Chemistry of acids and basis

 Wante Arrhenius
 The set of the

Svante Arrhenius (1859-1927)

Johannes N. Brønsted (1879–1947)

Thomas Martin Lowry (1874-1936)

Gilbert Newton Lewis (1875-1946)

Acids and bases can be roughly divided into: strong electrolytes (HCl, HNO_3 e NaOH) and weak electrolytes (CH₃COOH e NH₃)

Acids

- produce hydrogen ions in H2O
- taste sour
- tornasole dye turns red
- are electrolytes in aqueous solution
- neutralize solutions containing hydroxide ions
- react with many metals generating $H_2(g)$
- react with carbonates generating CO_2 (g)
- damage tissues
- HCI, HNO_3 , CH_3COOH

Bases

- produce hydroxil ions H₂O
- bitter taste
- tornasole dye turns blue
- are electrolytes in aqueous solution
- neutralize solutions containing hydrogen ions
- have a soapy texture
- damage tissues (hydrolize lipids)
- NaOH, Mg(OH)₂, Al(OH)₃, NH₃

citric acid A weak acid

Acids react easily with coral (mainly $CaCO_3$) and develop gaseous CO_2 yiealding a salt: ($CaCO_3$) and in general with metal carbonates developing gaseous CO_2 and yielding a salt:

Acids react with many metals developing gaseous H_2 and a salt:

 $Zn(s) + 2 HCl(aq) = ZnCl_2(aq) + H_2(g)$

 $CaCO_{3}(s) + 2 HCl (aq) = CaCl_{2}(aq) + CO_{2}(g) + H_{2}O(l)$

Strong acids (K >>> 1): are fully dissociated

HCl (aq) + H₂O (l) \rightarrow Cl⁻ (aq) + H₃O⁺ (aq)

Weak acids (K<1): do not fully dissociate

 $CH_{3}COOH (aq) + H_{2}O (l) = CH_{3}COO^{-} (aq) + H_{3}O^{+} (aq)$

(K <u>~</u>∞)

Acids & bases, definition

Arrhenius Theory (1883)

ACID: Produces H+ in Water BASE: Produces OH- in Water

Bronsted/Lowry Theory (1923) ACID: proton, H+ DONOR BASE: proton, H+ ACCEPTOR

> Lewis Theory (1938) a more general acid base theory. ACID: accepts pair of electrons for sharing BASE: donates pair of electrons for sharing

$$X + : Y \rightarrow X: Y$$

acid base

Brønsted acids

HNO₃ (aq) + H₂O (I) \rightarrow NO₃⁻ (aq) + H₃O⁺ (aq)

NH_4^+ (aq) + H_2O (I) $\rightleftharpoons NH_3$ (aq)+ H_3O^+ (aq)

Brønsted bases

$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

CO_3^{2-} (aq) + H₂O (I) \rightleftharpoons HCO₃⁻ (aq) + OH⁻ (aq)

Polyprotic acids

Acids such as HCl, HNO_3 e CH_3COOH dissociate only one proton and are called "monoprotic". Polyprotic acids can dissocate two or more protons.

Sulphuric Acid

 $H_2SO_4(aq) + H_2O(l) \rightarrow HSO_4^-(aq) + H_3O^+(aq)$

 HSO_4^- (aq) + H_2O (I) $\rightleftharpoons SO_4^{2-}$ (aq) + H_3O^+ (aq)

Phosphoric acid

 $H_3PO_4(aq) + H_2O(l) \rightleftharpoons H_2PO_4^-(aq) + H_3O^+(aq)$

 $HPO_4^{2-}(aq) + H_2O(I) \rightleftharpoons PO_4^{3-}(aq) + H_3O^{+}(aq)$

Conjugate acid-base couples

Two compounds that differ for the presence/absence of a proton. All reactions between Brønsted acid and bases implies the tranfer of a H^+ ion and it involves two conjugate acid-base couples.

Conjugate acid-base couples

Conjugate couple 2

$$HNO_{2}(aq) + H_{2}O(I) \rightleftharpoons NO_{2}(aq) + H_{3}O^{+}(aq)$$

$$f$$
Conjugate couple 1

The nitrite anion NO_2^- is the conjugate base of nitrous acid and the hydronium ion is tha conjugate acid of water

Conjugate couple 2

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Conjugate couple 1

The NH4⁺ ion is the conjugate acid of ammonia and the hydroxyl ion is the conjugate base of water

All reactions between Brønsted acid and bases implies the tranfer of a H^+ ion and it involves two conjugate acid-base couples.

