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Abstract

Background: Toll-like receptors (TLRs) are an important family of receptors that constitute the first line of defense
system against microbes. They can recognize both invading pathogens and endogenous danger molecules
released from dying cells and damaged tissues and play a key role in linking innate and adaptive immunity. TLRs
are widely distributed in both immune and other body cells. The expressions and locations of TLRs are regulated in
response to specific molecules derived from pathogens or damaged host cells. The binding of ligands to TLR
activates specific intracellular signaling cascades that initiate host defense reactions. Such binding is ligand-
dependent and cell type-dependent and leads to production of pro-inflammatory cytokines and type 1 interferon.
TLR-dependent signaling pathways are tightly increased during innate immune responses by a variety of negative
regulators. Overactivation of TLRs can ultimately lead to disruption of immune homeostasis and thus increase the
risk for inflammatory diseases and autoimmune disorders. Antagonists/inhibitors targeting the TLR signaling
pathways have emerged as novel therapeutics to treat these diseases.

Aim of work: The present review summarizes the structure, characterizations, and signaling of TLRs and their
regulators, as well as describes the implication of TLRs in many diseases with a brief idea about the inhibitors that
target TLR signaling pathways.

Conclusion: We conclude that TLRs are the main elements of our immune system, and they should be maintained
functioning to keep the integrity of innate immunity. Targeting of TLR signaling represents a new challenge for
treatment of many diseases.
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Background
The innate immune system provides an immediate
defense mechanism upon damage or pathogen invasion,
which allows the adaptive immune system to initiate an
antigen-specific response. Short-term activation of the in-
nate immune system is beneficial and provides cytoprotec-
tive mechanisms for tissue repair. However, sustained or
excessive immune system activation is deleterious and
leads to irreversible changes in organ structure and func-
tion (Wang et al., 2015). Toll-like receptors (TLRs) is a
family of pattern recognition receptors (PRRs) that form
the cornerstone of the innate immune response (Sadik
et al., 2015). Toll was originally discovered as a gene con-
trolling the dorsal–ventral polarity of the Drosophila em-
bryo, but was later found to be involved in anti-fungal

immunity (Anderson et al., 1985). The innate immune
system gained its importance by the discovery of these re-
ceptors (Brikos & O’Neill, 2008). To date, 10 human and
13 murine subtypes of TLR have been identified, although
TLR10 is non-functional in the mouse (Wang et al., 2015).
They can recognize both the external pathogen-associated
molecular patterns (PAMPs) (Zhang & Liang, 2016) and
the internal damage-associated molecular patterns
(DAMPs) (Yu & Feng, 2018). They are expressed on all in-
nate immune cells such as macrophage, neutrophils, den-
dritic cells (DCs), natural killer (NK) cells, mast cells,
basophils, and eosinophil (Delneste et al., 2007). TLR acti-
vation stimulates signaling cascades by the host as a
defense mechanism against invaders and to repair the
damaged tissue (Wang et al., 2015), leading to the release
of various inflammatory cytokines and immune modula-
tors (Wong et al., 2009). Excessive TLR activation disrupts
the immune homeostasis by sustained pro-inflammatory
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cytokines and chemokine production and consequently
contributes to the development and progression of many
diseases (Komurcu et al., 2016), such as autoimmune dis-
eases including lupus erythematous (Subramanian et al.,
2006) and rheumatoid arthritis (Huang & Pope, 2009),
cancer (So & Ouchi, 2010), sepsis (Tsujimoto et al., 2008),
Alzheimer’s disease (Zhang et al., 2011), and diabetes type
1 (Jialal et al., 2015). A variety of regulatory factors that
control TLR activation have been reported to be involved
in the negative feedback of TLR-dependent signaling (Yuk
& Jo, 2011). In addition, antagonists/inhibitors targeting
TLR signaling represent a potential method for the thera-
peutic strategy (Gao et al., 2017). The current review de-
scribes the structure, characterizations, and signaling of
TLRs, feedback regulators of TLR signaling, and the inhib-
itors that target TLR signaling pathway.

