad entrambe le
direzioni degli assi coordinati e le proprietà di additività dell’integrale possiamo scrivere

Z

D
∇ · F(x1,x2)dx1dx2 =

Z

D
(∂1F1(x1,x2) + ∂2F2(x1,x2))dx1dx2 =

Z

D
∂1F1(x1,x2)dx1dx2 +

Z

D
∂2F2(x1,x2)dx2dx1

=
Z b

a



Z d(x1)

c
∂2F2(x1,x2)dy


dx1 +

Z d(a)

c



Z b

a
∂1F1(x1,x2)dx1


dx2 +

Z d(b)

d(a)



Z b

d–1(x2)
∂1F1(x1,x2)dx1


dx2
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Si noti, nell’ultimo passaggio, l’uso della funzione d–1, l’inversa di d, per scrivere l’integrale di ∂1F1 integrando prima in x1 e poi in x2.
Ricordando il teorema fondamentale del calcolo integrale, le proprietà di additività e usando la sostituzione y = d(x) nell’ultimo termine, otteniamo le seguenti
relazioni

Z

D
divF(x1,x2)

�dx1dx2 =
Z b

a

F2(x1,d(x1)) – F2(x1,c)
�dx1 +

Z d(a)

c

F1(b,x2) – F1(a,x2)
�dx2 +

Z d(b)

d(a)

Z b

d–1(x2)
∂1F1(x1,x2)dx1dx2

=
Z b

a
–F2(x1,c)dx1 +

Z d(a)

c
F1(b,x2)dx2 +

Z d(a)

c
–F1(a,x2)dx2 +

Z b

a
F2(x1,d(x1))dx1 +

Z d(b)

d(a)

�
F1
b,x2

� – F1
�
d–1(x2),x2

��
dx2

=
Z b

a
–F2(x1,c)dx1 +

Z d(b)

c
F1(b,x2)dx2 +

Z d(a)

c
–F1(a,x2)dx2 +

Z b

a

�
F2(x1,d(x1)) – F1 (x1,d(x1))d′(x1)

�
dx1

A questo punto procediamo con l’integrale curvilineo. Ricordando la definizione di integrale di linea e che ∂D è unione di 4 curve regolari, possiamo scrivere le
seguenti uguaglianze.

Z

∂D

F(x1,x2) ·n
�ds =

Z –c

–d(a)
–F1(a,–t)dt +

Z b

a
–F2(t,c)dt +

Z d(b)

c
F1(b, t)dt +

Z –a

–b

–F1(–t,d(–t))d′(–t) + F2(–t,d(–t))�
1 + |d′(–t)|2

�1/2
�
1 + |d′(–t)|2

�1/2 dt

=
Z d(a)

c
–F1(a,s)ds +

Z b

a
–F2(t,c)dt +

Z d(b)

c
F1(b, t)dt +

Z b

a

�
F2(s,d(s)) – F1(s,d(s))d′(s)

�
ds

dove abbiamo usato anche il cambio di variabile s = –t in alcuni degli integrali di linea (si ricordi che gli integrali di linea che non coinvolgono il versore tangente
non cambiano di segno cambiando parametrizzazione). Dal confronto delle uguaglianze ottenute segue la tesi.

OSSERVAZIONE 5.4 Dopo aver provato il teorema (per ben due volte!) possiamo fare alcune semplici osservazioni. Il caso di un triangolo è un caso particolare
dell’enunciato provato, basta considerare la funzione d affine con d(a) = c. Si noti che nella dimostrazione abbiamo fatto uso dell’invertibilità di d: se d non
è strettamente crescente (o decrescente) è possibile ugualmente usare la dimostrazione precedente spezzando il dominio in maniera opportuna, come nel
disegno che segue.

D1 D2 D3

In generale vogliamo ricondurci, in qualche modo, al caso trattato nel teorema 5.3 e per farlo procediamo nel seguente modo. Consideriamo tutti i punti
{pi}i=1,...,n della frontiera di D che delimitano i vari tratti di classe C1 e tracciamo le rette parallele agli assi coordinati passanti per ognuno dei punto pi. In questo
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modo abbbiamo tracciato un reticolo irregolare sul nostro dominio, e D resta suddiviso in rettangoli interni e sottodomini con tratti curvilinei. Osserviamo che
il teorema della divergenza vale su tutti questi nuovi sottodomini ottenuti, nel caso siano dei rettangoli o dei domini come quelli considerati nei precedenti
disegni (si veda la proposizione 5.3). Poiché l’integrale della divergenza è la somma degli integrali sui sottodomini (per l’additività dell’integrale), mentre nei vari
integrali curvilinei di flusso si elidono tutti i contributi ”interni”, la tesi è provata, almeno per tutti i domini del piano per cui si sappia fare la divisione descritta
sopra.

