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5 ANALISI VETTORIALE

In questo capitolo presentiamo i risultati che, tradizionalmente, costituiscono i principali risultati che vanno sotto il nome di analisi vettoriale. La trattazione
é decisamente lacunosa, rispetto ad un testo tradizionale e per la difficolta dei concetti da affrontare e per alcune idee ostiche che compaiono in alcune
dimostrazioni. Per una presentazione pitl organica e completa rimandiamo ai molti e ottimi testi citati in bibliografia, in ogni caso desideriamo evidenziare la
presenza (alla fine del capitolo) di alcuni risultati interessanti che, usualmente, non sono inclusi in un libro di analisi matematica, ma che possono arricchire ed
essere utili.

5.1 Analisi vettoriale nel piano

TEOREMA 5.1 (FORMULE DI GAUSS-GREEN (G. GREEN)) Sia D C R? un dominio con frontiera regolare a tratti e A, B due funzioni di classe c' (A), con A C R2
aperto contenente D, allora vale

(51) f 61B(X1,X2)dX1dX2 = J B(X1,X2)dX2 J 62A(X1,X2)dX1dX2 = —J\ A(X1,X2)dX1
D oD D oD

Dimostrazione. Dimostriamo il teorema supponendo che sia possibile descrivere il dominio nei seguenti due modi, cioé che esistano quattro funzioni
continue e di classe C' a tratti tali che

D = {(x1,%3) 1 X1 € (a,b), c(xq) < x9 < d(x1)} = {(x1,%7) 1 alx3) < %1 < b(x;),%x; € (c,d)} C R2

Per dimostrare la tesi verificheremo direttamente luguaglianza degli integrali che compaiono in (5.1). Cominciamo dal primo integrale in due dimensioni. Grazie
alle proprieta del dominio D e alle formule di riduzione degli integrali possiamo scrivere che

d[ rblxz) d
J-D (31B(X1 , Xz)dX1dX2 = j [J( )2 81B(X1 , Xz)dX1] dXZ = j [B(b(Xz), X2) - B(a(Xz), X2)] dXz
c alxy c

e, analogamente, vale

b[ rdix) b
LazA(x1,x2)dx1dx2 =f U-( ) 82A(X1,Xz)dxz]dx1 =J- [A(x1, d(xq)) = Alxq, c(x1))1dxq
a |Jclx a

L'integrale di linea richiede un po' di lavoro in pid, infatti dobbiamo scrivere una parametrizzazione, regolare a tratti e correttamente orientata, del bordo. Per
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quanto abbiamo ipotizzato su D possiamo affermare che 9D = Ufl{Yi = ui‘lmi dove gli archi regolari sono descritti dalle seguenti parametrizzazioni

={$(t) = (t.c(t)): te [a, bl} (1) = (1,c'(t))
'yz {(b,t) : t € [c(b),d(b)]} qb’z(t) =(0,1)
73 ={¢3(t) = (-t d(-t)) : t € [-b,-a]} ¢4 (1) = (-1,~d'(-1))
’Y4 {¢4(t) =(a,—t): te[—d(a —c(a)l} ¢, (t)=(0,-1)
={(t) = (t.c) : t € [alc), b(c)]} w{(t)=(1,0)
={¥y(t) = (b(t),t): t € [c,d]} Y5 (1) = (b'(t),1)
n3 {13(t) = (—t d) :t € [-b(d),—a(d)]} 1/)3(t) (-1,0)
N4 = {P4(t) = (a(-t),-t) : t € [-d, =} Py (1) = (=a'(=1),-1)

Ricordando la definizione di integrale di linea di una forma differenziale abbiamo che

b -a b a b
J A(xq,Xp)dxq = ZI (x4, X5)dxq _J- A(t,c(t))dt—f A(—t,d(—t))dt=j A(t,c(t))dt+f A(s,d(s))ds=f [A(t, c(t)) —Alt, d(t))] dt
oD a -b a a

b

d —C d c d
f B(xq, xp)dx; = ZI (X1, X7 )dx, = J B(b(t),t)dt—J B(a(—t),—t)dt=f B(b(t),t)dt+J B(a(t),t)dt=f [B(b(t), t) - B(a(t), )] dt
oD i —d c d c

le ultime relazioni scritte completano la dimostrazione delle formule (5.1).