Pattern recognition receptors (PRRs)
Microbes generate a vast array of PAMPs, which can be
recognized by cells of the innate immune system (Zhang
& Liang, 2016). This recognition of “non-self” signs oc-
curs via host PRRs, suggesting that the microbial-derived
signals are good targets for innate immunity to discrim-
inate between self- and non-self (Dolasia et al., 2018).
Sensing of these pathogens occurs instantly and effect-
ively, inducing suitable immune response (Kawai &
Akira, 2011). Toll-like receptors (TLRs) belong to PRRs,
and they are crucial in host protection against microbial
infections as they generate innate immune response
(Vidya et al., 2017). They recognize both PAMPs and
DAMPs derived from tissue damage (Yu & Feng, 2018;
Gauthier et al., 2010). The ligands for TLR are extremely
broad, ranging from hydrophilic nucleic acids to hydro-
phobic lipids and from small-sized compounds to mac-
romolecules (Wang et al., 2015).

Discovery of TLRs
TLRs received their name from their similarity to the pro-
tein coded by the toll gene identified during the embry-
onic development and dorsoventral polarization of
Drosophila in 1985 by Christiane Nüsslein-Volhard. She
saw a strange phenotype in mutant fly larvae and
exclaimed, “Das war ja toll!” which in German means
“That was strange or weird!”; hence, the name “Toll” was
given to the protein (Anderson et al., 1985). It was discov-
ered that the protein encoded by “Toll” gene serves as a
receptor on cells (Schneider et al., 1991), and this protein
was essential for the host innate immunity against fungal
infection in adult flies (Lemaitre et al., 1996).

Structure and characterization of TLRs
TLRs are type I transmembrane proteins with 20–27 extra-
cellular leucine-rich repeats (LRR) for the recognition of
PAMP/DAMP, transmembrane domains, and intracellular

toll–interleukin 1 (IL-1) receptor (TIR) domains required
for the activation of downstream signal transduction path-
ways (Fig. 1) (Gao et al., 2017). The extracellular domains
of TLR contain glycan moieties that serve as binding sites
for ligands (Akira et al., 2006). However, the exact mecha-
nisms underlying glycan-mediated recognition of ligands
are not clear (Isaza-Correa et al., 2014). The main charac-
teristics that distinguish different TLRs are ligand specifi-
city, signal transduction pathways, and subcellular
localization (Singh et al., 2014) .

Members of TLR family
Ten members of the human )Fig. 2) (Mahla, 2013) and 13
members of the mouse TLR family have been identified, al-
though TLR10 is non-functional in mouse (Yamamoto &
Takeda, 2010). TLR4 was the first toll protein homolog dis-
covered in humans, it was shown to induce expression of
genes involved in inflammatory responses (Medzhitov et al.,
1997), and its role was confirmed when the point mutation
in the TLR4 gene was identified in a mouse strain that was
unresponsive to lipopolysaccharides (LPS) (Poltorak et al.,
1998). TLRs are functionally subdivided into:

I. Cell membrane TLRs (heterodimers of TLR2 with
TLR1 and TLR6 in addition to TLR4, TLR5, and
TLR10) that are expressed on the cell surface (Gay
et al., 2014).

II. Intracellular TLRs or nucleic acids sensors (TLR3,
TLR7, TLR8, and TLR9) that are localized to
endoplasmic reticulum (ER), endosomes, and
lysosomes (Sellge & Kufer, 2015).

Expression of TLRs
It is amazing that the expression of TLR mRNA are not
restricted to immune tissues like the spleen, thymus, tonsils,
lymphatic vessels, and lymph nodes but distributed in all
tissues including the peripheral blood leukocytes, heart, liver,
pancreas, colon, small intestine, lung, kidney, ovary, pla-
centa, testis, prostate, skeletal muscle, and brain (Zarember
& Godowski, 2002). They are expressed on all innate im-
mune cells including macrophages, NK cells, DCs, and cir-
culating leukocytes such as monocytes and neutrophils as
well as on adaptive immune cells like T and B lymphocytes
and on non-immune cells like epithelial and endothelial cells
and fibroblasts (Delneste et al., 2007).

