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Summary
Statistical analysis of both experimental and observational data is central
to medical research. Unfortunately, the process of conventional statistical
analysis is poorly understood by many medical scientists.This is due, in part,
to the counter-intuitive nature of the basic tools of traditional (frequency-
based) statistical inference. For example, the proper definition of a con-
ventional 95% confidence interval is quite confusing. It is based upon the
imaginary results of a series of hypothetical repetitions of the data gen-
eration process and subsequent analysis. Not surprisingly, this formal defi-
nition is often ignored and a 95% confidence interval is widely taken to
represent a range of values that is associated with a 95% probability of con-
taining the true value of the parameter being estimated.Working within the
traditional framework of frequency-based statistics, this interpretation is
fundamentally incorrect. It is perfectly valid, however, if one works within
the framework of Bayesian statistics and assumes a ‘prior distribution’ that
is uniform on the scale of the main outcome variable. This reflects a limited
equivalence between conventional and Bayesian statistics that can be used
to facilitate a simple Bayesian interpretation based on the results of a stand-
ard analysis. Such inferences provide direct and understandable answers 
to many important types of question in medical research. For example, they
can be used to assist decision making based upon studies with unavoidably
low statistical power, where non-significant results are all too often, and
wrongly, interpreted as implying ‘no effect’. They can also be used to over-
come the confusion that can result when statistically significant effects are
too small to be clinically relevant. This paper describes the theoretical basis
of the Bayesian-based approach and illustrates its application with a prac-
tical example that investigates the prevalence of major cardiac defects in a
cohort of children born using the assisted reproduction technique known
as ICSI (intracytoplasmic sperm injection).
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Introduction

Many research questions in medical science can most
naturally be answered by assessing the probability
that a particular hypothesis is true, or false, having
observed a relevant set of data. Medical researchers
have long embraced statistical methods in deter-
mining how such data should impact on their belief
about the plausibility of the hypothesis in question.
There is, however, widespread misunderstanding as
to the appropriate interpretation of the tools as-
sociated with statistical inference, such as P-values
and confidence intervals. In this paper we will add-
ress some common misconceptions about the use of 
statistical methods in medical research, and suggest
an alternative and more intuitive interpretation,
based on the Bayesian theory of statistics (Lindley
1965a,b; Box & Tiao 1973; Lee 1989). The Bayesian
methodology is particularly useful in both the clini-
cal setting and the arena of public health policy 
when the results of a study must subsequently be
used to facilitate a decision (Burton 1994; Lilford &
Braunholtz 1996).

Frequentist statistics

Medical statistics is firmly founded upon the fre-
quentist theory of statistics (Armitage & Berry 1994,
p93–99), which is the best known and most widely
used framework for statistical reasoning. In this
framework, the process of inference requires us to
consider every possible result that a study could
potentially generate. This leads to the calculation of
a P-value, defined as the probability of observing
data at least as ‘extreme’ as, or more ‘extreme’ than,
the data that was actually observed in the current
study given that the particular hypothesis (usually the
‘null’ hypothesis of ‘no difference’ or ‘no effect’) is
true. This is a statement of frequency-based prob-
ability since it involves the relative frequency of an
outcome or event in a repeated series of identical,
hypothetical experiments.

If the calculated P-value is small then the observed
data are surprisingly extreme, in that they are
improbable if the null hypothesis is true, and so it
represents evidence against the null hypothesis. The
converse is, however, not necessarily true; observing
a set of data that is less extreme and is thus associ-

ated with a larger P-value is not necessarily evidence
for the null hypothesis, since under some circum-
stances this can be quite likely to occur even if the
null hypothesis is false.The design of a research study
generating such data is said to have low statistical
power, in that datasets that are apparently consistent
with the null hypothesis can occur relatively fre-
quently even if the null hypothesis is false and thus
an alternative hypothesis is true (Armitage & Berry
1994, p195–206).

This situation is compounded when the results of
a study are declared to be ‘statistically significant’ if
the P-value is observed to fall below an arbitrary
threshold, typically 0.05. Such ‘tests of statistical sig-
nificance’ or ‘hypothesis tests’ represent an unneces-
sary dichotomization of the set of all possible results
of a study into an over-simplified ‘accept/reject’ deci-
sion analysis. The continuum of evidence across the
range of potential data is completely ignored by such
significance testing, which is often inappropriately
viewed by clinicians and medical researchers as the
statistical equivalent of a diagnostic test in medicine
(Burton 1994; Burton et al. 1998). In a typical test of
significance given some null hypothesis, P < 0.05 is
often interpreted to mean ‘there is a difference (the
null hypothesis is false)’, while P ≥ 0.05 is understood
to mean that ‘there is no difference (the null hypoth-
esis is true)’. These common but incorrect inter-
pretations both express results in terms of the null
hypothesis being true or false, and suggest that the P-
value provides a direct quantitative measure of the
plausibility of the null hypothesis. Taken to its ulti-
mate conclusion, this results in the fundamental mis-
conception that the P-value measures the probability
that a given null hypothesis is true having observed
a particular set of data.

