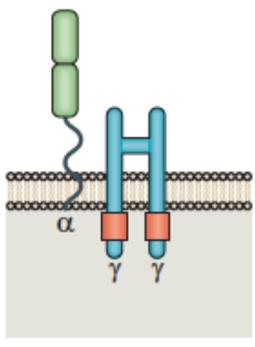

Il legame IgE con l' FcεRI stabilizza l'espressione dell'FcεRI

L'interazione dell'FcERI con le IgE stabilizza l'espressione del recettore sui mastociti e basofili.

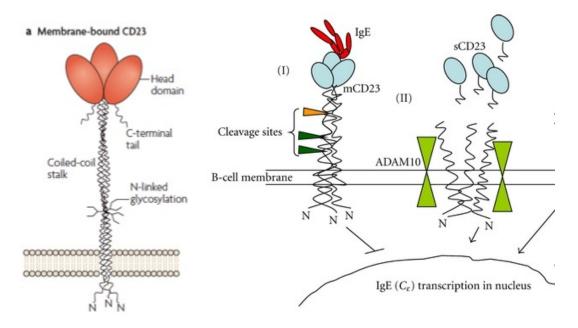

Sia nell'uomo che nel modello murino alti livelli di IgE seriche sono stati correlati ad una aumentata espressione dell'FceRI di membrana.

Gli alti livelli di espressione del recettore nei mastociti umani sono stati associati ad un aumento della produzione di istamina e di leucotrieni nelle cellule attivate con una anticorpo anti-IgE .

Forma trimerica ($\alpha\gamma\gamma$) del recettore ad alta affinità per le IgE (Fc ϵ RI)

Fc&RI (humans)

Dendritic cells and macrophages

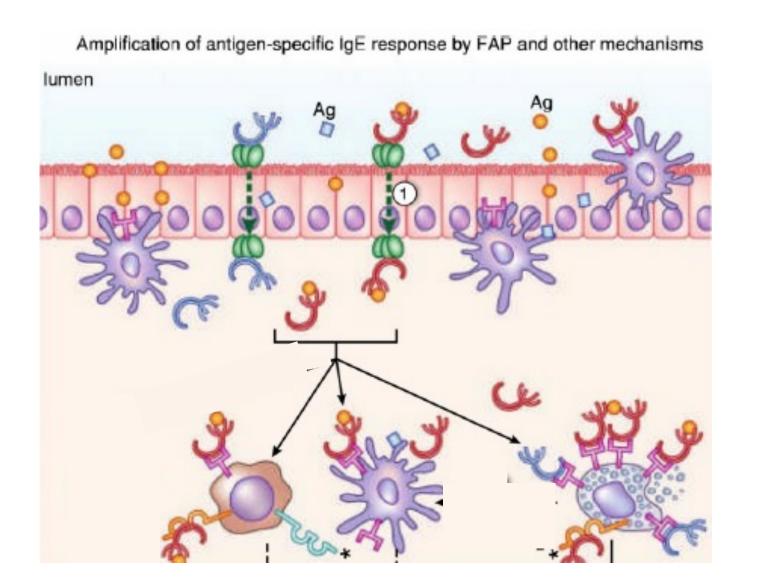

La forma trimerica dell'FcεRI può essere espressa da una varietà di altre cellule quali: macrofagi, cellule dendritiche, eosinofili, piastrine e neutrofili. Questo recettore legato alle IgE aiuta la presentazione dell'antigene da parte delle cellule presentanti l'antigene.

Recettore a bassa affinità per le IgE: FcERII o CD23

FceRII (CD23)

B cells¹⁴³, T cells, NK cells, monocytes, macrophages, follicular dendritic cells¹⁴³, Langerhans cells, bone marrow stromal cells, neutrophils, eosinophils, platelets^{1,3,17} and airway²⁰ and intestinal^{144,145} epithelial cells.

Regulation of IgE production¹, killing of intracellular pathogens (Leishmania major¹⁴⁶ and Toxoplasma gondii²⁶) or tumor cells²⁸, facilitated antigen presentation¹ and transport of IgE and antigens across the epithelium^{19,144}.


Il recettore a bassa affinità per le IgE è denominato FcεRII ο CD23.

CD23 è una lectina che può essere legata alla membrana o in forma solubile. Il CD23 espresso in membrana presenta tre domini lectinici responsabili del legame con le IgE.

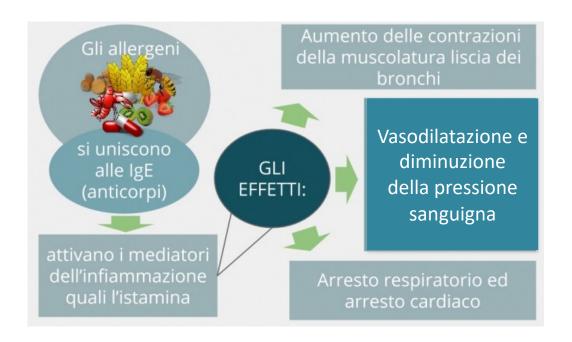
Il CD23 viene rilasciato dalla membrana per azione della metallo proteasi ADAM10.

Il CD23 è espresso dalle cellule B, cellule epiteliali.

Amplificazione della risposta immune agli allergeni mediata dal CD23

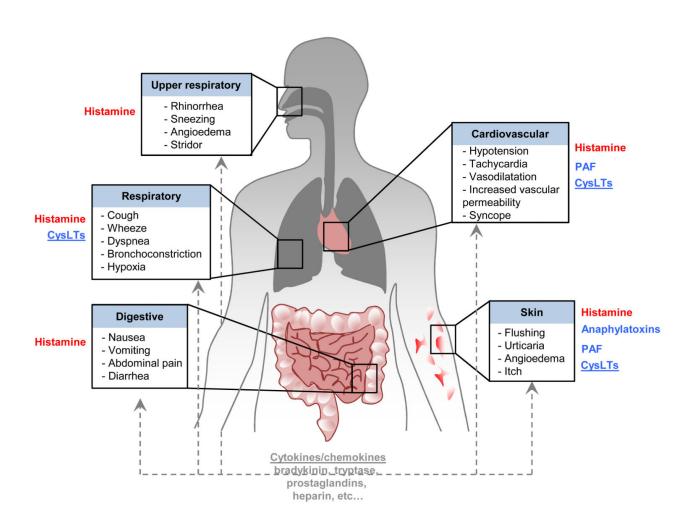
L'espressione di CD23 sulle cellule epiteliali favorisce il passaggio delle IgE o dei complessi Ag-IgE dal lume intestinale o del tratto respiratorio alla mucosa mediante sottostante transcitosi (1). Questi complessi possono legare l'FcεRI dai espresso mastociti e macrofagi. Le IgE sensibilizzano i mastociti e sostengono la reazione allergica.