Conjugate acid-base couples								
name	acid 1		base 2		base 1	acid 2		
Hydrochloric acid	HC1	+	H ₂ O	\rightarrow	Cl-	+ $H_{3}O^{+}$		
Nitric acid	HNO ₃	+	H ₂ O	\rightarrow	NO ₃ -	+ $H_{3}O^{+}$		
Hydrogen carbonate	HCO ₃ -	+	H ₂ O	t	CO ₃ ^{2–}	+ H ₃ O ⁺		
Acetic acid	CH ₃ COOH	+	H ₂ O	₽	CH ₃ COO-	+ $H_{3}O^{+}$		
Cianidric acid	HCN	+	H ₂ O	₽	CN-	+ H_3O^+		
Sulphidric acid	H_2S	+	H ₂ O	₹	HS-	+ H ₃ O ⁺		
ammonia	H ₂ O	+	NH ₃	₽	OH-	+ NH_4^+		
Carbonate ion	H ₂ O	+	CO ₃ ^{2–}	₽	OH-	+ HCO_3^-		
water	H ₂ O	+	H ₂ O	₽	OH-	+ H ₃ O ⁺		

Water is amphiprotic (or amphoteric) since it cas accept a proton to yield the hydronium ion:

or it can donate a proton to yield the hydroxyl ion:

```
H_2O(I) + NH_3(aq) \rightleftharpoons OH^-(aq) + NH_4^+(aq)
```

acid base

Water autoprotolysis and its constant K_w

There is no need for an acid in water to form the hydronium ion H_3O^+ . Two water molecule react to produce one hydronium and one hydroxil.

Friedrich W. G. Kohlrausch (1840-1910)

 $H_2O(I) + H_2O(I) \rightleftharpoons H_3O^{+}(aq) + OH^{-}(aq)$

This self-ionization reaction (water ionic product was discovered by Kohlrausch measuring the electrical conductivity of ultra pure water. When water ionizes at 25 $^{\circ}$ C only 2 in 10⁹ molecules are ionized.

Since water concentration variation is neglible (55.5 M)

$$\mathbf{K} \cdot [\mathbf{H}_2 \mathbf{O}]^2 = [\mathbf{H}_3 \mathbf{O}^+] \cdot [\mathbf{O}\mathbf{H}^-] = \mathbf{K}_{\mathbf{W}}$$

 K_W is known as water ionization constant.

 $2 \text{ H}_2\text{O}(1) \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$

$$\mathbf{K}_{\mathrm{W}} = [\mathbf{H}_{3}\mathbf{O}^{+}] \cdot [\mathbf{O}\mathbf{H}^{-}]$$

In pure water $[H_3O^+] = [OH^-]$.

Electrical conductivity data show that at 25 °C in pure water $[H_3O^+] = [OH^-] = 1.0 \cdot 10^{-7} \text{ M}.$ Therefore K_W at 25 °C is:

 $K_{W} = [H_{3}O^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14} M^{2}$

compound	Electrical conductivity(S/ m)		
Ag	6.30·10 ⁷		
Cu	5.96·10 ⁷		
Au	4.52·10 ⁷		
Al	3.78.107		
Sea water(35 g/kg Na Cl)	5		
tap water	0.0005-0.05		
deionized and degassed H_2O	5.50.10-6		

$$K_{W} = [H_{3}O^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14} M^{2} a 25 °C$$

When $[H_3O^+] = [OH^-]$ a solution is called a Neutral Solution

If an acid or a base are added the equilibrium is perturbed

 $2 \text{ H}_2 \text{O}(1) \rightleftharpoons \text{H}_3 \text{O}^+(aq) + \text{OH}^-(aq)$

By adding an acid, the [H₃O⁺] increases and the solution becomes acidic. Le Châtelier's principle predicts that a small amount of [H₃O⁺] will react with OH⁻ (from water self-protolysis). This lowers [OH⁻] until: [H₃O⁺] x [OH⁻] = 1.0x10⁻¹⁴ at 25 °C