A P-value actually reflects the probability of
obtaining a particular pattern of results, or one more
extreme, on the basis of an hypothesis that is assumed
to be true. The probability that an hypothesis is true 
or false is not the long-run probability of an event
and cannot even be expressed in the framework of
frequency-based probability. In any particular case
the hypothesis must either be true or false, and no
frequency-based probability should be attached 
to it (Armitage & Berry 1994, p76–77). Any formal
inferences in this vein must at best be indirect. As a
minimum, any reasonable assessment of the viability
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of the null hypothesis requires simultaneous con-
sideration of the relative plausibility of a variety of
competing hypotheses that are also consistent with
the data and cannot, therefore, be based on the cal-
culation of a single P-value, assuming that the null
hypothesis is true!

Degrees of belief and subjective probability

In order to overcome the problems discussed in 
the last paragraph, we need to subscribe to a more
general notion of probability. While we would wish
to maintain the simple frequentist interpretation of
probability as the long-run frequency of events in cir-
cumstances where it is appropriate, we would also
like to make probabilistic statements and judgements
about statistical parameters and, ultimately, scientific
hypotheses.

Most statisticians now accept the concept of sub-
jective probability, where statements involving the
use of probability are taken to represent a ‘degree 
of personal belief’ about the quantity or event of
interest (Lindley 1965a). This removes the need 
to associate probability with observable events
(however hypothetical such events may be) and
allows us to make quantitative judgements about the
likelihood of an assertion being correct in circum-
stances where there is no reasonable long-run fre-
quency interpretation.

A typical example occurs when we attach a 
probability to an event in public affairs, such as 
the statement ‘there is a 10% chance that Australia 
will become a republic before 31 December 2005’.
Clearly Australia will not debate the transition 
from a constitutional monarchy to a republic a large
number of times under identical conditions and so a
relative frequency interpretation of the probability of
this event is simply not possible. Frequentist statisti-
cians should refrain from attaching probabilities 
to such one off events, though many events (for
example, sporting contests) can be similar enough for
the associated probabilities to warrant a frequentist
interpretation. Although it is not strictly necessary
for subjective probabilities to be based on data, they
should change, in a rational manner, as new data
accrue. More formally, a sequence of subjective prob-
ability statements must be internally consistent or
coherent in the sense of Walley (1991) in order to

avoid irrational behaviour in response to them
(Walley 1991; Walley et al. 1996).

Bayesian statistics

Suppose that we plan to conduct an observational 
or experimental study to further our knowledge
about some quantity of interest (called a statistical
parameter), and thus to collect information that 
will provide evidence to support or refute a current
hypothesis about the quantity of interest. The
Bayesian approach to statistical inference (named
after the 18th century English clergyman the Rev-
erend Thomas Bayes) initially asks the researcher 
to collate all pre-existing information, reflecting 
both evidence based on past studies and current
beliefs, before prospectively collecting any new data.
This information is then expressed in mathematical
form as a prior probability distribution. The prior 
distribution is simply a quantification of the current
state of understanding about the unknown quantity
of interest and can be thought of as attaching a
weight, expressed as a probability, to each possible
value of the quantity of interest before additional
data are recorded and examined. Values of the quan-
tity of interest that are viewed as being a priori fairly
likely to represent the true quantity are assigned a
high prior probability and those that are viewed as
less likely receive a correspondingly lower prior
probability.

The prior distribution by definition allows investi-
gators to incorporate pre-existing information into
their analysis, something that is more difficult to do
in the frequentist theory of statistics. Lilford et al.
(1995) comment that ‘Bayesian methods utilise all
available data’. This provides a distinct advantage
over conventional methods of analysis, which Lilford
& Braunholtz (1996) rightly observe ‘do not allow
decision makers to take explicit account of additional
evidence’. The choice of an appropriate prior distri-
bution is usually based on a combination of the fol-
lowing three sources of information:
(i) evidence from previous studies via the inspec-
tion of historical data;
(ii) consultation with experts in the field to elicit
their clinical opinion, which potentially involves a
degree of subjective judgement;

Bayesian statistics in medical research
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(iii) the development of theoretical physical or bio-
logical models.