Manifestazioni clinicopatologiche delle malattie allergiche



Gli effetti delle reazioni allergiche mediate da IgE variano in base al sito di attivazione dei mastociti e del livello di cronicizzazione del processo infiammatorio.

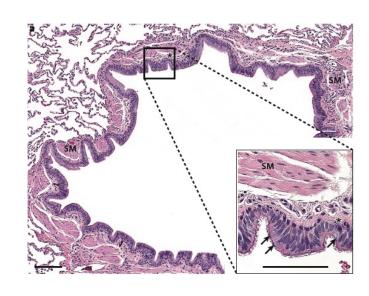
I tessuti più comunemente esposti agli allergeni sono la mucosa del tratto gastrointestinale, dell'apparato respiratorio, il circolo sanguigno. I mastociti sono abbondanti a livello cutaneo e delle mucose del tratto respiratorio e gastrointestinale.

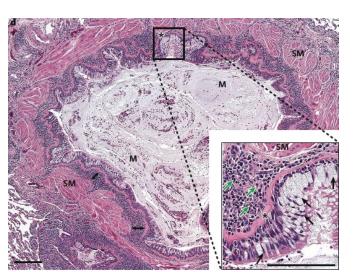

Le reazioni allergiche includono la rinite allergica, l'asma bronchiale, la dermatite atopica, l'allergia ai cibi, l'anafilassi.

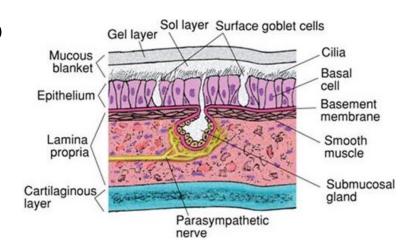
Anafilassi sistemica

L'anafilassi è una reazione ipersensibilità immediata di tipo sistemico grave e che può causare la morte. Nel corso dell'anafilassi elevate quantità di mediatori sono rilasciate dai mastociti nel circolo sanguigno. Ciò causa la rapida riduzione del tono dei vasi e perdita di fluidi con conseguente caduta della pressione e collasso cardiocircolatorio. Tali mediatori sono anche responsabili della contrazione della muscolatura liscia che nel tratto respiratorio causa costrizione delle vie respiratorie. L'anafilassi si sviluppa entro pochi secondi e al massimo 1 ora dall'esposizione all'allergene.

Manifestazioni cliniche dell'anafilassi sistemica

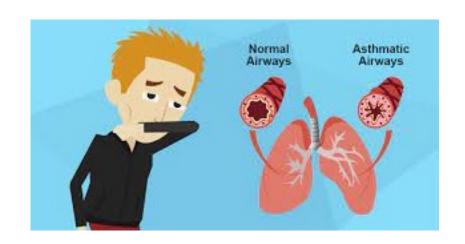



Nello shock anafilattico gli effetti a livello cardiovascolare sono accompagnati da costrizione delle vie aeree superiori e inferiori, alterazioni intestinali e orticaria.


I mediatori responsabili dell'anafilassi sistemica includono l'istamina e il fattore di attivazione delle piastrine (PAF).

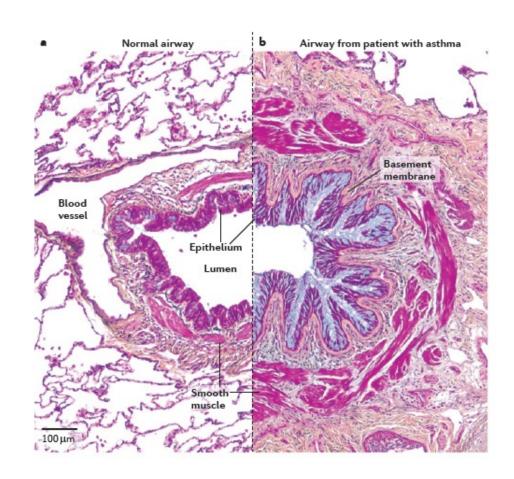
Nello shock anafilattico la morte è generalmente causata da asfissia. L'anafilassi è la causa di morte di circa 160 persone l'anno negli Stati Uniti. I potenziali allergeni possono essere introdotti attraverso punture di insetto, iniezione di farmaci o assorbimento attraverso gli epiteli. Il trattamento per l'anafilassi è rappresentato dalla somministrazione di adrenalina che agisce rilassando la muscolatura liscia bronchiale e riducendo la vasodilatazione.

Asma bronchiale allergico



•L'asma bronchiale allergico è una malattia infiammatoria cronica causata dalla continua o ripetitiva esposizione ad un allergene. L'asma bronchiale allergico tende ad apparire nell'infanzia ed è associato a risposte Th2. I sintomi dell'asma includono tosse, respiro sibilante, difficoltà respiratoria. Questi sintomi sono causati dall'infiammazione delle vie aeree che causa ipersecrezione di muco, e iper-responsività bronchiale, restringimento e ostruzione delle vie aeree, rimodellamento tissutale. Il restringimento delle vie aeree è dovuto all'infiammazione cronica delle pareti delle vie aeree che si accompagna alla fuoriuscita di plasma, edema, accumulo di cellule infiammatorie (eosinofili, neutrofili, linfociti T, mastociti).

L'iperresponsività bronchiale, tendenza della muscolatura bronchiale a contrarsi in risposta ad uno stimolo, causa un restringimento delle vie aeree che può essere revertito dal trattamento con broncodilatatori.