Exogenous ligands of TLRs
PAMPs include microbial molecular structures (Fig. 3)
(Hemmi et al., 2000) such as proteins (e.g., flagellin from
bacterial flagella), lipoteichoic acid (LTA) and peptidogly-
can (PGN) from Gram-positive bacteria, LPS from Gram-
negative bacteria, lipoarabinomannan (LAM), lipopeptides,
lipoglycans, and lipomannans from mycobacteria, zymosan
from yeast, double-stranded (ds) RNA of viruses, and DNA
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from viruses and bacteria (Hoebe et al., 2003; Ayres &
Schneider, 2012).

Endogenous ligands of TLRs
Endogenous ligands or host-derived DAMPs (Fig. 3)
(Hemmi et al., 2000) are usually produced as a result of in-
jury and non-physiological cell death, including extracellular
matrix components (e.g., hyaluronan and fibrinogen), plasma
membrane constituents, nuclear and cytosolic proteins [e.g.,
high-mobility group box protein 1 (HMGB1) and heat shock

proteins (HSPs)], and elements of damaged/fragmented or-
ganelles [e.g., mitochondrial DNA (mtDNA)] (Murad, 2014).

Adaptor proteins for TLR signaling
In mammals, five different types of signaling adaptor
proteins can be recruited by the TIR domain (Akira &
Takeda, 2004):

� Myeloid differentiation primary-response protein 88
(MyD88).

Fig. 1 Structure of TLRs

Fig. 2 Members of TLRs family and their location
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� TIR domain-containing adaptor protein (TIRAP or
MAL).

� TIR domain-containing adaptor protein inducing
IFN-β (TRIF).

� TRIF-related adaptor molecule (TRAM).
� Sterile α- and armadillo-motif-containing protein

(SARM).

The MyD88 signaling cascade is essential for TLR2, 4,
5, 7, 8, and 9 (Burns et al., 2003). TIRAP activation is
MyD88-dependent and is associated with TLR2 and 4
(Mansell et al., 2004; Bernard & O'Neill, 2013). TRIF
acts independently of MyD88 in signal transduction fol-
lowing TLR3 and 4 activation (Cusson-Hermance et al.,
2005; Bryant et al., 2015). TRAM mediates TLR4 signal-
ing in a MyD88-independent/TRIF-dependent way
(McGettrick et al., 2006). SARM is a negative regulator
of TRIF and therefore serves to regulate TLR3 and 4 sig-
naling (Couillault et al., 2004; Troutman et al., 2012).

Signaling pathways of TLRs
The binding of ligands to TLR stimulates specific intracellu-
lar downstream signaling cascades that initiate host defense
reactions (Wang et al., 2015). Such PAMP-PRR interactions
lead to production of pro-inflammatory cytokines and type 1
interferon that orient immune responses to particular mi-
crobes (Zhang & Liang, 2016). TLR signaling depends on the
nature of the stimulus, the activated TLR, and the down-
stream adaptor molecule. TLR signaling includes at least two
distinct pathways (Fig. 4) (Kagan, 2012):

� MyD88-dependent pathway utilized by all TLRs,
except TLR3, leading to the production of
inflammatory cytokines (Yamamoto et al., 2002).

� TRIF-dependent pathway utilized by TLR3 and 4
and associated with the stimulation of interferon
type-1 (Kawai & Akira, 2010).

Function of TLRs
The main function of TLRs is the ability to recognize nu-
merous pathogens (Gao et al., 2017). Each cell of immune
system contains a specific group of TLR that exert special
functions in recognizing PAMP/DAMP and mediating im-
mune responses (Lancaster et al., 2005; Cole et al., 2010).
TLR function in innate immunity is through the induction
of antimicrobial activity and the production of inflamma-
tory cytokines (Vidya et al., 2017; Li et al., 2010). Upon acti-
vation by PAMPs or DAMPs, TLRs recruit adapter
proteins that act as a platform to recruit IL-1R-associated
protein kinases (IRAK) 1, 2, 4, and M and TAB2 and TNF
receptor-associated factor 6 (TRAF6) which finally leads to
nuclear translocation of pro-inflammatory transcription
factor, nuclear factor kappa-B (NF-kB) (Li et al., 2010;
Kumar et al., 2011), activator protein 1 (AP-1) (Gay et al.,
2014), and interferon regulatory factor 3 (IRF3) (Zhao et al.,
2015). Each transcription factor is responsible for the tran-
scription of specific genes that encodes different set of pro-
teins such as pro-inflammatory cytokines [tumor necrosis
factor alpha (TNF-α), interleukin (IL)-1β and IL-6] and type
1 interferon (IFN-α, β), chemokines (CXCL8 and CXCL10),
and antimicrobial peptides (Moresco et al., 2011).