New evidence from the data collected during the
current study is summarized by the likelihood func-
tion (Edwards 1992; Berger & Wolpert 1988). This is
a mathematical object that describes how the prob-
ability distribution of the observed data depends on
the particular values of the statistical parameters that
govern the chosen class of statistical models.

The last step in the Bayesian process is to combine
the prior distribution with the likelihood function
using a mathematical routine derived from Bayes’
Theorem (Lindley 1965a,b; Armitage & Berry 1994,
p71–77). The result of this process, called the pos-
terior probability distribution, is an updated reflec-
tion of our beliefs about the statistical parameters
and has a probabilistic interpretation analogous to
the prior distribution. From a mathematical point of
view, weighting the prior distribution by the likeli-
hood function forms the posterior probability distri-
bution. It is the posterior distribution that is used to
draw inferences and thus form conclusions about the
relevant quantity of interest.

An important advantage of the Bayesian approach
to statistical analysis is that it provides probability
distributions for the quantities of interest.This makes
it possible to make genuine probability statements
about the magnitude of such parameters, such as the
probability that a clinical effect lies within a particu-
lar range (e.g. ‘the probability that the odds ratio is
between 0.2 and 0.5 is 95%’). Furthermore, one con-
sequence of this is the intuitively appealing opportu-
nity to attach a probability to a statistical hypothesis
of interest, since such a hypothesis is merely a state-
ment about the value or nature of such parameters
(e.g. ‘there is a 5% chance that the treatment effect
is greater than 0’). This provides direct and explicit
answers to the sorts of questions that are usually
posed by clinicians and medical researchers. Such an
interpretation can be extrapolated immediately to
clinical practice and could form the basis of decisions
about policy in public health medicine.

Example 1

Figure 1 illustrates the Bayesian posterior distribu-
tion generated from a hypothetical phase II clinical
trial investigating the fall in diastolic blood pressure
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Fall in diastolic blood pressure in response to drug 'X' (mm Hg)

(DBP) following commencement of a new drug ‘X’
in a group of 40 patients with mild untreated hyper-
tension. A pharmaceutical company wishes to deter-
mine whether preliminary results are good enough 
to warrant proceeding to a full phase III trial. At 
the outset it is stated that the drug will be regarded
as ‘potentially useful’ if it reduces DBP by at least
5mmHg. An appropriate prior distribution was
chosen by seeking the advice of experts.

As an example of the type of inference which may
be drawn from the posterior distribution, let us use
the figure to estimate the probability that the true fall
in DBP in response to ‘X’ lies somewhere between
12.5mmHg and 15mmHg. The required posterior
probability is equal to the area under that part of 
the curve which falls between 12.5mmHg and
15mmHg (the area which is cross hatched) as a pro-
portion of the total area under the curve. The total
area under the curve is 1.0, the crosshatched area is
0.155 and the required probability is therefore
15.5%. In other words, having observed the current
data, and assuming that the prior distribution was
chosen appropriately, there is a probability of 15.5%
that drug ‘X’ reduces DBP by between 12.5mmHg
and 15mm Hg in patients with mild untreated 
hypertension.

Equivalently we can answer the research question
that was of primary interest to the pharmaceutical
company: ‘what is the probability that the true fall in
DBP is at least 5mmHg?’. The relevant probability 
is represented by the full shaded area (single line
shading and cross hatching) on Figure 1, which
encompasses 95.2% of the total area under the curve.

Figure 1 A Bayesian posterior distribution for the fall
in diastolic blood pressure.



Thus there is a 95.2% posterior probability that the
true fall in DBP in response to drug ‘X’ is at least
5mmHg.

Choosing a prior distribution

Specification of the prior distribution is a matter of
ongoing concern for those contemplating the use of
Bayesian methods in medical research. Clearly any
conclusions drawn from a Bayesian analysis will
potentially be sensitive to the choice of prior distrib-
ution. Some authors have devoted considerable
thought to the process of formalizing the choice 
of a prior probability distribution. Freedman &
Spiegelhalter (1983), Spiegelhalter & Freedman
(1986), Chaloner et al. (1993) and Kadane et al. (1980)
have all made some suggestions as to eliciting and
quantifying the prior opinions of clinicians, but this
remains a difficult task. It is sometimes fancifully sug-
gested that clinicians and ‘consumers’ should come
equipped with their own prior distribution which
they can then combine with the likelihood function
provided by the statistician!