L'asma bronchiale allergico

L'asma bronchiale allergico tende ad apparire nell'infanzia.

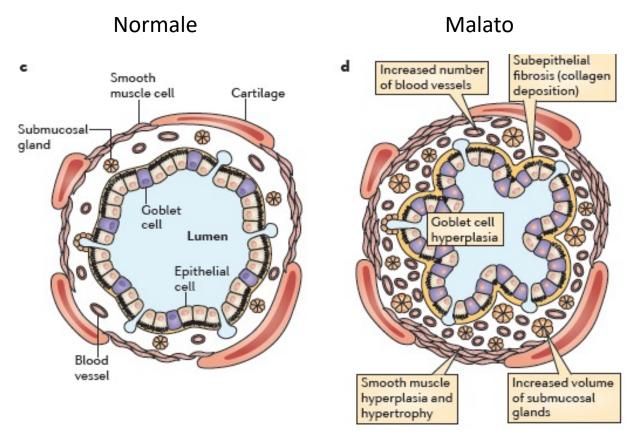
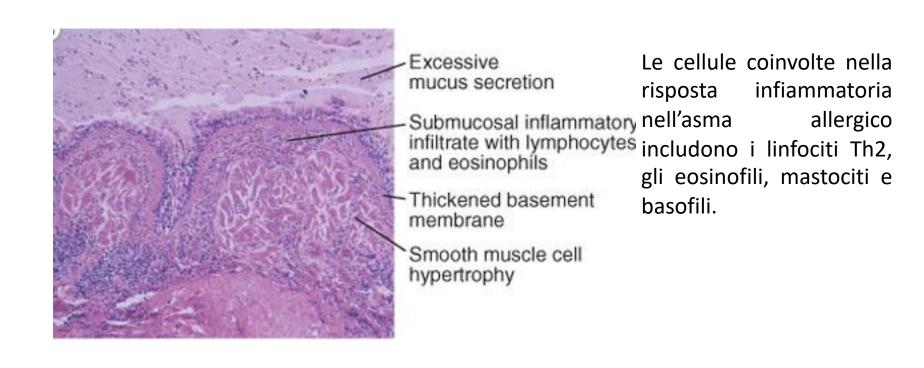
Questo tipo di asma causato dal contatto con allergeni è mediato dai linfociti T CD4+ Th2 specifici per l'allergene ed è caratterizzato dalla presenza di IgE allergene specifiche nel siero. In seguito al contatto con gli allergeni i linfociti Th2 producono le citochine di tipo 2 (IL-4, IL-5, IL-9, IL-13).

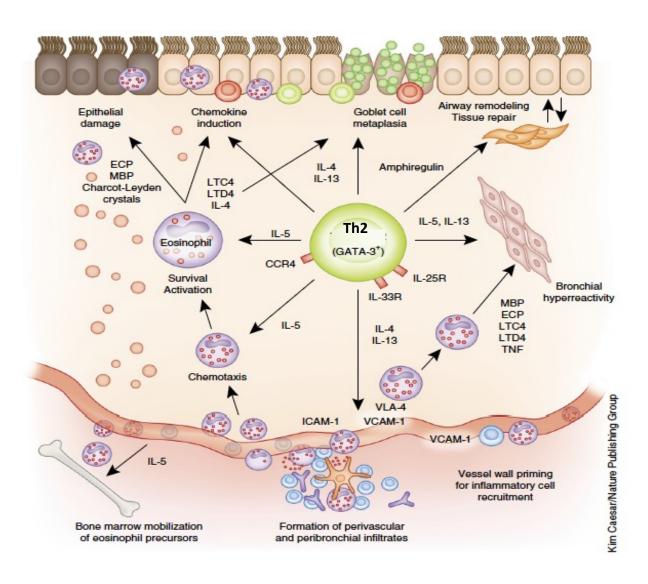
Caratteristiche dell'asma allergico

Nella maggior parte dei casi il trattamento con broncodilatatori reverte l'ostruzione delle vie aeree nell'asma bronchiale. Nei casi più gravi di asma bronchiale il trattamento con broncodilatatori non normalizza l'ostruzione. In alcuni casi questo è dovuto alla presenza di tappi di muco.

In altri casi questo è dovuto a un rimodellamento tissutale caratterizzato da: i) un aumento delle dimensioni e del numero delle cellule muscolari; ii) aumento delle cellule del goblet; iii) fibrosi sub-epiteliale.

Rimodellamento tissutale nell'asma allergico

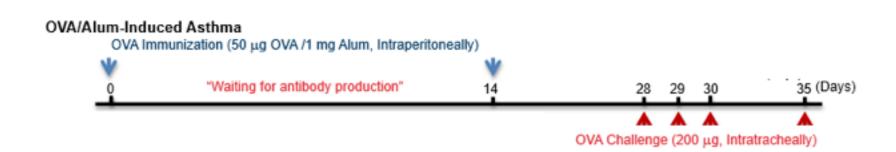




Figure 2 | Airway pathology in asthma. Airway structures in medium-sized healthy airways (part a; a schematic representation is depicted in part c) and in a patient with asthma (part b; a schematic representation is depicted in part d). The airways in asthma show considerable structural remodelling, including goblet cell hyperplasia, subepithelial fibrosis and increases in smooth muscle volume. Figure parts a and b republished with permission of Dove Medical Press, from the Journal of Asthma and Allergy, Clinical update on the use of biomarkers of airway inflammation in the management of asthma, Wadsworth, S., Sin, D. and Dorscheid, D., 4, 2011; permission conveyed through Copyright Clearance Center, Inc.