Fig. 3 PAMPs and DAMPs as stimulators of TLRs
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Consequences of the released cytokines
A major feature of TLRs activation is the secretion of pro-
inflammatory cytokines and type1 interferon. Cytokines
are short-lived, long-range mediators that act on different
tissues to mount the systemic response. Although TLRs
are playing important role in host defense, pro-
inflammatory cytokines such as TNF-α and IL-1β have
varied effects on the host body where they are the master
contributors for the behavioral changes during infection
such as weakness, lethargy, fatigue, and anorexia (Jaffer
et al., 2010). They affect the physiological processes as
they direct the metabolic processes towards catabolism,
preventing muscle protein synthesis, boosting muscle
wasting, and inducing liver anabolism. They induce also
peripheral lipolysis, upregulate de novo fatty acids synthe-
sis and hepatic triglyceride production, and promote se-
cretion of VLDL-cholesterol, all of which increase serum
triglycerides levels (Bresnahan & Tanumihardjo, 2014).

Importance of TLRs

� TLRs are bridging molecules since they are
expressed on DCs that join innate and adaptive
immunity (Gao et al., 2017). TLRs recognize the
pathogen and convey the signal to antigen
presenting cells which kill the microbes by
phagocytosis (Moresco et al., 2011; Sharma et al.,
2013). It is worth to note that the presence of a total
group of TLRs on immature DCs assists in their
maturation process (Re & Strominger, 2011).

� They received their importance from their ability to
recognize invading pathogens, PAMP and
endogenous damage molecules DAMP to trigger the
process of self-healing and tissue repair (Goulopou-
lou et al., 2016). The importance of TLR1, 2, and 6
lies in their ability to recognize bacterial lipoproteins
and glycolipids (Kawai & Akira, 2010), TLR7, 8, and
9 identify nucleic acids such as bacterial and viral
(ssRNA and unmethylated CpG DNA motif), TLR3
distinguishes viral dsRNA (Takeda et al., 2004),
TLR4 recognizes fibronectin and LPS (Blasius &
Beutler, 2010), TLR5 identifies bacterial flagellin,
TLR11 and 12 recognize profilin, and TLR10 is still
unknown (Takeda & Akira, 2015).

� TLRs stimulate apoptosis of infected cells. It stop its
protein synthesis, limit the infection, and
downregulate the immune response as in DCs
during the inflammatory conditions of sepsis (Kaiser
& Offermann, 2005).

� TLRs are important risk factors in the pathogenesis
of many diseases and the signaling modulation was
suggested in disease control and therapy (Tsujimoto
et al., 2008). For example, TLR3, 7, and 8 have
important roles in the recognition of allergens and
subsequently pathogenesis of allergic diseases as
allergic rhinitis (Golshiri-Isfahani et al., 2018).

Implication of TLRs in diseases
Several studies have presented considerable evidences on
the contribution of TLR signaling dysregulation to the
development and progression of numerous diseases such

Fig. 4 TLR signaling pathways
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as autoimmune, chronic inflammatory, and infectious
diseases as well as cancer (Huang & Pope, 2009; Jialal
et al., 2015; Gao et al., 2017; Isaza-Correa et al., 2014;
Devaraj et al., 2011).

Autoimmune diseases
Systemic lupus erythematous (SLE)
It has been demonstrated that endosomal TLR7 and 9
are found to be overexpressed in SLE associated with
the production of autoantibodies (Subramanian et al.,
2006); in addition, their levels were found to be corre-
lated with the production of IFN-α (Lyn-Cook et al.,
2014). Membrane TLR2 and 4 have been found to be in-
volved in the pathogenesis of SLE (Lee et al., 2016).