If there is important pre-existing information that
needs to be taken into account then it can be incor-
porated into a subsequent analysis by formulating a
suitably descriptive prior distribution.This is a crucial
step in the Bayesian process, despite the fact that 
it is often treated with scepticism by traditionally
minded statisticians and clinicians. Nevertheless,
although we do not wish to downplay the importance
of choosing an appropriate prior distribution in situa-
tions where there is considerable prior knowledge,
there are, to be realistic, many circumstances where
little or no relevant pre-existing information is avail-
able. It is perhaps a reasonable criticism of the
Bayesian approach to statistical analysis that, in this
situation, attempting to specify a prior distribution is
effectively trying to quantify something that does not
exist. Alternatively, we may wish to restrict attention
to the current data so that we can, in some sense, let
the data ‘speak for themselves’, or, in the words of
Lilford et al. (1995) ‘represent the information arising
just from the data’. Lindley (1965a) comments ‘even
when one has some appreciable prior knowledge of
theta [a quantity of interest] one may like to express
the posterior beliefs about theta without reference to
them [i.e. the prior distribution]’. Equivalently, it is

not unusual to hear researchers in a scientific context
say that they need to draw an ‘objective’ inference
that is untainted by the personal opinions and preju-
dices of those participating in the project.

Under these circumstances some statisticians have
proposed what might loosely be called an objective
Bayesian theory of statistical inference. They ad-
vocate the use of ‘vague’, ‘flat’ or ‘non-informative’
prior distributions that in some sense emphasize the
role of the current experimental data and obviate the
need for specific reference to prior beliefs (Lindley
1965b; Hughes 1993). One such distribution is the
uniform probability distribution, which assigns equal
prior weight to each possible value of the quantity of
interest on the scale of the chosen outcome measure.
Each value of the quantity of interest is viewed as
‘equally likely’ before the new data are observed,
which seems intrinsically reasonable. The use of a
uniform prior probability distribution focuses atten-
tion on current rather than pre-existing data (Lindley
1965b), in that the shape of the posterior distribu-
tion depends entirely on the likelihood function.
Although the use of the prior distribution has a
number of shortcomings and does not truly represent
a formal mathematical expression of the state of
‘prior ignorance’ (Walley 1991; Walley et al. 1996; see
also the discussion), it provides an ad hoc standard
or reference analysis, from a common starting point,
that aids comparison between current experimental
or observational data, and that obtained from other
sources. Furthermore, the uniform prior distribution
provides an important link between frequentist and
Bayesian theories of statistical analysis, which can be
conveniently illustrated by exploring the role of the
confidence interval in statistical inference.

The interpretation of confidence intervals

The concept of a confidence interval was developed
by frequentist statisticians in order to represent the
precision of a parameter estimate as the size of 
an interval of values that necessarily includes the
estimate itself. Confidence intervals are generated 
by inverting a probability statement about the data
given the value of the parameters, in order to come
up with a range of values for the true parameter to
which we can attach a probabilistic interpretation.
In order to remain faithful to the frequency based
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definition of probability, however, a conventional
95% confidence interval is properly defined in a
somewhat subtle manner, in terms of hypothetical
repetitions of the study and analysis under consider-
ation. To paraphrase: if new data were to be repeat-
edly sampled, the same analysis carried out and a
series of 95% confidence intervals calculated, 19 out
of 20 such intervals would in the long run include the
true value of the quantity being estimated (see
Armitage & Berry 1994, p93–99).

Most researchers, however, interpret a 95% 
confidence interval in a rather different manner.
They infer that the confidence interval contains the
unknown quantity with 95% probability (Burton
1994). Within the frequentist framework, this in-
terpretation of the confidence interval is fundamen-
tally incorrect (Armitage & Berry 1994, p93–99). In
any particular case, the unknown true value either
does lie within the bounds of the confidence interval
or it does not; there is no appropriate frequency-
based interpretation of the probability of this 
‘single’ event. If, however, an objective Bayesian
analysis is carried out using a prior distribution which
is uniform on the principal scale of analysis, it can 
be shown that a conventional C% confidence inter-
val encloses a range of values that also encompasses
C% of the area under the posterior distribution
(Lindley 1965b). A 95% confidence interval is there-
fore equivalent to a posterior subjective probability
of 95% that the true value lies between the lower and
upper bounds of the confidence interval – an inter-
pretation that corresponds precisely to that stated
above. Some statisticians would prefer to call a 
confidence interval interpreted in this manner a
Bayesian 95% credible interval (Winkler 1972). The
Bayesian interpretation we have suggested is accept-
able provided that one acknowledges that we are
dealing with subjective probability, not frequency
probability, and that one is assuming that any prior
information is to be viewed as ‘vague’. This congru-
ence between conventional frequentist confidence
intervals and the corresponding Bayesian credible
interval associated with a uniform prior probability
distribution provides a straightforward and intuitive
interpretation of the results of a conventional statis-
tical analysis, and affords a simple introduction to the
Bayesian approach to statistical inference (Burton
1994).