A questo punto abbiamo gli strumenti necessari per generalizzare il teorema di Poincaré agli aperti semplicemente connessi del piano.

TEOREMA 5.5 Sia F un campo vettoriale di classeC1(A,� 2) definito in un apertoA semplicemente connesso. Allora F è conservativo se e solo se è irrotazionale
in A.

Dimostrazione. La condizione necessaria segue dal teorema 4.10. Occorre provare la condizione sufficiente che è equivalente a provare che, per ogni curva
regolare a tratti, chiusa e semplice γ, risulta

Z

γ
F · Tds = 0

e applicare il teorema4.8 che caratterizza i campi conservativi. Fissata γ, sia D⊂ A il dominio limitato che ha γ come frontiera. Tale dominio esiste perché A ”non
ha buchi”. L’esistenza di D può essere dimostrata rigorosamente e questo risultato prende il nome di teorema di Jordan. Supponiamo che γ abbia orientamento
antiorario. Dal teorema di Stokes

Z

γ
F · Tds =

Z

∂+D
F · Tds =

Z

D
[rot(F)]3 dx1dx2 = 0

e l’ultimo integrale vale zero perchè F è irrotazionale.
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5.2 Analisi vettoriale nello spazio

Adesso possiamo enunciare il teorema della divergenza nella sua versione più generale.

TEOREMA 5.6 (DELLA DIVERGENZA (DIM.V.OSTROGRADSKIJ E J.C.F. GAUSS)) SiaD⊆ � n unaperto limitato con frontiera di classeC1 a tratti e siaFun campo
vettoriale di classe C1 A;� n� con A un aperto contenente la chiusura diD, allora vale

(5.3)
Z

D
div[F] (x)dx =

Z

D
∇ · F(x)dx1dx2dx3 =

Z

∂D
(F ·n)(x)dσ

Dimostrazione. da scrivere

OSSERVAZIONE 5.7 Se Î il sostegno di una superficie regolare con rappresentazione parametrica x : D⊆ � 2 −→ � 3 con x(u) = (x1(u1,u2),x2(u1,u2),x3(u1,u2))
biunivoca tra D e Î allora x(∂D) = ∂Î . Se γ(t) = (u1(t),u2(t)) è una rappresentazione parametrica della frontiera ∂D allora x(γ(t)) è una rappresentazione
parametrica del bordo ∂Î.

TEOREMA 5.8 (DEL ROTORE (DI G.G. STOKES)) Sia (x,D) una superficie regolare semplice di classeC2 di sostegnoÎ⊆ � 3 eF ∈ C1(A,� 3) un campo vettoriale
definito su un aperto A tale cheÎ⊆ A⊆ � 3, allora vale

Z

Î
[rot(F) ·n](x)dσ =

Z

∂+Î
(F · T)(x)ds

Dimostrazione. La dimostrazione consiste essenzialmente nello scrivere per esteso i due integrali che compaiono nella tesi, usare attentamente il teore-
ma di derivazione delle funzioni composte, e verificare la loro uguaglianza, grazie al teorema di Stokes nel piano precedentemente provato (teorema 5.2).
Cominciamo con l’integrale di superficie

Z

Î
[rot(F) ·n]dσ =

Z

D
rot(F)(x(u)) · (∂1x(u)∧ ∂2x(u))du

=
Z

D

�
∂2F3 – ∂3F2,∂3F1 – ∂1F3,∂1F2 – ∂2F1

� · ∂1x2∂2x3 – ∂1x3∂2x2,∂1x3∂2x1 – ∂1x1∂2x3,∂1x1∂2x2 – ∂2x1∂1x2
�du

=
Z

D
(∂2F3 – ∂3F2)(∂1x2∂2x3 – ∂1x3∂2x2) + (∂3F1 – ∂1F3)(∂1x3∂2x1 – ∂1x1∂2x3) + (∂1F2 – ∂2F1)(∂1x1∂2x2 – ∂2x1∂1x2)du

adesso affrontiamo l’integrale di linea, assumendo di avere la seguente parametrizzazione regolare del bordo ∂+D⊆ � 2 γ(t) = u(t) = (u1(t),u2(t)), con t ∈ [a,b].
Dall’osservazione 5.7 sappiamo che x(γ(t)) è una parametrizzazione regolare a tratti del bordo di Î, quindi, ricordando la definizione di integrale di linea, il
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teorema di Schwarz e il teorema 5.2, abbiamo
Z

