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1. INTRODUCTION 

As an Introduction to this Workshop on ‘Nuclear technologies and clinical innovation in 
radiation oncology’ I have been asked to review the basic physics phenomena that form the 
background of the two most modern radiotherapy techniques: Intensity Modulated Radiation 
Therapy (IMRT) and Intensity Modulated Hadron Therapy (IMHT). 

DIA  1  Title of the presentation  

To perform the task I have chosen to present a simple, but quantitative, view of the most 
relevant phenomena, so that I shall use some equations to make clear the physical origin of 
well-known behaviours of hadrons (that are all particles composed of quarks) and photons 
propagating in matter. In doing so I have chosen the risky path of being too pedagogic and to 
become somewhat boring. 

However it is my hope that at least the written version of my intervention will be later useful 
to those who do not like to use the output of large computer programs and Montecarlo codes 
without qualitatively understanding what is behind them. 
 

 
2. RUTHERFORD FORMULA 

Both photons and charged hadrons transfer their energy to matter through the interaction of 
charged particles with atomic electrons. Thus the phenomenon to be considered first is the 
collision of a charged particle with an atomic electron. 
Rutherford formula describes classically such a scattering phenomenon. The formula is 
obtained by considering the collision of a particle M - of velocity v – that passes with a 
closest distance of approach b from an initially standing electron. Given this ‘impact’ 
parameter b, the impulse passed to the electron is the product of the duration of the collision 
b/2v with the intensity of the Coulomb force, itself proportional to z e2/ b2. Here ze is the 
charge of the passing-by particle, that has mass M, and e is the charge of the electron of mass 
m. 

DIA  2  Figure giving the derivation of the Rutherford formula and deducing the 
probability of a energy transferred in the range that goes from  E to E+ DE.  

The momentum pt transferred to the recoiling electron equals the impulse and is thus 
proportional to z/bv. The energy Et = m v2/2 = pt2/2m transferred to the electron is thus 
proportional to z2/(2m b2 v2). All collisions in which the energy transferred Et to the electron 
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is larger than E have an impact parameter smaller than b, so that the probability that such a 
collision takes place is proportional to the surface of a disk of area p b2= z2/(2m v2 E2). This 
probability is inversely proportional to E2.  
Finally the probability that the energy imparted to an ensemble of Z independent atomic 
electrons practically at rest by the particle M falls in the interval that goes from E to (E+ DE) 
is the differential DE /E2 of 1/E: 

 

This formula was derived using classical mechanics, while one should have used quantum 
mechanics, since the atomic electrons are waves and the incoming particle is also described 
by a wave. 

DIA   2 Impact parameter of a collision with an atom described by electronic 
waves. Quantum mechanically the impact parameter can be defined only with 
respect to the nucleus. But the atom can be seen as the ensemble of Z classical 
oscillators.  

But the most interesting fact happens: the same Rutherford formula is obtained in quantum 
mechanics. This happens only for a force field that decreases as 1/r2. I call it the ‘Gauss 
miracle’ since it allowed Rutherford to use a classical formula in 1911 to prove the existence 
of atomic nuclei. However, as we shall see in a moment, quantum mechanics cannot be 
forgotten in the description of the collective behaviour of the electrons of the target atoms. 

The Rutherford formula is the basis of all what we shall say on the passage of charged 
hadrons in matter and it has to be examined very carefully. 

To start, the probability is quite naturally proportional to the atomic number Z of the atom, 
but the mass M of the incoming particle does not enter.  

The properties of the incoming particle enter only through the proportionality to the square of 
its charge. Thus a Carbon nucleus (z = 6) transfers to atomic electrons 36 times more energy 
than an electron (z = -1) that has the same speed v. Once the factor z2 is taken into account, 
electrons and heavy nuclei of the same velocity behave (almost) identically. Indeed the 
probability is inversely proportional to v2. This is due to the fact that the slower is the particle 
the longer is the time of interaction and thus the greater is the momentum and energy 
transferred. These two facts are fundamental for hadrontherapy. 
Finally, the probability decreases as the square of the energy transferred to the electron, so 
that the spectrum of the electrons extracted from the atom (the so-called ‘delta rays’) is 
proportional to 1/ E2: small-energy delta rays are much more probable than high-energy ones. 
This point is further discussed in the next Section. 
 

 
3. EXCITATIONS, IONISATIONS AND LOCAL ENERGY DEPOSITION 

We now want to understand the main physical arguments leading to the mathematical 
expression of the Linear Energy Transfer (LET), that is defined as the global loss per unit 
path of the particle (M, z) in a piece of matter having atomic number Z. 
In the following, to be concrete, all examples will concern water. 
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in classical physics: 
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in quantum physics: 
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Precise LET calculations can be only performed by applying quantum mechanics that 
intervenes, as shown in the figure, in two places.. Firstly, the incoming particle is a wave, a 
“wavicle” as Edington would say. Secondly, the atomic electrons are waves surrounding the 
nucleus; in the figure I have represented the waves of the K and L shells of an Oxygen atom 
of water. The shell K is occupied by two electrons and the larger shell L is occupied by six 
electrons. Both facts have to be taken into account. 

The wave nature of the incoming particle puts limitations on the definition of the impact 
parameter of a collision. In particular, onecannot neglect the fact that, in quantum mechanics, 
by principle the impact parameter of an electron-electron collision cannot be defined. Instead, 
the impact parameter of the incoming particle with respect to the nucleus can always be 
defined (Bohr 1948 – Kgl.Danske Videnskab. Selskab, Mat.Fys.Medd.,18, n.8).  
Thus one is allowed to speak of the impact parameter b of the moving particle with respect to 
the nucleus of an atom. Then ‘close collisions’ can be distinguished from ‘distant collisions’ 
by comparing the impact parameter b with the radius R of the atom. 