Example 2

Intracytoplasmic sperm injection (ICSI) involves the
selection and injection of a single spermatozoon into
an oocyte. The procedure is an extension of standard
in-vitro fertilization treatment and represents the
most significant development in the field of assisted
reproduction since the birth of the first ‘test tube
baby’ in 1978. ICSI offers, for the first time, the
prospects of genetic parenthood for men with pro-
found oligozoospermia (low sperm count) and, with
the use of testicular biopsy and epididymal aspiration
techniques, even for those men with azoospermia 
(no sperm present in the ejaculate). The success of
ICSI has led to its use throughout the world. There
are, however, several theoretical concerns about 
the safety of ICSI and a series of potential risks for
the offspring have been identified (Patrizio 1995;
Cummins & Jequier 1994; De Kretser 1995).

The ICSI technique was developed by a group at
the Brussels Free University (Palermo et al. 1992).
From the outset, this group had the foresight to set
in place follow-up of the infants born after ICSI
treatment at their centre. As their cohort of infants
has increased in number, they have published 
their findings in an overlapping series of papers
(Bonduelle et al. 1994; Van Steirteghem et al. 1994;
Tournaye et al. 1995; Liebaers et al. 1995; Bonduelle
et al. 1996). By 1995 they had assessed 420 live born
infants conceived following ICSI treatment at their
centre and had identified a series of birth defects
(Bonduelle et al. 1996). They used a definition of
major birth defects for which population comparison
data were not available. They determined that 14 of
420 live born infants (3.3%) had a major birth defect
and concluded that there was no increase in the
prevalence of birth defects in infants born after ICSI
(Bonduelle et al. 1996). However, by reclassifying the
reported defects using the classification system used
by the Western Australian Birth Defects Registry,
researchers were able to compare the birth preva-
lence of defects with the population prevalence esti-
mates from Western Australia for live births during
the same time period (Kurinczuk & Bower 1997).
Following the reclassification 31 of the 420 children
(7.38%) were defined as having a major birth defect,
compared to 3.8% of the general Western Australian
population of live births. Of particular interest were
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the 14 (3.33%) infants with cardiac malformations
defined as major by Kurinczuk & Bower (1997).
There was some concern, however, that because of
the unusually close surveillance of the Belgian
cohort, the increased risk of cardiac birth defects
described by Kurinczuk & Bower (1997) may have
been due to the over-diagnosis of defects that would
otherwise never have come to medical attention
(Kurinczuk & Bower 1997; Bonduelle et al. 1997).
Having excluded all cardiac defects that may (even
remotely) have fallen into this category, 5 of the 420
(1.19%) infants were deemed to have at least one
major cardiac defect that would definitely have been
identified under routine surveillance. This was then
compared to the corresponding prevalence of major
cardiac defects in the population of Western 
Australian live births, that is, 0.67%.

Researchers in Western Australia wished to deter-
mine whether these results warranted the submission
of a grant application to investigate this issue further
using local ICSI data. They wished to know how
likely it was that ICSI was associated with an increase
in the birth prevalence of major birth defects, par-
ticularly cardiac defects, and if so, how likely it was
that such an increase in cardiac defects was large, for
example, greater than two-fold.

Let us initially consider how these data might be
analysed in a conventional setting. The ‘null’ hypoth-
esis will be that ‘the birth prevalence of major cardiac
defects in the ICSI birth cohort is the same (0.0067)
as in the general Western Australian population’.
A conventional test of the null hypothesis based
upon the standard Normal approximation to the
binomial distribution (Armitage & Berry 1994,
pp70–71, 118–125) would utilize a standard error for
the proportion of ((0.0067 ¥ 0.9933)/420)1/2 = 0.00398.
The observed proportion in the ICSI cohort is
5/420 = 0.0119 and so the standardized Normal
deviate (Z) is ((0.0119 - 0.0067)/0.00398) = 1.31,
which (from the usual statistical tables) is equival-
ent to a 2-tailed P-value of 0.191. In calculating 
the 95% confidence interval for the proportion,
we now ignore the null hypothesis and use the
observed proportion to calculate its standard error
(Armitage & Berry 1994, sections 4.7, 4.9):
((0.0119 ¥ 0.9881)/(420) = 0.00529. This produces a
95% confidence interval of 0.0119 ± 1.96 ¥0.00529 =
0.00153 to 0.0223.