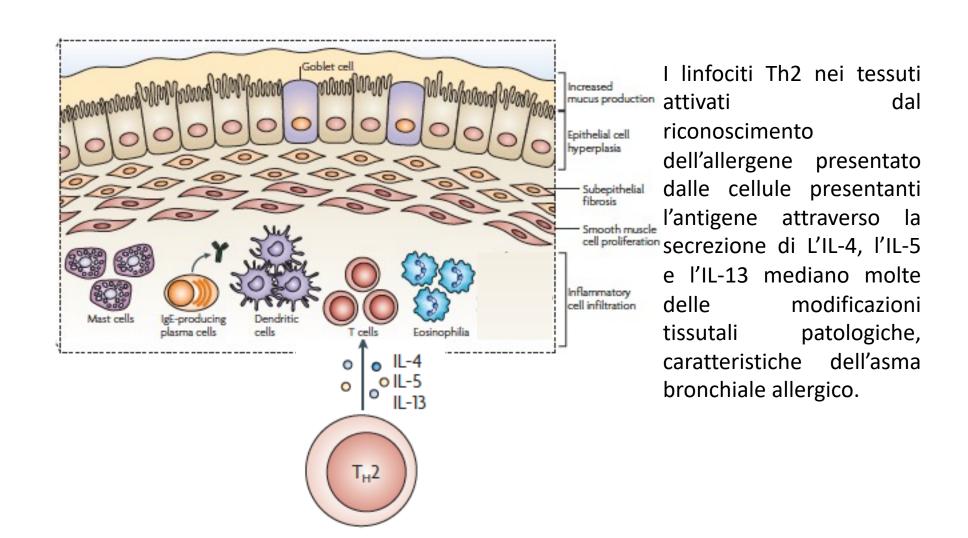
- •Aumento delle cellule del goblet
- Aumento delle dimensioni e del numero di cellule muscolari (Iperplasia e Ipertrofia delle cellule muscolari lisce (SM))
- •fibrosi sub-epiteliale
- •Infiltrazione di linfociti ed eosinofili nella mucosa

Cellule coinvolte nella risposta infiammatoria all'allergene nell'asma

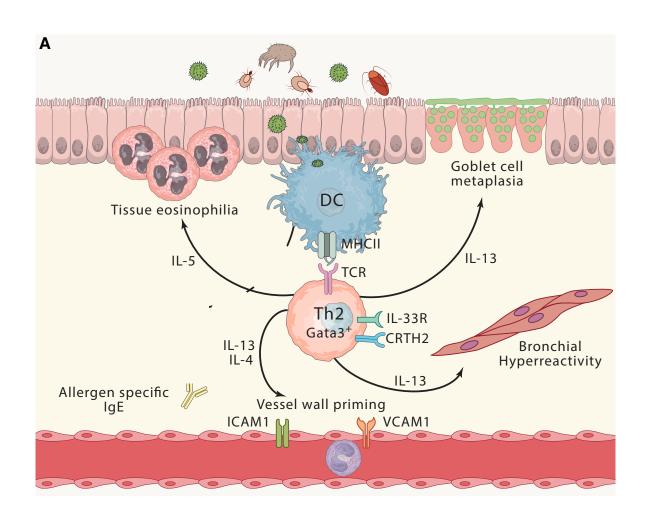
Ruolo centrale dei Th2 nell'asma allergico



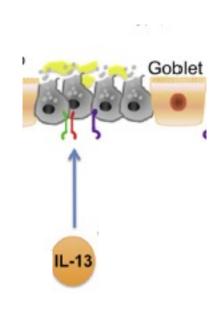
Il concetto che l'asma allergico è una malattia causata dai linfociti Th2 deriva da diverse osservazioni:

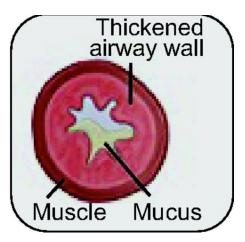

- I linfociti Th2 specifici per l'allergene e le citochine associate a questi linfociti sono presenti nel lavaggio broncoalveolare dei pazienti asmatici e dei topi con asma allergico eosinofilo.
- ii) Nei pazienti affetti da asma allergico si osserva un accumulo di linfociti Th2 nelle vie aeree. Il numero di linfociti Th2 presenti nelle vie aeree correla con la gravità della malattia.
- iii) Linfociti Th2 allergene specifici producenti IL-4, IL-5, IL-13 e IL-9 circolanti sono presenti nel sangue dei pazienti con asma allergico.
- v) Nel modello murino dell'asma indotto dalla inalazione dell'antigene OVA (ovalbumina) nell'animale precedentemente sensibilizzato per via intraperitoneale è stato dimostrato che la deplezione dei linfociti T CD4+ blocca lo sviluppo dell'asma. Invece il trasferimento adottivo di linfociti Th2 specifici per l'antigene induce lo sviluppo di asma.

Modello murino di asma allergico


Mice are intraperitoneally immunized with OVA adsorbed to an aluminum hydroxide adjuvant (Alum) on days 0 and 14. During this sensitization phase, the mice produce anti-OVA IgE antibodies which bind IgE receptors on mast cells. After this sensitization, the mice are intratracheally challenged with OVA, resulting in OVA cross-linked IgE on mast cells, leading to degranulating mast cells. Mice then develop clinical features of asthma.

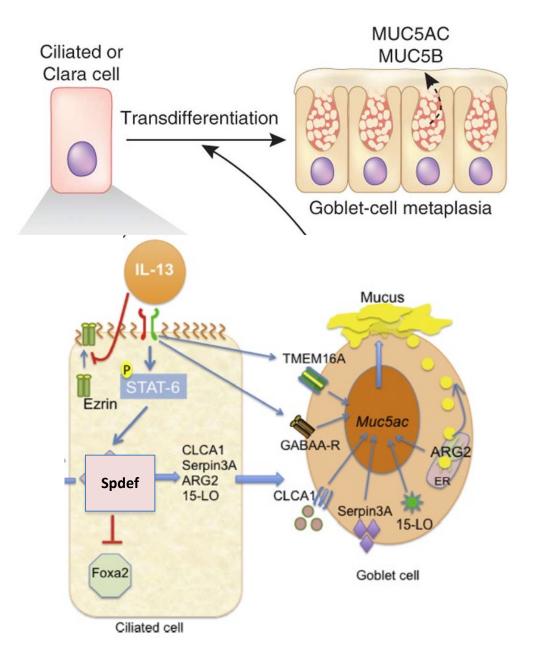
Ruolo delle citochine prodotte dai linfociti Th2 nella patogenesi dell'asma allergico




Attivazione dei Th2 nel tessuto da parte delle APC

Nei tessuti i linfociti Th2 in seguito al riconoscimento dell'allergene associato alle molecole MHC di classe II presentato dalle DC o dai linfociti B producono le citochine IL-4, IL-5, IL-13.