TEOREMA 5.2 (DEL ROTORE (G.G. STOKES)) Sia D C R2 un dominio aperto con frontiera regolare a trattie F € C'(A,R2) un campo vettoriale definito su un
aperto A contenente D, allora vale

j [rot(F)]3 dxqdx; = j [F - T1(xq, x;)ds
D oD

Dimostrazione. Come noto vale
rot(F) = (82F3 —83F2, 63F1 —81F3, 81F2 —82F1) = (O, 0,81F2 —82F1)
quindi la terza componente del vettore rotore é [rot(F)]3 = 6,F, — 9, F;. Grazie alle formule (5.1) (pensando B = F; e A = F;) possiamo scrivere
J- [rot(F)]3 dxqdx, = f (01F5 — 07 Fq)dx¢dx; = J Fidxq + Fodx, = J [F - T1(x1,x;)ds
D D &'D a'D

e lultima uguaglianza segue dalla definizione di integrale di linea, quindi laffermazione € provata.
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TEOREMA 5.3 (DELLA DIVERGENZA ().C.F. GAUSS)) Sia D C RZ un dominio aperto con frontiera regolare a trattie F € C'(A, R2) un campo vettoriale definito
su un aperto A contenente D, allora

(5.2) j div (F) (xq, x2)dx;dx3 =J [F - nl(xq,%;)ds
D oD

Dimostrazione. Anche il teorema della divergenza segue dalle formule di Gauss-Green, infatti ponendo (B, A) = F le (5.1) sommate ci permettono di scrivere

f div[F] (X1rX2)dX1dX2j [V - F1(x1, xp)dxqdx; = J (B1F1+02F7)dxdxp = j Fidxp—Fpdxq = J- (=F2,F1)-(Ty, Tp)ds = J (Fy,F3)- (=T, Ty)ds = J F-nds
D D D o'D oD o'D oD

visto che la normale uscente da D, cioé il vettore n, pud essere ottenuto dal vettore T, il versore tangente alla frontiera 9D percorsa in senso antiorario, tramite
una rotazione di 7/2 in senso orario. ]

Dimostrazione. Includiamo a questo punto della discussione una dimostrazione alternativa del teorema della divergenza nel piano. Per raggiungere lo scopo
considereremo un dominio particolarmente semplice descritto dal seguente disegno.

Y4

73

M

l "

Mettiamo qualche puntino sulle i: innanzitutto supponiamo che la frontiera del dominio D C R sia una curva chiusa semplice, unione di quattro curve di classe
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C' aventi le seguenti parametrizzazioni:

1 = {(a,—t),t € [-d(a), ]}
v, ={(t,c),t € [a,b]}

73 ={(b, 1), t € [c,d(c)]}

Y4 = {(-t.d(-t)),t € [-b,—a]}

con d € C'[a, b] funzione strettamente crescente tale che d(x;) > c.

Osserviamo subito che D & un dominio normale rispetto ad entrambe le variabili e che possiede un solo "lato” non rettilineo: y4. Le varie frecce rappresentate
nel disegno indicano i versori normali esterni al dominio su +;, i = 1,..., 4, e il verso antiorario di percorrenza del bordo 9D, come espresso anche dalle para-
metrizzazioni dei singoli cammini. Entriamo nel vivo della seconda dimostrazione ricordando la definizione di alcuni oggetti che useremo. Scrivendo il campo
vettoriale per esteso F(xq,x;) = (F1(xq,X2), F2(x,X3)) possiamo scrivere la sua divergenza per esteso nel seguente modo

diV(F(X1,X2)) = (V . F(X1,X2)) = 61F1(X1,X2) +62F2(X1,X2)