∂+Î
(F · Tx)ds =

Z

∂+Î
F(x(γ(t))) · ddtx(γ(t))dt =

Z b

a
F(x(γ(t))) ·

�
∇x1(γ(t)) · u′(t),∇x2(γ(t)) · u′(t),∇x3(γ(t)) · u′(t)

�
dt

=
Z b

a

�
F(x(γ(t))) · (∂1x1(γ(t)),∂1x2(γ(t)),∂1x3(γ(t))),F(x(γ(t))) · (∂2x1(γ(t)),∂2x2(γ(t))∂2x3(γ(t))),0

�
· γ ′(t)dt

=
Z

∂+D
(F · ∂1x,F · ∂2x,0) · Tγds =

Z

D
rot(F · ∂1x,F · ∂2x,0) · e3du =

Z

D
[∂1(F · ∂2x) – ∂2(F · ∂1x)]du

=
Z

D
[∂1(F1∂2x1 + F2∂2x2 + F3∂2x3) – ∂2(F1∂1x1 + F2∂1x2 + F3∂1x3)]du

=
Z

D

h
∇F1∂1x∂2x1 + F1∂12x1 +∇F2∂1x∂2x2 + F2∂12x2 +∇F3∂1x∂2x3 + F1∂12x3 –∇F1∂2x3 – F1∂12x1 –∇F2∂2x∂1x2 – F2∂12x2 –∇F3∂2x∂1x3 – F1∂12x3

i
du

=
Z

D

h
(∂1F1∂1x1 + ∂2F1∂1x2 + ∂3F1∂1x3)∂2x1 + (∂1F2∂1x1 + ∂2F2∂1x2 + ∂3F2∂1x3)∂2x2 + (∂1F3∂1x1 + ∂2F3∂1x2 + ∂3F3∂1x3)∂2x3

– (∂1F1∂2x1 + ∂2F1∂2x2 + ∂3F1∂2x3)∂1x1 – (∂1F2∂2x1 + ∂2F2∂2x2 + ∂3F2∂2x3)∂1x2 – (∂1F3∂2x1 + ∂2F3∂2x2 + ∂3F3∂2x3)∂1x3
i
du

=
Z

D

h
∂2F1∂1x2∂2x1 + ∂3F1∂1x3∂2x1 + ∂1F2∂1x1∂2x2 + ∂3F2∂1x3∂2x2 + ∂1F3∂1x1∂2x3 + ∂2F3∂1x2∂2x3 – ∂2F1∂2x2∂1x1

– ∂3F1∂2x3∂1x1 – ∂1F2∂2x1∂1x2 – ∂3F2∂2x3∂1x2 – ∂1F3∂2x1∂1x3 – ∂2F3∂2x2∂1x3
i
du

confrontando con l’integrale calcolato precedentemente abbiamo la tesi.

TEOREMA 5.9 (Alcune identità utili) Date u,w ∈ C2(Ò ) e F ∈ C2(Ò ,� 3) valgono le seguenti identità
Z

Ò
Éw(x)dx =

Z

∂Ò
∂nwdσ

Z

Ò
udiv(F)dx = –

Z

Ò
∇u · Fdx +

Z

∂Ò
uF ·ndσ

Z

Ò
uÉwdx = –

Z

Ò
∇u ·∇wdx +

Z

∂Ò
u∂nwdσ

Z

Ò
[uÉw–wÉu]dx = +

Z

∂Ò
[u∂nw–w∂nu]dσ

TEOREMA 5.10 SianoA un aperto semplicemente connesso di� 3 e F un campo vettoriale di classeC1(A,� 3). Allora F è conservativo se e solo se è irrotazionale.
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