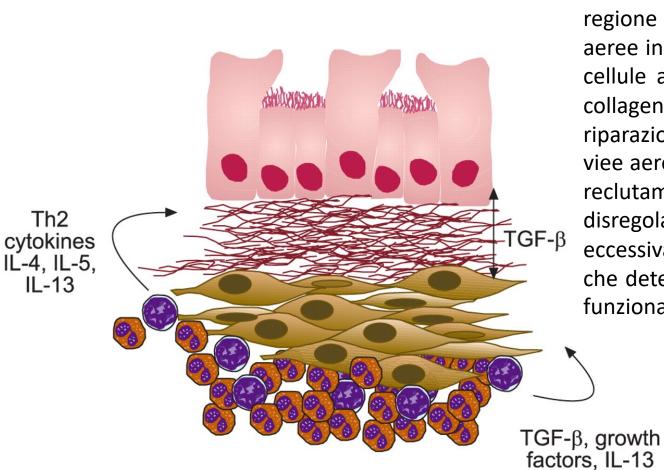
Regolazione della secrezione di muco e delle funzioni delle cellule epiteliali da parte dell'IL-13



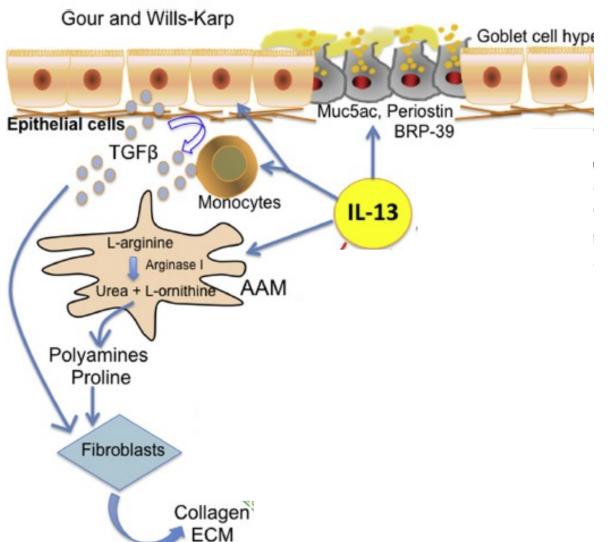
L'eccessiva produzione di muco caratterizza l'asma bronchiale allergico. L'estesa formazione di tappi di muco è stata associata ad episodi fatali di asma. L'aumento di cellule secernenti muco è un fenomeno mediato dai linfociti Th2. Diverse evidenze sperimentali indicano che l'IL-13 è implicata nella aumentata produzione di muco nell'asma allergico.

- •Il trasferimento di linfociti Th2 nel polmone di topo induce l'aumento di cellule producenti muco.
- •tale effetto si osserva anche se vengono trasferiti linfociti Th2 non in grado di produrre IL-4.
- •Il blocco dell'IL-13 nei topi *in vivo* previene l'aumento di cellule producenti muco
- •Al contrario la somministrazione di IL-13 *in vivo* mima gli effetti dell'esposizione all'allergene.

Azione dell'IL-13 nella ipersecrezione di muco

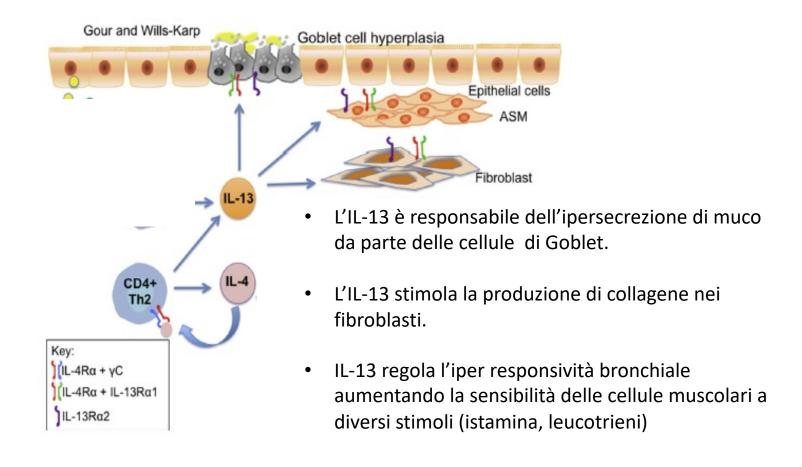


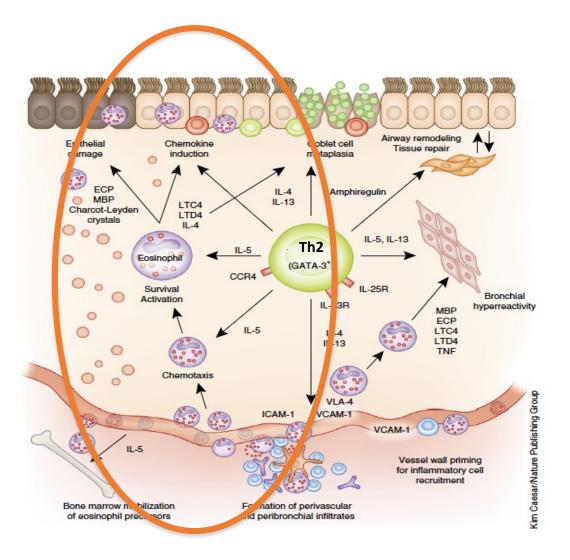
L'IL-13 media la transizione delle cellule epiteliali delle vie aeree in cellule del goblet attraverso l'azione coordinata di diversi fattori trascrizionali.


L'IL-13 induce l'espressione del fattore trascrizionale Spdef che a sua volta inibisce Foxa2. Foxa2 è richiesto per il mantenimento del normale differenziamento dell'epitelio delle vie aeree.