Rheumatoid arthritis (RA)
Bacterial DNA was detected in the joints of patients with
RA leading to increased synovial inflammation via TLR
signaling (Heijden et al., 1998). TLR2 and 4 are
expressed by cells within inflamed joints of patients with
RA (Huang & Pope, 2009). In addition, endogenous
TLR3 and 7 were expressed in the synovial tissues of RA
(Radstake et al., 2004; Roelofst et al., 2005).

Behcet’s disease
Increased expression of TLR2 and 4 on monocytes of ac-
tive Behcet’s disease patients have been observed
(Devaraj et al., 2011; Do et al., 2008).

Chronic hepatitis B virus (HBV)
The relation between the chronic HBV infection and the
expressions of TLR2 and TLR4 was studied (Lu et al.,
2014); the authors suggested that the elevated expres-
sions of TLR2 and TLR4 on DCs surfaces in peripheral
blood may synergistically promote the disease progres-
sion of chronic HBV infection.

Cancer
Upregulation of some TLRs has been shown in many
tumor cells, tissues, and tumor cell lines. TLR1, 2, 3, and
4 were reported to be implicated in colon cancer, TLR2,
3, 4, 6, and 9 were shown to contribute to hepatocellular
carcinoma, and TLR3, 4, and 9 were shown to be highly
expressed in breast cancer (So & Ouchi, 2010; Isaza-
Correa et al., 2014).

Vascular system disorders
TLRs can recognize circulating DAMPs released from
the dying cells and damaged tissues to trigger the
process of self-healing and tissue repair (Gauthier et al.,
2010). In atherosclerosis, TLR2 or 4 suppression resulted
in diminishing inflammation in mouse models of athero-
sclerosis. TLR3 activation has been found to promote
atherogenic inflammation, especially in mediating plaque

instability (Ishibashi et al., 2013). In hypertension, TLR4
has been well-documented to mediate inflammation in
vasculature (McCarthy et al., 2015).

Sepsis
Excessive TLR activation can lead to systemic inflamma-
tion, characterized as sepsis. TLR2 and 4 are the two
sponsors to the pathogenesis of sepsis. Activation of TLRs
was also reported to contribute to the development and
progression of atherosclerosis, cardiac dysfunction, and
congestive heart failure in sepsis (Tsujimoto et al., 2008).

Alzheimer’s disease
A study on Alzheimer’s patients has shown a noticeable
elevation in TLR2 and 4 expression in the peripheral
blood mononuclear cells in late-onset Alzheimer's dis-
ease patients (Zhang et al., 2011).

Obesity and type 2 diabetes mellitus (T2DM)
Obesity and T2DM are known to be associated with
chronic low-grade inflammation called metabolic inflam-
mation together with an oxidative stress milieu found in
the expanding adipose tissue (Donath et al., 2011). Several
DAMPs are released during T2DM; TLR2 activates innate
immunity upon recognition of DAMPs. Therefore, TLR2 is
significantly involved in diabetes progression (Sepehri et al.,
2016). TLR4 signaling pathway is involved in chronic in-
flammation and insulin resistance, which are associated
with obesity and T2DM (Jialal et al., 2015). TLR2 and
TLR4 have emerged as metabolic sensors of LPS and sFFAs
in obese/T2DM individuals (Ahmad et al., 2012). ROS-
mediated oxidative stress could induce TLR10 expression
via NF-κB/MAPK signaling as well as ER stress. Thus,
TLR10 may represent an immune marker for metabolic in-
flammation (Sindhu et al., 2018). The role of inflammation
in β-cell dysfunction in diabetic patients could be related
through the strong link between TLRs and both inflamma-
tion (Karaali et al., 2019) and autophagy (Yin et al., 2014).
The expression of TLR-2 was upregulated in obese/T2DM
patients and was associated with inflammatory response as
assessed by increased serum levels of IL-18 (Mohamed
et al., 2016). A high-glucose level could also induce TLR-2
and TLR-4 expression in retinal ganglion cells via increase
in the secretion of pro-inflammatory factors in diabetic ret-
inopathy (Zhao et al., 2016).