- neutral solution: $[H_3O^+] = [OH^-] = 1.0 \cdot 10^{-7} M$
- acidic solution: $[H_3O^+] > [OH^-] e [H_3O^+] > 1.0x10^{-7} M and [OH^-] < 1.0x10^{-7} M$
- basic solution: $[H_3O^+] < [OH^-] e [H_3O^+] < 1.0x10^{-7} M and [OH^-] > 1.0x10^{-7} M$

In conclusion: 2 H₂O(I) ≓ H₃O⁺(aq) + OH⁻(aq)

$$K_w = [H_3O^+] \cdot [OH^-] = 1.0 \cdot 10^{-14} M^2 a 25 °C$$

Exercise 1. What are the concentrations of $[H_3O^+]_{and}$ [OH⁻] of 0.01 M di HCl at 25 °C.

Exercise 1. What are the concentrations of $[H_3O^+]_{and}$ [OH⁻] of 0.01 M di HCl at 25 °C.

HCl (aq) + H₂O (I) \rightarrow H₃O⁺ (aq) + Cl⁻ (aq) 0.01 mol/L of H₃O⁺ and 0.01 mol/L of Cl⁻ are formed $[H_3O^+]_{total} = [H_3O^+]_{HCl} + [H_3O^+]_{H_2O} = 0.01 + 10^{-7} \approx 0.01 \text{ M}$ Q = $[H_3O^+]_{total} \times [OH^-] = 0.01 \times 10^{-7} = 10^{-9} \gg K_W = 10^{-14} \text{ M}^2$ Exercise 1. What are the concentrations of $[H_3O^+]_{and}$ [OH⁻] of 0.01 M di HCl at 25 °C.

HCl (aq) + H₂O (I) \rightarrow H₃O⁺ (aq) + Cl⁻ (aq) 0.01 mol/L of H₃O⁺ and 0.01 mol/L of Cl⁻ are formed $[H_3O^+]_{total} = [H_3O^+]_{HCl} + [H_3O^+]_{H_2O} = 0.01 + 10^{-7} \approx 0.01 \text{ M}$ Q = $[H_3O^+]_{total} \times [OH^-] = 0.01 \times 10^{-7} = 10^{-9} \gg K_W = 10^{-14} \text{ M}^2$

$$2 H_2O(I) \rightleftharpoons H_3O^{+}(aq) + OH^{-}(aq)$$

 $[OH^{-}] = K_W / [H_3O^{+}]_{total} = 10^{-14} / 0.01 = 10^{-12} M$

Logarithm

The logarithm function in base = b is the inverse function with respect to the eponential funcion in base b. The logarithm in base b of a number x is th number to whic b must be raised to obtain x.

therefore:

$$x = b^y$$

$$y = \log_b x$$

Example, $\log_3 81 = 4$, since $3^4 = 81$. Logarithm transforms products into sums, divisions into subtractions and exponentiations into products.

$$log_{b}(x \cdot y) = log_{b} x + log_{b} y$$
$$log_{b} \frac{x}{y} = log_{b} x - log_{b} y$$
$$log_{b} x^{y} = y \cdot log_{b} x$$

pH scale

pH is defined as the decimal logarithm of the reciprocal of the hydronium concentration: $pH = -log_{10}[H_3O^+]$

pOH is defined as the decimal logarithm of the reciprocal of the oxydril concentration: $pOH = -\log_{10}[OH^{-}]$

In water $[H_3O^+] = [OH^-] = 10^{-7} \text{ M}$ and pH = pOH = 7 pH = $-\log_{10}[H_3O^+] = -\log_{10}10^{-7} = 7$

For constants: NH_4^+ (aq) + H_2O (I) $\rightleftharpoons NH_3$ (aq)+ H_3O^+ (aq)

$$K = \frac{[NH_3] \cdot [H_3O^+]}{[NH_4^+]} = 5.6 \cdot 10^{-10} M \qquad pK = -log_{10}(5.6 \times 10^{-10}) = 9.25$$

pH scale

ammonia pH 11.9

blood pH 7.4

COLUMN A

inim

Orange juice pH 3.8

> vinegar pH 2.8

solution	pH
1 M HCl	0.0
gastric juice	1.0
Lemon juice	2.3
vinegar	2.8
wine	3.5
Tomato juice	4.1
coffee	5.0
Acidic rain	5.6
urine	6.0
rain	6.5
milk	6.6
pure water	7.0
blood	7.4
Bicarbonate solution	8.4
Tooth paste	9.9
NH ₃	11.9