Spdef regola anche l'espressione di altri geni responsabile della ipersecrezione di muco.

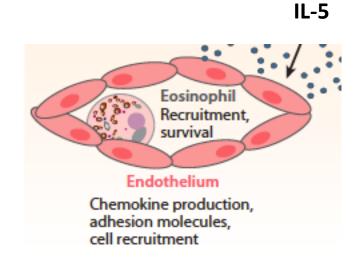
IL-13 media la fibrosi sub epiteliale


La fibrosi subepiteliare è una delle componenti che caratterizza l'asma allergico. Normalmente i fibroblasti sono reclutati nella regione sub-epiteliale delle vie aeree in risposta ad un danno. Tali cellule attraverso la secrezione di collagene contribuiscono riparazione del tessuto leso. Nelle viee aeree asmatiche si osserva un reclutamento eccessivo disregolato dei fibroblasti, una eccessiva produzione di collagene che determina una riduzione della funzionalità polmonare.


IL-13 induce l'espressione del fattore pro-fibrotico $TGF\beta$ nelle cellule epiteliali e nei monociti/macrofagi Il $TGF\beta$ stimola i fibroblasti a produrre collagene.

Nei monociti/macrofagi l'IL-13 induce l'espressione di Arginasi che idrolizza L-arginina in Urea e L-Ornitina che è un metabolita necessario per la sintesi di poliammine e prolina richiesti per la sintesi di collagene.

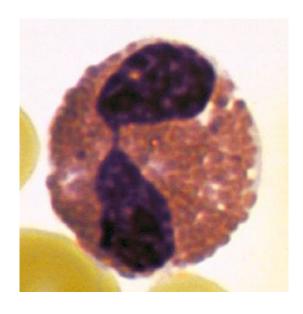
L'IL-13 media molte delle caratteristiche patologiche dell'infiammazione allergica

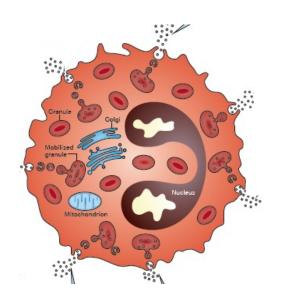


Ruolo dell'IL-5 nell'asma allergico

L'IL-5 svolge un ruolo essenziale nell'eosinofilia che caratterizza la reazione infiammatoria nell'asma allergico.

Azione dell'IL-5 sugli eosinofili

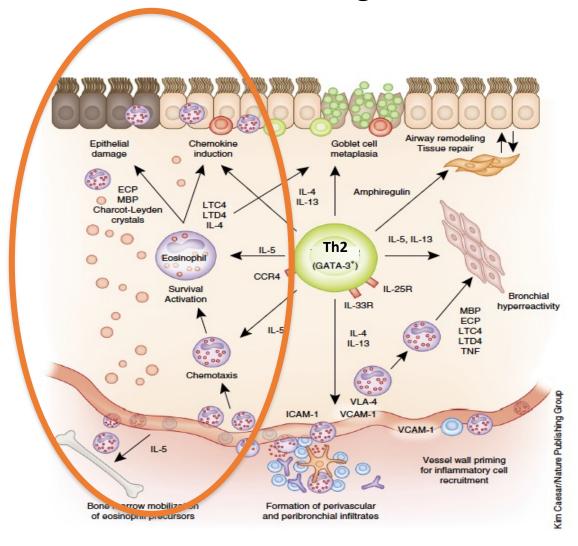



L'IL-5 negli eosinofili regola:

- •la crescita
- •la maturazione
- •il differenziamento
- •la sopravvivenza e l'attivazione.

l'IL-5 media la mobilizzazione degli eosinofili dal midollo osseo nel circolo.

Gli eosinofili



Gli eosinofili sono granulociti di derivazione midollare presenti nel sangue. La maturazione di tali cellule è indotta dal GM-CSF, l'IL-3, l'IL-5. Nel citoplasma presentano diversi granuli che contengono proteine cationiche tossiche che hanno la funzione di distruggere microorganismi o parassiti= proteina basica maggiore e proteina cationica.

Gli eosinofili attivati sintetizzano prostaglandine, leucotrieni e citochine amplificando la risposta infiammatoria.

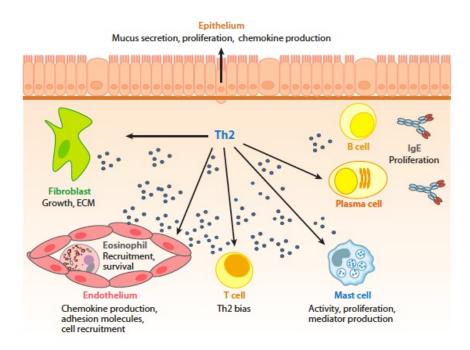
Alcuni eosinofili sono presenti nei tessuti periferici e si localizzano specialmente nella sottomucosa del tratto respiratorio, gastroenterico e genito-urinario. In seguito ad attivazione gli eosinofili rilasciano il contenuto dei granuli e mediatori infiammatori.

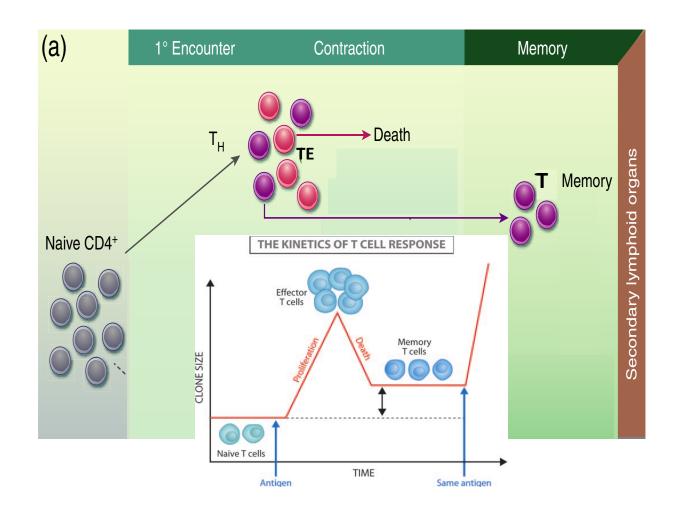
Ruolo degli eosinofili nell'asma allergico

In seguito ad attivazione da parte dell'IL-5 gli eosinofili rilasciano il contenuto dei granuli e secernono mediatori dell'infiammazione.