Negative feedback regulators of TLRs
In TLR signaling, several negative regulators that function
to prevent ligand-receptor binding, degrade the target pro-
tein, and inhibit recruitment or transcription of intermedi-
ates have been identified (Yuk & Jo, 2011). Soluble forms
of TLRs (sTLRs) play a central role in the regulation of in-
flammation in various conditions. They include soluble
forms of TLR2 and TLR4 that function as a feedback
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mechanism for the inhibition of excessive TLR activation.
The sTLR4 significantly inhibits LPS-mediated TNF-α
production and NF-κB activation (Iwami et al., 2000). The
sTLR2 inhibits bacterial lipopeptide-induced IL-8 and
TNF production (LeBouder et al., 2003). Both membrane-
bound receptors suppression of tumorigenicity 2L (ST2L)
and single immunoglobulin interleukin-1 receptor-related
protein (SIGIRR) are membrane-associated TLR regula-
tors. ST2L binds to the MyD88 and MAL, whereas
SIGIRR binds to TLR4, IRAK4, and TRAF6. Both of them
inhibit MyD88-dependent pathway (Brint et al., 2004).
Other intracellular TLR regulators which include sMyD88,
A20, and small heterodimer partner (SHP) have been
shown to negatively regulate TLR signaling. sMyD88 sub-
stitutes MyD88 to antagonize MyD88-dependent pathway
via inhibition of IRAK4 recruitment; IRAKM inhibits
IRAK1 phosphorylation by targeting IRAK1-IRAK4 com-
plex (Kobayashi et al., 2012); A20 is an inducible de-
ubiquitination enzyme and de-ubiquitinylates TRAF6 to
terminate TLR signaling (Boone et al., 2014); SHP func-
tions as both a repressor of NF-κB and an inhibitor of
TRAF6 ubiquitination (Leavy, 2011).

Targeting of TLR signaling
Although TLRs are essential elements in innate immune
system and play a critical role in the host-defensive
mechanism against microbes, overactivation of TLRs dis-
rupts the immune homeostasis leading to excessive pro-
inflammatory cytokines production that is no doubt
involved in the pathogenesis of many autoimmune and
inflammatory diseases. Thus, inhibition of TLR signaling
pathways has been predicted to be an effective thera-
peutic strategy to suppress unwanted, disease-associated
inflammatory responses (Gao et al., 2017).
In general, TLR inhibition can be achieved by two

major strategies:

� Blocking the binding of TLR ligands to the receptor.
� Interfering the intracellular signaling pathways to

stop the signal transduction.

Some clinical trials suggest that therapeutic manipula-
tion of TLR pathways may offer novel means of revers-
ing chronic liver diseases (Kesar & Odin, 2014). In SLE,
TLR7 deletion can be used as novel way to improve dis-
ease symptoms of patients with SLE because the levels
of autoantibodies and inflammatory cytokines, such as
IL-6 and INF-α, will decrease (Kono et al., 2009). Ac-
cordingly, various therapeutic agents for inhibiting TLR
signaling have been developed to control excessive in-
flammation; they can be classified as small molecule in-
hibitors, antibodies, oligonucleotides, lipid-A analogs,
microRNAs, and new emerging nano-inhibitors (Gao
et al., 2017).

Small molecule inhibitors (SMIs)
They are synthetic or naturally derived chemical weak bases
that can inhibit TLR signaling by accumulation in the acidic
intracellular compartments like endosomes and lysosomes
leading to suppression of auto antigen presentation, block-
ade of endosomal TLR7, 8, and 9 signaling, and decrease in
cytokine production (Kuznik et al., 2011). They include
antimalarial drugs such as SM934, CpG-52364, hydroxy-
chloroquine sulfate (HCQ), and chloroquine (CQ) that have
been used to treat autoimmune diseases (RA and SLE) (Wu
et al., 2016). While HCQ has been found to ameliorate
hypertension and aortic endothelial dysfunction (Gomez-
Guzman et al., 2014), CpG-52364 is more therapeutically
effective and has less side effects than HCQ in SLE animal
studies (Lipford et al., 2017). CQ has shown to treat various
viral infections such as HIV, influenza, and dengue (Borges
et al., 2013), reduce the risk of severe sepsis-induced acute
renal failure (Yasuda et al., 2018), and can significantly im-
prove the cerebral ischemia symptoms in a rat model,
which suggests that it could be beneficial for patients with
cardiovascular diseases (Cui et al., 2013). In addition to
endosomal TLR signaling, TLR2 and 4 are other two major
targets of therapeutic SMIs. TAK-242 is an anti-sepsis SMI
that targets TLR4 signaling pathways via binding to cysteine
747 in the intracellular TIR domain of TLR4, which blocks
the interaction between TLR4 and the adaptor proteins,
thereby diminishing LPS-induced TLR4 signaling and in-
flammation (Matsunaga et al., 2011). Like antimalarial
drugs, angiotensin II receptor blockers (ARBs) and statins
have shown to inhibit Pam3CSK4 and LPS induced-TLR2
and TLR4 signaling (Fang et al., 2014).