Using these standard results the data are likely to
be interpreted in one of three ways. First, it may 
be noted that P > 0.05 and this may be interpreted
as suggesting that the null hypothesis should be
‘accepted’ and the conclusion drawn that there is no
evidence of an increased prevalence of major cardiac
defects in children born following ICSI. This inter-
pretation is, of course, fundamentally incorrect.
Second, it may be noted that there appears to be a
potentially important increase in the prevalence of
major cardiac defects in the ICSI cohort that is close
to twice the corresponding proportion in the general
population. However, because the result based on the
five cases of cardiac defects was not statistically sig-
nificant, it might be argued that this data set is too
small to draw any meaningful inferences. This inter-
pretation is safer than the first, but fails to use the
data to their full potential. A third alternative is to
interpret the 95% confidence interval. This interval
(calculated above as 0.00153 to 0.0223) is wide and
encompasses values that would lead to quite differ-
ent inferences. For example, a birth prevalence of
0.002 would suggest that ICSI infants had a preva-
lence of major cardiac defects that was only 30% of
that in the general population, whereas a prevalence
of 0.0201 would suggest that it was three times as
high. Both of these values are contained in the con-
fidence interval and are therefore, in some sense, con-
sistent with the observed data. This confirms that the
sample size is too small and suggests that further
study is important. This interpretation is both valid
and informative and there is no question that if a
standard approach to analysis is to be adopted it
should be based upon confidence intervals. This
approach does not, however, allow us to express
some of these qualitative impressions in a quantita-
tive manner. For example, although a prevalence of
0.0201 falls within the 95% confidence interval and
is therefore ‘consistent’ with the data, it is unclear
how likely it is, on the basis of this preliminary analy-
sis, that the true birth prevalence really is this high or
maybe even higher.

As an alternative, we would propose that a
Bayesian analysis be carried out using a ‘non-
informative’ prior distribution that is uniform on the
scale of proportions. Having made this assumption
we can now make use of the equivalence of a stand-
ard C% confidence interval and a Bayesian C% 
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credible interval. In order to generalize the ensuing
calculations, let us consider what may be called a crit-
ical confidence interval. This is defined as the confi-
dence interval with a midpoint at the observed value
(in this example, at a proportion of 0.0119) and a
lower limit at the value of a threshold of interest (in
this example, at a proportion of 0.0067 correspond-
ing to the ‘null value’ associated with the rate in the
general population), and an upper limit that is by
symmetry the same distance above the observed
value as the lower limit is below. Using Z tables it 
is straightforward to determine the percentage 
coverage of this critical confidence interval. In this
example, such a confidence interval on the propor-
tion scale extends from 0.0067 to 0.0119 + (0.0119 -
0.0067) = 0.0171. This is symmetric about the
observed proportion, that is 0.0119, and extends
0.0052/0.00529 = 0.983 standard errors in either direc-
tion. Reference to a table of the Z distribution indi-
cates that 83.71% of the area under the curve lies
below Z = 0.983, thus 16.29% lies above this point
and, by symmetry, 16.29% of the area lies below 
Z = -0.983. This particular confidence interval is
therefore a (100 - [2 ¥ (16.29]) = 67.42% confidence
interval which means that, having adopted a prior
distribution that is uniform on the scale of pro-
portions, the range 0.0067 to 0.0171 is a Bayesian
67.42% credible interval. This means that there 
is 67.42% posterior probability that the true propor-
tion lies between 0.0067 and 0.0171 and a 16.29%
posterior probability that it is greater than 0.0171.
There is therefore a 67.42% + 16.29% = 83.71% 
posterior probability that the true proportion is
greater than 0.0067 and thus a relatively high prob-
ability that the risk of a major cardiac defect in a
baby conceived using ICSI is higher than the risk in
the general population. Readers should note that, in
this particular case, the posterior probability of
83.71% could have been obtained directly from the
table of the Z distribution: ‘83.71% of the area under
the curve lies below Z = + 0.983’. However, we
explain the calculation in terms of a two-sided confi-
dence interval, because we believe that this clarifies
the full procedure and it is appropriate under all 
circumstances.

In general, if the percentage coverage of the con-
fidence interval is C%, the posterior probability that
the true value of the quantity of interest exceeds the

stated threshold is C% + (100% - C%)/2. This is
because any value which falls inside the critical con-
fidence interval (posterior probability = C%) must by
definition exceed the threshold of interest and sym-
metry dictates that one half of all values which fall
outside the confidence interval (posterior probability
= (100% - C%)/2) will also exceed the threshold. In
order to calculate the probability that the true value
of a quantity of interest is less than a given thresh-
old, one may carry out a series of analogous calcula-
tions using the critical confidence interval whose
upper limit falls at the threshold.