Il rilascio delle proteine tossiche danneggia il tessuto polmonare. Gli eosinofili attivati sintetizzano prostaglandine, leucotrieni e citochine amplificando la risposta infiammatoria.

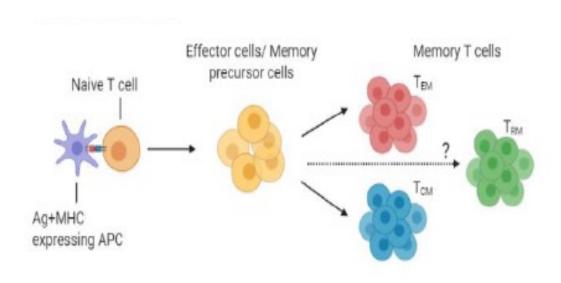
Alcune funzioni delle citochine secrete dalle cellule Th2:




Figure 2

IL-4

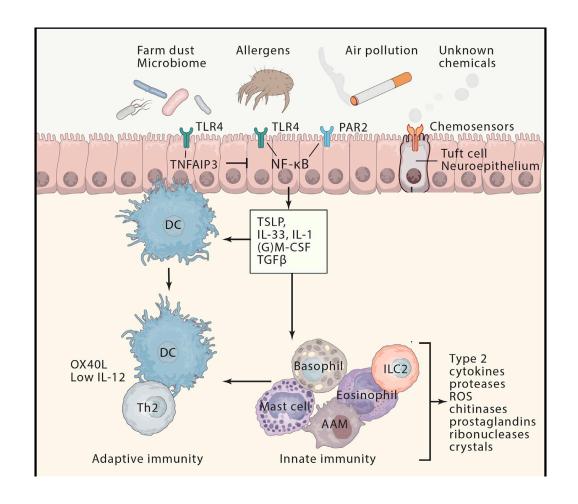
- •favorisce lo sviluppo dei linfociti Th2
- •promuove l'espressione di V-CAM sull'endotelio
- •Aumenta l'espressione dell'MHC di classe II sulle cellule B


The possible effect of T helper–2 (Th2) cytokines on various cells in the lung and the cytokines' potential role in asthma. Abbreviations: ECM, extracellular matrix; IgE, immunoglobin E.

Linfociti T effettori e della memoria

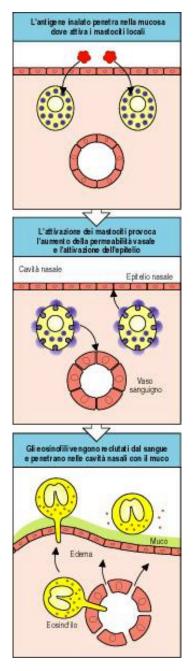
L'interazione cellule con le dendritiche presentanti l'antigene induce una elevata proliferazione dei linfociti T CD4+ naive e il loro differenziamento in linfociti T effettori TE e linfociti T della memoria. I linfociti TE dopo aver svolto la loro funzione vanno incontro morte mentre persistono i linfociti T della memoria. I linfociti T della memoria sono cellule non proliferanti che possono essere suddivise in sottopopolazioni in base all'espressione di marcatori di localizzazione membrana, tissutale caratteristiche е funzionali.

Popolazioni di cellule della memoria



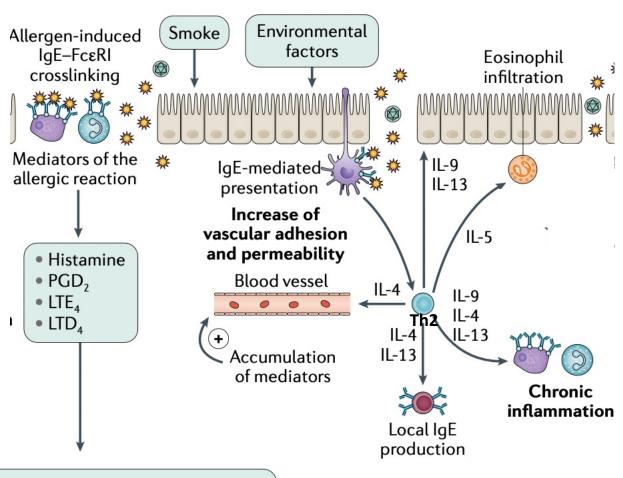
Nell'asma ricco di eosinofili sono stati evidenziati linfociti T residenti della memoria. Queste cellule producono elevati livelli di citochine Th2 e sono riattivate velocemente dopo la ri-esposizione all'allergene. Le cellule della memoria sono distinte in cellule della memoria centrale (T_{CM}) , cellule della memoria effettrici (T_{EM}) cellule della memoria residenti (T_{RM}) . Le cellule della memoria centrale ricircolano fra il sangue e i linfonodi, hanno una elevata capacità di proliferare ma ridotta capacità di produrre citochine.

Diversamente i linfociti T_{EM} circolano fra il sangue e i tessuti e si localizzano preferenzialmente nei tessuti periferici, hanno capacità di produrre le citochine caratteristiche di ciascuna sottopopolazione (IFN- γ , IL-4, e IL-17) e ridotta capacità proliferativa.


I T_{RM} sono linfociti che risiedono nei tessuti.

Le cellule dell'immunità innata nell'asma allergico

Le cellule dell'immunità innata contribuiscono all'infiammazione e al danno nelll'asma. In particolare i basofili, i mastociti, e le cellule innate linfoidi di tipo 2 (ILC2) producono le citochine di tipo 2 (IL-4, IL-5, IL-13). Le ILC2s producono elevati livelli di IL-5, IL-13 contribuendo all'infiammazione di tipo 2.