Inoltre possiamo scrivere i versori n; (i =1, ..., 4), le normali uscenti dal dominio sui tratti che compongono la frontiera dD. Dal disegno segue immediatamente
che

ny=(-1,0) n, =(0,-1) n3 =(1,0)

Il calcolo di n4 € leggermente pil elaborato, poiché y4 = {(—t,d(-t)), t € [-b,—a]}, sappiamo calcolare facilmente il versore tangente alla curva che si scrive nel
seguente modo

(-1.-d'(-)
4=
V1+|d' ()2

a questo punto si ottiene il versore normale alla curva semplicemente scambiando le componenti e cambiandone di segno una nel seguente modo

(-d'(=0.1)

(1+1d'012)"

Ny =

ci si puo convincere che sia la scelta giusta provando a ragionare sulla figura precedente o scrivendo la matrice relativa alla rotazione di 7/2 in senso orario.
A questo punto possiamo cominciare a scrivere per esteso gli integrali coinvolti in (5.2). Usando il fatto che D & un dominio normale rispetto ad entrambe le
direzioni degli assi coordinati e le proprieta di additivita dell'integrale possiamo scrivere

fDV . F(X1 ) X2)dX1dX2 = jD(61 F] (X1 , X2) + 82 FZ (X1 ) X2))dX1dX2 = jD 81 F1 (X1 ) X2)dX1dX2 + JI; 62 F2(X1 , Xz)dXZdX1

b d(xq) d(a) b d(b) b
= f (f 0,F(xq, Xz)dY] dxy + f (J O1Fq(xq, Xz)dX1]dX2 * J (J O1F1(xq, Xz)dX1]dX2
a c c a d(a) d7(xy)
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Si noti, nellultimo passaggio, luso della funzione d™, linversa di d, per scrivere l'integrale di &F; integrando prima in x; e poi in x,.

Ricordando il teorema fondamentale del calcolo integrale, le proprieta di additivita e usando la sostituzione y = d(x) nellultimo termine, otteniamo le seguenti
relazioni

~b d(a) dib) b
—r diV(F(X],Xz))dX1dX2 = (Fz(XI,d(X1))—F2(X1,C))dX1+J\ (F](b,Xz)—FI(a,Xz))dXZ'FJ j 81F1(X1,X2)dX1dX2
D Ja c d@ Jd7(x,)
rb d(a) d(a) b d(b)
= | -Fyx. 0)dxq J F1(b,x2)dx2+J —F1(a, x7)dx, J Fy (x4, d(xq))dxy J (F1(b,x)=Fy(d7(x2). 7 ) ) dxy
Ja c c a d(a)
~b d(b) d(a) b
- | =Ryl 0dxg ¢ f Fi(b, x2)dx + j —Fy(a, xp)dxy + J (Fbxt ) = Fr (1, dxa) ) iy
Ja C C a

A questo punto procediamo con lintegrale curvilineo. Ricordando la definizione di integrale di linea e che 8D é unione di 4 curve regolari, possiamo scrivere le
seguenti uguaglianze.

- b d(b) & _E (N () o Fe (ol
j (F(x1,x2)-n)ds=J —F1(a,—t)dt+J —Fz(t,c)dt+j F1(b,t)dt+J Fi(=t, d(=t))d"(-1) F;i t,d(-t)) (1+\d’(-t)|2)"2dt
oD —d(a) a c -b (1 + |d'(—t)\2)
da) b db) b
f —F1(a,s)ds+J —Fz(t,c)dt+j F1(b,t)dt+J. (Fals. d(s) ~ Fy(s. d(s))d(5)) ds

a

dove abbiamo usato anche il cambio di variabile s = —t in alcuni degli integrali di linea (si ricordi che gli integrali di linea che non coinvolgono il versore tangente
non cambiano di segno cambiando parametrizzazione). Dal confronto delle uguaglianze ottenute segue la tesi. ]

OSSERVAZIONE 5.4 Dopo aver provato il teorema (per ben due volte!) possiamo fare alcune semplici osservazioni. Il caso di un triangolo € un caso particolare
dellenunciato provato, basta considerare la funzione d affine con d(a) = c. Si noti che nella dimostrazione abbiamo fatto uso dell'invertibilita di d: se d non
é strettamente crescente (o decrescente) & possibile ugualmente usare la dimostrazione precedente spezzando il dominio in maniera opportuna, come nel
disegno che segue.