Returning to the example, let us calculate the
probability that the true proportion exceeds 0.0134,
which is twice the rate in the general population.
Since this value exceeds the observed value of 0.0119,
we set the upper bound of the critical confidence
interval to the threshold of interest, namely 0.0134,
and calculate the lower bound to be as far below 
the observed value of 0.0119 as 0.0134 is above,
giving a value of 0.0119 - (0.0134 - 0.0119) = 0.0104.
This confidence interval, extending from 0.0104 
to 0.0134, is ± 0.2835 standard errors around the 
estimated proportion of 0.0119. This is a 22.32% 
confidence interval and the posterior probability 
that the true proportion exceeds 0.0134 is half of 
the probability lying outside this interval, or (100%
- 22.32%)/2 = 38.84%.

These results tell the researcher that it is very
likely (approximately 84%) that the true prevalence
of major cardiac defects is greater in the ICSI cohort
than in the general population and that there is close
to a 40% probability that it exceeds twice the back-
ground rate. Similar calculations demonstrate that
the chance that the true proportion in the ICSI
cohort is as high as three times the rate in the general
population is only 6.06%. To extend the characteri-
zation further, Table 1 details the posterior probabil-
ity that the true proportion exceeds a series of
thresholds of interest.

Analyses such as those illustrated above 
proved to be of considerable value to the medical 
scientists in Western Australia investigating the risks
associated with ICSI therapy. The investigators 
were subsequently successful in obtaining a research
grant (from the March of Dimes Birth Defects 
Foundation in New York) to continue their work in
this area.
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Discussion

Conventional statistical analyses based upon the 
‘frequency-based’ view of probability and statistical
inference often fail to make the best and most com-
plete use of available data when assessing the evi-
dence for an hypothesis under investigation (Burton
1994; Burton et al. 1998; Lilford et al. 1995). This
results from having to restrict attention to the con-
sideration of just one hypothesis (usually the ‘null’
hypothesis) and then to the comparison of the resul-
tant P-value with an arbitrarily chosen threshold
(usually P = 0.05) instead of viewing it on a continu-
ous scale as an (indirect) measure of evidence. This
reduces a potentially powerful inferential tool to a
simplistic, mechanistic and ultimately very poor form
of decision analysis known as the statistical signifi-
cance test. The widely held belief that all studies and
experiments that result in a non-significant P-value
provide the same support for the specified hypoth-
esis is just one example of the type of misunder-
standing that can easily arise from a failure to
appreciate the subtleties of interpretation associated
with conventional frequentist statistical analysis
(Freeman 1993).

We have proposed an alternative approach that
views the problem of statistical inference from a
Bayesian perspective. Such an approach allows one
to make full use of the available data. A genuine
probabilistic interpretation, based on the concept 
of subjective probability, provides direct answers 
to questions about the probable magnitude of the
effects of interest and hence permits one to com-
pare competing hypotheses in a straightforward and

understandable manner. The use of subjective prob-
ability within a Bayesian framework is particularly
useful in circumstances where a conventional ap-
proach to statistical analysis may be difficult or 
misleading. These include circumstances where: (i) 
a statistically non-significant result may be large
enough to be clinically relevant (small sample size);
(ii) a statistically significant result may be too small
to be of clinical relevance (large sample size); or (iii)
where one wishes to draw quantitative conclusions
regarding the probability that two or more outcomes
are sufficiently similar that any difference is unlikely
to be clinically relevant.

The use of a uniform prior probability distribution
promotes a confluence between the Bayesian and
conventional frequentist approaches, since 95% 
confidence intervals can be viewed legitimately as
containing the true value of interest with 95% prob-
ability. Many researchers already interpret confi-
dence intervals in precisely this manner and thus our
proposal does not require a radical modification of
the way in which many researchers approach statis-
tical analyses. It is important, however, that one
acknowledges that this interpretation of confidence
intervals is only valid if one works within a Bayesian
framework using a uniform prior distribution. We
have suggested reporting, where appropriate, the
posterior probability that the quantity of interest
exceeds a series of clinically relevant thresholds
rather than just a single 95% confidence interval.