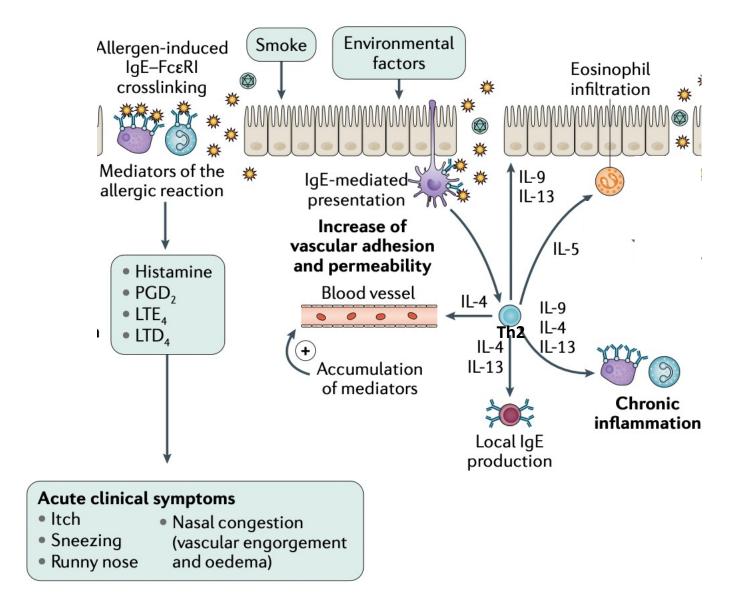

Le ILC2 controllano il numero di eosinofili, il trans-differenziamento delle cellule epiteliali in cellule secernenti muco, l'iper-reattività bronchiale. Le ILC2 sono attivate dal TSLP prodotto dalle cellule epiteliali.

Rinite allergica

La rinite allergica anche chiamata raffreddore da fieno è la malattia allergica più comune. Ha origine nei primi anni di vita colpendo il Europa il 3% dei bambini di 3 anni e circa il 14% degli adolescenti di 13-14 anni. Essa è provocata da una reazione di ipersensibilità immediata localizzata nelle vie aeree superiori in seguito ad inalazione di allergeni (allergeni che diffondono nella mucosa nasale attivando i mastociti). La rinite allergica si manifesta con starnutazione, tosse congestione nasale, prurito, gocciolamento del naso. Essa è caratterizzata da edema delle mucose, infiltrato leucocitario con elevata componente eosinofila, secrezione mucosa.

Meccanismi alla base della rinite allergica

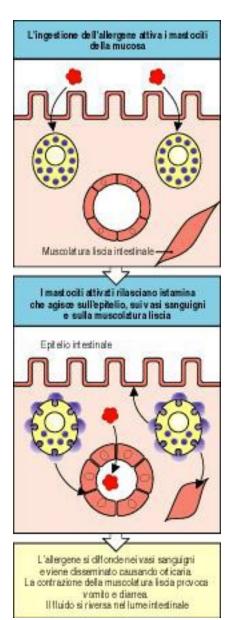
Acute clinical symptoms


Itch

- Nasal congestion
- Sneezing
- (vascular engorgement
- Runny nose and
- and oedema)

I sintomi della rinite allergica sono causati dai mediatori che sono rilasciati durante la reazione allergica.

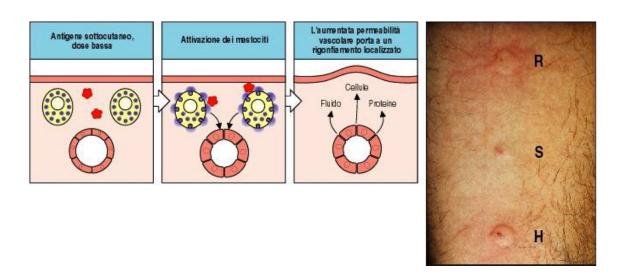
Il contatto dell'allergene con le IgE sulla superficie legate dei mastociti attraverso l'FcER causa l'attivazione e la degranulazione dei mastociti. Questo determina il rilascio dei mediatori preformati e di nuova sintesi quali l'istamina le prostaglandine leucotrieni responsabili dei sintomi acuti dell'allergia. Questi mediatori e le citochine prodotte dai mastociti favoriscono il richiamo di Th2. basofili e neutrofili dal circolo sanguigno. Le citochine di tipo 2 che includono IL-4, IL-5, IL-13 possono essere evidenziate nel tessuto e nelle secrezioni nasali degli individui con rinite allergica.


Meccanismi alla base della rinite allergica

seguito al contatto con dipendere l'allergene può dall'accumulo dei mediatori nella mucosa nasale e dall'attivazione dei Th2 nella mucosa. I linfociti allergene Th2 specifici nel dal tessuto attivati riconoscimento dell'allergene presentato dalle molecole MHC di classe II producono elevati livelli di IL-4, IL-5 e IL-13 che contribuiscono all'aumento della permeabilità dei vasi (IL-4) all'infiltrazione degli eosinofili (IL-5) alla produzione di muco (IL-13). L'IL-4 favorisce sopravvivenza dei mastociti e aumenta l'espressione dell'FcεR.

La persistenza dei sintomi in

Le allergie alimentari



Allergie alimentari. L'ingestione di un allergene in un individuo sensibilizzato determina l'attivazione dei mastociti della mucosa gastrointestinale.

- -aumento della permeabilità vasale con passaggio dei fluidi nel lume intestinale
- -contrazione della muscolatura liscia dello stomaco e dell'intestino responsabile di vomito e diarrea

Le allergie alimentari si accompagnano a manifestazioni cutanee

Allergie cutanee: orticaria

Orticaria: questa reazione è essenzialmente simile alla reazione ponfoide acuta indotta dopo inoculazione intradermica di un allergene. Si può manifestare in risposta ad un contatto diretto con l'allergene o in seguito all'ingresso dell'allergene nel circolo sanguigno. La reazione è mediata dall'istamina.

Eczema: Questa reazione è caratterizzata da alterazione della barriera epidermica, e infiammazione. L'eczema o dermatite atopica deriva dall'azione delle citochine TNF- α e IL-4 probabilmente prodotte da mastociti e Th2 che agiscono sull'endotelio venulare promuovendo l'infiammazione.