The sum of pH and pOH at 25 $^{\circ}$ C is 14:

$$K_{W} = [H_{3}O^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14} M^{2} a 25 °C$$

- log₁₀K_W = -log₁₀ ((H₃O⁺] · [OH⁻]) = -log₁₀1.0 · 10⁻¹⁴
pK_W = -log₁₀[H₃O⁺] - log₁₀[OH⁻] = 14
pK_W = pH + pOH = 14

24

Water self-ionization is endothermic

 $2 H_2O(I) + heat \approx H_3O^+(aq) + OH^-(aq)$

At all temperatures $[H_3O^+] = [OH^-]$

Calculate the pH at 25 ° C of: a) 0.01 M di HCl; b) 0.1 M NaOH e c) 0.2 M HClO₄.

Calculate the pH at 25 ° C of: a) 0.01 M di HCl; b) 0.1 M NaOH e c) 0.2 M HClO₄.

a) HCl (aq) + H₂O (l) \rightarrow Cl⁻ (aq) + H₃O⁺ (aq)

 $[H_3O^+] = [HC1] = 0.01 \text{ M} \rightarrow pH = -\log_{10} (0.01) = -\log_{10} (10^{-2}) = 2$

b) NaOH (aq) + H₂O (l)
$$\rightarrow$$
 OH⁻ (aq) + Na⁺ (aq)
[OH⁻] = [NaOH] = 0.1 M \rightarrow pOH = $-\log_{10} (0.1) = -\log_{10} (10^{-1}) = 1$
pH = 14 - pOH = 13

c) $HClO_4(aq) + H_2O(l) \rightarrow ClO_4^-(aq) + H_3O^+(aq)$ $[H_3O^+] = [HClO_4] = 0.2 \text{ M} \rightarrow pH = -log_{10}(0.2) = -log_{10}(2x10^{-1}) = 0.698$

If pH = 8.5 what is $[H_3O^+]$?

If pOH = 8.5, what is $[H_3O^+]$?

$$pH = 14 - pOH = 5.5$$

$$pH = -\log_{10} [H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

$$[H_3O^+] = 10^{-5.5} = 3.16 \cdot 10^{-6} M$$

If pOH = 8.5, what is $[H_3O^+]$?

 $pH = -\log_{10} [H_3O^+]$ $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{-8.5} = 3.16 \cdot 10^{-9} M$

If pH = 8.5 what is $[H_3O^+]$?

Measuring pH: indirect and direct methods

Tornasole is a dye extracted from lichens of the *Rocella* genus.

A pHmeter measures pH directly using a potentiometric method Red cabbage contains natural dyes. These can be easily extracted by boiling red cabbage in water: the concentrated extract is red-purple. There are many different types of colored substances in plants, such as chlorophylls, carotenoids and anthocyanins.

The colour dpends on the protonation state

Equilibrium constants for acids and bases

They allow to evaluate the tendency of a compound to react with water. The relative strength of acids can be inferred from the pH of their solution at the same concentration: the lower the pH the stronger the acid.

The relative strength of an acid or base can be expressed quantitatively using the equilibrium constant.

The stregth increases as K_A or K_B increase.

Which of these acids is the strongest?

 $HNO_2(aq) + H_2O(l) \rightleftharpoons NO_2^-(aq) + H_3O^+(aq)$

$$K_{A} = \frac{[H_{3}O^{+}] \cdot [NO_{2}^{-}]}{[HNO_{2}]} = 4.5 \cdot 10^{-4} M \text{ a } 25 \text{ }^{\circ}\text{C}$$

$$HF (aq) + H_2O (l) \rightleftharpoons F^-(aq) + H_3O^+(aq)$$

$$K_{A} = \frac{[H_{3}O^{+}] \cdot [F^{-}]}{[HF]} = 7.2 \cdot 10^{-4} M \text{ a } 25 \text{ }^{\circ}\text{C}$$

 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$

$$K_{A} = \frac{[H_{3}O^{+}] \cdot [HCO_{3}^{-}]}{[H_{2}CO_{3}]} = 4.2 \cdot 10^{-7} M \text{ a } 25 \text{ }^{\circ}\text{C}$$

Whic of these bases is the strongest?