Antibodies
They are designed to block the binding of ligands to the spe-
cific TLRs. Blockade of TLR2 and 4 signaling by antagonistic
antibodies decreases disease severity in sepsis models of
Gram-positive and Gram-negative bacteria (Daubeuf et al.,
2007). OPN-305, an anti-TLR2 antibody, has shown to
block TLR2-mediated pro-inflammatory cytokine produc-
tion in vitro and in ischemia-reperfusion (IR) injury animal
models (Arslan et al., 2012). T2.5, another monoclonal anti-
TLR2 antibody, was found to increase animal survival and
protect against severe shock-like syndrome in a mouse
model challenged with Pam3CSK4 or lethally challenged
with Bacillus subtilis (Meng et al., 2004), decrease neural
death and inflammatory responses in a model of transient
brain ischemia (Ziegler et al., 2011), and prevent angiotensin
II-induced cardiac fibrosis through suppressing macrophage
recruitment and inflammation in the heart (Wang et al.,
2011). NI-0101, an anti-TLR4 antibody, can inhibit TLR4
signaling by blocking TLR4 dimerization (Monnet et al.,
2015). It could successfully block cytokine release ex vivo
and in vivo, prevent LPS-induced flu-like symptoms
(Monnet et al., 2017), and block synovial fluids-induced pro-
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inflammatory cytokine production in monocytes isolated
from RA patients (Hatterer et al., 2016). 1A6, another
TLR4-antibody, has shown to target TLR4 activation (Spiller
et al., 2008), ameliorate inflammation, and prevent the dis-
ease progression in a mouse model of colitis and protect
against microbial-induced septic shock in vivo (Lima et al.,
2015).

Oligonucleotides
They can interfere the binding of ligands to endosomal
TLRs and hence block the TLR signal transduction. Ac-
cordingly, many of them have been developed particu-
larly to treat inflammatory diseases associated with
endosomal TLR activation, such as SLE (Barrat et al.,
2005). Recently, it was revealed that targeting of TLR7
and 9 signaling could be a novel strategy for treating the
chronic inflammatory process associated with myasthe-
nia gravis, an autoimmune neuromuscular disease
(Cavalcante et al., 2018). IRS954, an immunoregulatory
DNA sequence, has shown to antagonize TLR7/TLR9
(Guiducci et al., 2010). DV-1179, another TLR7/9 dual
antagonist, was used for its safety in patients with SLE
http://investors.dynavax.com/releasedetail.cfm?releaseid=
885172]. Varied forms of IMO, an immune modulatory
oligonucleotide, could significantly reduce the expression
of inflammatory genes in a mouse model of IL-23-
induced psoriasis (Suarez-Farinas et al., 2013) and inhibit
the activity of TLR7, 8, and 9 signaling in SLE (Zhu
et al., 2012). The inhibitory oligonucleotide (IHN-ODN)
2088, a potent TLR9 antagonist, has shown to reduce
systolic blood pressure in hypertensive rats (Rommler
et al., 2015). INH-ODN-24888 was designed for its
promising therapeutic effect in SLE through the suppres-
sion of both TLR7 and TLR9 ().

Lipid A analogs
They are a special group of TLR antagonists, specifically
targeting TLR4. The most exciting one is eritoran, which
prevents the binding of LPS to TLR4 in severe sepsis pa-
tients (Opal et al., 2013). It could reduce LPS-induced
NF-κB activation and pro-inflammatory cytokine pro-
duction (TNF-α, IL-1β, IL-6, and IL-8) in vitro and in
sepsis animal models (Barochia et al., 2011).