Dy | Dy | D3

In generale vogliamo ricondurci, in qualche modo, al caso trattato nel teorema 5.3 e per farlo procediamo nel seguente modo. Consideriamo tutti i punti
{pi}i-1... n della frontiera di D che delimitano i vari tratti di classe C' e tracciamo le rette parallele agli assi coordinati passanti per ognuno dei punto p;. In questo
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modo abbbiamo tracciato un reticolo irregolare sul nostro dominio, e D resta suddiviso in rettangoli interni e sottodomini con tratti curvilinei. Osserviamo che
il teorema della divergenza vale su tutti questi nuovi sottodomini ottenuti, nel caso siano dei rettangoli o dei domini come quelli considerati nei precedenti
disegni (si veda la proposizione 5.3). Poiché l'integrale della divergenza € la somma degli integrali sui sottodomini (per ladditivita dell'integrale), mentre nei vari
integrali curvilinei di flusso si elidono tutti i contributi "interni”, la tesi & provata, almeno per tutti i domini del piano per cui si sappia fare la divisione descritta
sopra.

A questo punto abbiamo gli strumenti necessari per generalizzare il teorema di Poincaré agli aperti semplicemente connessi del piano.

TEOREMA 5.5 Sia F un campo vettoriale di classe C'(A, R2) definito in un aperto A semplicemente connesso. Allora F é conservativo se e solo se é irrotazionale
in A

Dimostrazione. La condizione necessaria segue dal teorema 4.10. Occorre provare la condizione sufficiente che & equivalente a provare che, per ogni curva
regolare a tratti, chiusa e semplice =, risulta

jF~Tds=O
¥

e applicare il teorema 4.8 che caratterizza i campi conservativi. Fissata y, sia D C A il dominio limitato che hay come frontiera. Tale dominio esiste perché A "non
ha buchi”. Lesistenza di D puo essere dimostrata rigorosamente e questo risultato prende il nome di teorema di Jordan. Supponiamo che y abbia orientamento
antiorario. Dal teorema di Stokes

J F-Tds= J F-Tds= J [rot(F)]3dx;dx, = O
v *D D

e lultimo integrale vale zero perché F ¢ irrotazionale. ]
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5.2 Analisi vettoriale nello spazio

Adesso possiamo enunciare il teorema della divergenza nella sua versione pit generale.

TEOREMA 5.6 (DELLA DIVERGENZA (DI M.V. OSTROGRADSKI| E |.C.F. GAUSS)) Sia D C R" un aperto limitato con frontiera di classe C'atrattiesia Fun campo
vettoriale di classe C' (A; R™) con A un aperto contenente la chiusura di D, allora vale

(5.3) j div [F](x)dx =J V - F(x)dxqdx,dx3 =J (F-n)(x)do
D D oD

Dimostrazione. da scrivere [ |

OSSERVAZIONE 5.7 Se ¥ il sostegno di una superficie regolare con rappresentazione parametrica x : D € RZ —s R3 con x(u) = (x4(uy, u3), X3 (uy, u3), x3(uy, u3))
biunivoca tra D e ¥ allora x(0D) = 8% . Se y(t) = (u(t), u,(t)) € una rappresentazione parametrica della frontiera oD allora x(y(t)) & una rappresentazione
parametrica del bordo 0%..