Although the use of a uniform prior probability
distribution provides a neat introduction to the
Bayesian process, there are a number of reasons why
the uniform prior distribution does not provide the

Bayesian statistics in medical research
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Table 1 The posterior probability that the prevalence of major cardiac defects in the ICSI cohort exceeds a series of
thresholds based on the prevalence in the general population

Threshold Threshold as a multiple of the  Posterior probability that the true Posterior probability that the true rate
of interest prevalence in general population rate exceeds the stated threshold is less than the stated threshold

0.0067 1.0 83.71% 16.29%
0.01005 1.5 63.67% 36.33%
0.0134 2.0 38.84% 61.16%
0.01675 2.5 17.97% 82.03%
0.0201 3.0 6.06% 93.94%
0.02345 3.5 1.45% 98.55%
0.0268 4.0 0.24% 99.76%
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foundation on which to base a bold new theory of
statistical analysis!

First, the uniform prior probability distribution
does not provide a formal mathematical representa-
tion of ‘prior ignorance’. No single prior distribution
is appropriate when one is faced with a complete 
lack of information (Walley 1991).Walley et al. (1996)
note that ‘. . . any [single] Bayesian prior distribution
assigns precise probabilities to hypotheses and there-
fore has strong behavioural implications, e.g. it pre-
cisely determines “fair” betting rates on the truth of
the hypotheses.’ Bayesian statisticians would endorse
repeating the analysis using many different prior dis-
tributions in the hope of encapsulating a wide range
of prior beliefs about the values of the relevant para-
meters.This is known as a Robust Bayesian approach
to analysis (Berger 1984, 1990, 1994; Greenhouse &
Wasserman 1995). Such a sensitivity analysis is clearly
important if we are to ascertain how the posterior
distribution is affected by changes to the prior prob-
ability distribution or by changes to the model used
to create the likelihood.

A second difficulty with the uniform prior distrib-
ution is its sensitivity to transformation; the uniform
distribution may in fact be very non-uniform when
transformed to another scale of analysis. A prior dis-
tribution that is uniform on the scale of proportions,
for example, cannot simultaneously be uniform on
the scale of odds and vice versa, and yet in many cases
either scale would be appropriate for analysis. We
would argue that if two scales really are equally
appropriate, and the use of a prior which is uniform
on one scale leads to a qualitatively different con-
clusion to an analysis based upon a prior which is
uniform on the other scale, then inferences must, of
course, be viewed as uncertain. One hopes that in 
situations where more than one analytical scale is
appropriate, the choice of scale would result in rela-
tively small quantitative changes rather than large
qualitative alterations to the principal conclusions.To
illustrate, if Example 2 had been worked assuming
uniformity on the scale of loge(odds) rather than on
the scale of proportions, the estimated posterior
probability that the true rate of cardiovascular birth
defects in ICSI baby exceeded the general popula-
tion rate, or twice that rate, would have been 90.1%
and 39.5%, respectively. Because the sample size is
so small (only five cases), these probabilities are

noticeably different to the original values of 83.7%
and 38.8%, respectively. Nevertheless, this change
would make little or no difference to the principal
conclusion of the analysis.

In most settings in medical statistics, confidence
intervals are calculated in a way that assumes that the
distribution of the data, or at least a relevant
summary statistic, can be approximated by a suitable
Normal distribution. The correspondence of a C%
confidence interval calculated using such an approxi-
mation to a C% credible interval is therefore only
exact when the data are Normally distributed. For
most of the standard probability distributions used to
analyse and model medical data, the approximation
is, in general, quite close even when the sample size
is relatively small (for an example, see Burton
(1994)).

One of the problems with Bayesian analysis is that
it is often a non-trivial problem to combine the prior
information and the current data to produce the pos-
terior distribution. Despite the increasing availability
of purpose-designed software for Bayesian analysis
(BUGS, Spiegelhalter et al. 1995), specialist advice
and software is generally required in order to bring
Bayesian statistics into the medical research work-
place. The congruence between conventional confi-
dence intervals and Bayesian credible intervals
generated using a uniform prior distribution does,
however, provide a simple way to obtain inferences
in Bayesian form which can be implemented using
standard software based on the results and output of
a conventional statistical analysis.

The use of Bayesian methods is growing amongst
clinical scientists and clinicians. The congruence
between a Bayesian analysis using a uniform 
prior and a conventional analysis provides a non-
threatening introduction to Bayesian methods and
means that analyses of the type we describe can be
carried out on standard software. Our approach is
straightforward to implement, offers the potential to
describe the results of conventional analyses in a
manner that is more easily understood, and leads nat-
urally to rational decisions. We do not suggest that
this approach should be used all the time, nor should
it be used is an excuse for designing studies which are
too small or a fallback position when a conventional
analysis fails to produce a statistically significant
result. However, when it is used appropriately, we
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believe that this approach is a useful addition to con-
ventional methods.
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