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

$$K_{B} = \frac{[OH^{-}] \cdot [NH_{4}^{+}]}{[NH_{3}]} = 1.8 \cdot 10^{-5} M \text{ a } 25 \text{ }^{\circ}\text{C}$$

CH₃NH₂ (aq) + H₂O (l) ≈ CH₃NH₃⁺ (aq) + OH⁻ (aq) metilammina $K_{\rm B} = \frac{[OH^{-}] \cdot [CH_{3}NH_{3}^{+}]}{[CH_{3}NH_{2}]} = 5.0 \cdot 10^{-4} \, \text{M} \text{ a } 25 \,^{\circ}\text{C}$

$$\text{CO}_3^{2-}(\text{aq}) + \text{H}_2\text{O}(1) \rightleftharpoons \text{HCO}_3^{-}(\text{aq}) + \text{OH}^{-}(\text{aq})$$

$$K_{\rm B} = \frac{[OH^{-}] \cdot [HCO_{3}^{-}]}{[CO_{3}^{2-}]} = 2.1 \cdot 10^{-4} \,\text{M} \text{ a } 25 \,^{\circ}\text{C}$$

Polyprotic acids

Phosphoric acid

$$H_3PO_4(aq) + H_2O(1) \rightleftharpoons H_2PO_4^-(aq) + H_3O^+(aq) \qquad K_1 = 7.1 \cdot 10^{-3}$$

$$H_2PO_4^-(aq) + H_2O(1) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq) \qquad K_2 = 6.2 \cdot 10^{-8}$$

$$HPO_4^{2-}(aq) + H_2O(l) \rightleftharpoons PO_4^{3-}(aq) + H_3O^+(aq) \qquad K_3 = 4.4 \cdot 10^{-13}$$

Carbonic acid

 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ $K_1 = 4.7 \cdot 10^{-7}$ $HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$ $K_2 = 4.7 \cdot 10^{-11}$ Sulphuric acid

$$H_2SO_4(aq) + H_2O(l) \rightleftharpoons HSO_4^-(aq) + H_3O^+(aq) \qquad K_1 = \sim 10^2$$
$$HSO_4^-(aq) + H_2O(l) \rightleftharpoons SO_4^{2-}(aq) + H_3O^+(aq) \qquad K_2 = 1.2 \cdot 10^{-2}$$

Ionization constants of some acids and their conjugate bases at 25 $^\circ\,$ C

acid	acido	K _A	base	K _B	base
hydrochloric	HC1	>>1	Cl⁻	<<1	chloride
nitric	HNO ₃	>>1	NO ₃ -	<<1	nitrate
hydronium	H_3O^+	1	H ₂ O	$1.0.10^{-14}$	water
phosphoric	H ₃ PO ₄	7.5.10-3	H ₂ PO ₄ -	1.3.10-12	Di-hydrogen phosphate
fluoridric	HF	7.2.10-4	F ⁻	1.4.10-11	flluorure
acetic	CH ₃ COOH	1.8.10-5	CH ₃ COO ⁻	5.6.10-10	acetate
carbonic	H ₂ CO ₃	4.2.10-7	HCO ₃ ⁻	2.4.10-8	Hydrogen carbonate
sulphidric	H_2S	1.0.10-7	HS ⁻	$1.0 \cdot 10^{-7}$	Hydrogen sulphite
Di-hydrogen phosphate	$H_2PO_4^-$	6.2·10 ⁻⁸	H ₂ PO ₄ ^{2–}	$1.6 \cdot 10^{-7}$	Hydrogen phosphate
ammonium	$\mathrm{NH_4}^+$	5.6.10 ⁻¹⁰	NH ₃	1.8.10-5	ammonia
cianidric	HCN	4.0.10 ⁻¹⁰	CN-	2.5.10-5	cianate
Hydrogen carbonate	HCO ₃ -	4.8.10-11	CO ₃ ^{2–}	2.1.10-4	carbonate
Hydrogen phosphate	HPO ₄ ^{2–}	3.6.10-13	PO ₄ ^{3–}	2.8.10-2	phosphate
wa	H ₂ O	$1.0.10^{-14}$	OH⁻	1	hydroxil

Increasing sthreath of the acid

36