MicroRNA inhibitors (miRNAs)
They are small, endogenous non-coding RNAs with
post-transcriptional regulatory functions to fine-tune
gene expression (Bartel, 2012). About 20 miRNAs are
identified to be involved in the regulation of TLR sig-
naling pathways (He et al., 2014). Among them, miR-
146a, miR-155, and miR-21 are the three miRNAs
that received extensive attention for their regulatory
roles in TLR signaling and autoimmune diseases
(Shen et al., 2016).

New emerging nano-inhibitors
They are emerging as a new class of potent TLR inhibitors
that can target a single or multiple TLR pathways (Blanco
et al., 2015). The lipid-conjugated non-anticoagulant hep-
arin nanoparticle (NAHNP) is an interesting nano-inhibitor
(Babazada et al., 2014a). This nanoparticle (NP) inhibitor
was found to suppress LPS-induced MyD88-dependent
NF-κB activation and inhibit subsequent cytokines produc-
tion in mouse macrophages (Babazada et al., 2014b). The
high-density lipoprotein (HDL)-like nanoparticle (HDL-like
NP) was developed as a TLR4 antagonist by sequestering
LPS (Foit & Thaxton, 2016) and has been applied to reduce
LPS-induced inflammation in vivo (Guo et al., 2013). Gold
nanoparticles (GNPs) have caught much attention in nano-
medicine (Pedrosa et al., 2015). A bare GNP was applied as
the post-treatment topically to ameliorate LPS-induced eye
inflammatory responses through downregulating TLR4 ex-
pression and the corresponding LPS-induced NF-κB activa-
tion (Pereira et al., 2012). In another study, a cationic
glycolipid-coated GNP system was developed as a new
TLR4 antagonist (Rodriguez Lavado et al., 2014). The ma-
jority of TLR nano-inhibitors act on TLR4 signaling, except
the peptide-GNP, P12, which has shown inhibitory activity
on multiple TLRs, i.e., it not only suppressed TLR4 signal-
ing, but also inhibited TLR2, TLR3, and TLR5 pathways
(Dagvadorj et al., 2015). Further studies conferred the anti-
inflammatory activity of P12 in LPS-induced gene expres-
sions, reducing the subsequent pro-inflammatory cytokine
production (IL-12 and IFN-γ) and increasing the anti-
inflammatory cytokine IL-1RA (Yang et al., 2016).

Egyptian studies
All researches done till now, in Egypt, have focused on
the implications of TLRs in several diseases. It was dem-
onstrated that the genetic polymorphisms of TLR2 and
TLR4 were not associated with asthma and allergic rhin-
itis, but significant association was found between these
genetic variants and the disease severity in children
(Hussein et al., 2012). It was revealed that TLR2 and
TLR4 polymorphisms have no influence in HCV among
Egyptian children (Soliman et al., 2014), while TLR4
polymorphism may be important predictor for HCV
therapy in adults (Sadik et al., 2015). There was no sig-
nificant association between TLR4 polymorphism and
colorectal cancer (CRC), but higher serum level of it was
associated with a diagnostic prospect in CRC patients
(Bassuny, 2017). In addition, TLR4 was not engaged in
the progression of lower respiratory tract infection in
children (Allam & Abd EL-Salam M, Mohammad A,
Aboulkhair AG., 2015) but considered as a common
contributor in patients with pulmonary fibrosis and lung
cancer (Ahmed et al., 2016). TLR4 levels were higher in
T2DM patients and found to correlate well with the se-
verity of albuminuria suggesting its possible role in the
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pathogenesis of diabetic nephropathy (Fathy et al., 2016).
Increased TLR4 expression on T cells which associated
with increased reactive oxygen species (ROS) generation
has been shown to play pathogenic role in autistic chil-
dren (Nadeem et al., 2017).

Conclusion
Based on the existing scientific literature, it is concluded
that TLRs are the main elements in the innate orchestra-
tion of immune system. Working in TLRs area including
their characterization, expression, ligands recognition,
signaling, and implication in many diseases has signifi-
cantly progressed in past years. Our main concern
should be focused on maintaining TLRs functioning and
keeping the integrity of innate immune system. Target-
ing of TLR signaling represents a new challenge for
treatment of many diseases.
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