TEOREMA 5.8 (DEL ROTORE (DI G.G. STOKES)) Sia (x, D) una superficie regolare semplice di classe C2di sostegno ¥ C R3eF € CY(A, R3)un campo vettoriale
definito su un aperto A taleche ¥ C A C R3, allora vale

J- [rot(F) - n](x)do = j (F-T)(x)ds
> oy

Dimostrazione. La dimostrazione consiste essenzialmente nello scrivere per esteso i due integrali che compaiono nella tesi, usare attentamente il teore-
ma di derivazione delle funzioni composte, e verificare la loro uguaglianza, grazie al teorema di Stokes nel piano precedentemente provato (teorema 5.2).
Cominciamo con l'integrale di superficie

J [rot(F) - n]ldo = f rot(F)(x(u)) - (81x(u) A B;x(u))du
s D
= J;) [02F3 —03F,, 03F1—01F3, 01F3 — 02 F1] - (O1x202%3 — 013072, 01307 %1 — O1x102X3, Oyx10p %7 — By X194z ) du
= f (82F3 - 83 Fz)(a1X282X3 - a1X362X2) + (83F1 —81F3)(81X382X1 - 81X182X3) + (81 Fz —82F1)(81X182X2 —82x181x2)du
D

adesso affrontiamo l'integrale di linea, assumendo di avere la seguente parametrizzazione regolare del bordo 8*D C R2 () = u(t) = (uq(t), uy(t)), con t € [a, b].
Dallosservazione 5.7 sappiamo che x((t)) € una parametrizzazione regolare a tratti del bordo di ¥, quindi, ricordando la definizione di integrale di linea, il
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teorema di Schwarz e il teorema 5.2, abbiamo

b
[ ads= [ Rt goxtrtonde= [ RO (Tx(0)- 00, Tralyle) v 0, Txsr(0)- ) e

b
= f (F(X(’Y(t))) (O (v(1)), Oy (v(t)), Oyx3 (v(1))), F(x(v (1)) - (B4 (v (1)), Byxa (1)) Do x3 (¥ (1)), 0) ' (t)dt
a
= j (F-01x,F-0,%,0) - THds = j rot(F - 8yx, F - 95%,0) - e3du = f [04(F - O%) — 0, (F - 81x)1du
oD D D

= f [61(F182X1 + F262X2 + F362X3) —62(F181X1 + F261X2 + F361X3)]du
D

= f [VF181X82X1 + F1512X1 + VF281X82X2 + F2812X2 + VF381X82X3 + F18|2X3 - VF182X3 - F1812X1 - VF262X81X2 - F2612X2 - VF362X81X3 - F1a12X3 du
D

= L [(51 F101x1 + 9;,F101x3 + G3F101x3) 8y %1 + (B1F201x1 + 03F 281 + B3F301x3) 0y %) + (B1F 3011 + 8, F 301x; + B3F301%3) 0,3
—(O1F10yx1 + O F10%7 + O3F10y%3)0yx1 — (81F 207 %1 + Oy F 207 %7 + O3F207%3)01x7 — (O1F 30,1 + O, F307%5 + O3 F362X3)81X3]du
= L [62F181X262X1 + 03F101x30y%1 + O F201x10 X3 + O3F201x307%) + 01F 30110y %3 + 07 F301x20,%3 = 0, F107 %201
— 03F10,x301%1 — O1F2 0, %1017 — O3F 207 X301X9 — 01F30,%101X3 — 8, F30,X201x3 [du

confrontando con l'integrale calcolato precedentemente abbiamo la tesi. n

TEOREMA 5.9 (Alcune identita utili) Dateu,w € C2(Q) e F € C2(Q2, R3) valgono le seguenti identita

J- Aw(x)dx=J Onhwdo

Q o0N

J udiv(F)dx = —J Vu - Fdx + j uF -ndo
Q Q a0

J- uAwdx = —J Vu - Vwdx + J udywdo
Q Q o0N

f [uUAw—wAu]dx = +J [udw—wdnuldo
Q FSl9)

TEOREMA 5.10 Siano A un aperto semplicemente connesso di R3 e F un campo vettoriale di classe C'(A, R3). Allora F & conservativo se e solo se & irrotazionale.
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