We have already seen that impact parameter and transferred energy are complementary, in a 
loose sense of the word. This implies that close and distant collisions can be separated by 
looking to the transferred energy in an encounter between the particle and an atom. When the 
energy transferred is much larger than all the binding energies of the atomic electrons, the 
collision is surely ‘close’ and the atomic structure is irrelevant. Instead, when the particles 
passes far away from the atom, its structure is important in so much that the atom absorbs 
energy in a phenomenon similar to the absorption of a low energy photon belonging to a 
packet of electromagnetic radiation. At such large distances the atom reacts to the passage of 
the fast particle as a whole and it cannot be described as an ensemble of Z independent 
electrons. This is the second effect of quantum physics on the phenomenon that interests us. 

So the main question is: how to describe simply an atom with all its complicated occupied 
orbitals? To do this, since the middle of the last century, physicists use a semiclassical model 
that identifies the quantum mechanical atom with an ensemble of Z charged classical 
oscillators. It can be shown that this system of oscillators absorbs energy from an 
electromagnetic wave as the real atom if the frequency of the Z oscillators is I/h, where I is a 
properly chosen quantity usually named ‘mean excitation energy’. 

The name is somewhat confusing because, with reference to the part of the graph of DIA 4 
that is below 150 eV, it is clear that the quantity I has to be a ‘mean energy spent in 
excitations and ionisations’ produced in distant collisions. Only taking into account the 
ionisations one can lump in a single number the complicated behaviour of the graph for 
transferred energies smaller than 150 eV. 

DIA 4  Distribution of the energy transferred to the atoms of water plotted versus the 
energy lost by a 100 KeV electron  

The main point is that the quantity I can be computed with approximate quantum descriptions 
of the atom.. The conclusion is that I is proportional to the atomic number Z of the atom and 
is given with good approximation by the simple formula 

I= (10 Z) eV. 
How can we justify it? Since I has to summarise the average energy spent in ionisations and 
in excitations, it has to be close to the average binding energy of the atomic electrons. For the 
inner K shell the binding energy is of the order of 10 Z2. For the most external electrons the 
binding energy is equal to 10 eV and does not depend on the Z value. One cannot be 
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surprised if the atomic calculation give for I the logarithmic average between this two 
numbers. 

In Oxygen I=80 eV and in Hydrogen I=10 eV. But only 2 of the 10 electrons of a water 
molecule H2O belong to Hydrogen atoms, so that in water the value  I =75 eV is usually 
adopted. 
In summary, the quantity I is an average number that describes the properties of an atom 
when one cannot neglect the binding energy of the atomic electrons. It is the relevant 
parameter when the atom reacts as a whole to a charged particle that passes at a distances that 
is greater than few atomic diameters. To transfer a energy much larger than I, the particle has 
to interact mainly with a single electron in what we have called a ‘close collision’. It is thus 
natural to take twice the value of I as the energy that separates the ‘close’ from the ‘distant’ 
collisions. Thus for water the separation between close and distant collisions is set at 150 eV, 
but none of the arguments we shall present is sensitive to such a choice. 
This limit is indicated in the figure, where the distribution of the energy transfers in water is 
plotted versus the energy lost by an incoming electron of 50 KeV. For energy transferred 
smaller than 150 MeV, the molecules of water are either ionised or excited. The excitations 
of particular molecular states depend on the precise distribution of the atomic orbitals. They 
are represented by the peaks drawn qualitatively in the figure. 

In parallel with the excitations, that rapidly decay, many close collisions produce ionised 
molecules, which correspond to larger transferred energies. Since it is known that to create in 
matter an ion pair on average 30-40 eV have to be spent, the closest of the distant collisions 
(in which an energy equal to 150 eV is transferred) at maximum will produce 3 or 4 ion pairs. 
The corresponding electrons have practically no kinetic energy, so that they remain close to 
the original molecule and often recombine. In a few cases they will be recognised as a cluster 
of ions. 
When the energy transferred in water is larger than about 150 eV, we speak of close 
collisions: the atomic electrons react practically as isolated and practically at rest targets. 
When set in motion as the consequence of an encounter they take the name of ‘delta rays’. 
The Rutherford formula gives their energy spectrum, that is simply proportional to 1/E2. This 
implies that 2 keV delta rays are 4 times less numerous than 1 keV delta rays. 

The distribution of the figure is most important because it shows that small energy transfers 
are much more probable than large ones and, at the same time, makes clear that the energy 
span of the rare close collisions is much larger than the one of distant collisions. These two 
facts balance each other so that the average losses in close and distant collision are 
practically equal, as we now pass to show. To show it we must first compute the energy 
dependence of the LET. 

 
 

4. LET IN WATER 
The LET is obtained by summing the formula obtained above on all possible energies 
transferred to the atoms of the traversed piece of matter. In this sum the maximum Emax is 
obtained, of course, in the closest of all the close collisions. In this case the electrons react 
independently and the maximum transfer can be computed applying classical mechanics to 
the collision with an atomic electron. 

When non-relativistic electrons move in matter, the maximum energy of the delta rays is 
equal to the energy of the incoming electron v divided by square root of two. This happens 
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when the two indistinguishable final electrons are moving after the collision at 45°. In this 
case the energy is (m v2/2). For non-relativistic hadrons the electron velocity is equal to twice 
the velocity of the hadron itself (ve = 2v), as it happens when a ball is launched against the 
motor of an advancing truck, so that  

Emax = m ve2/2 =2 mv2. 
Corrections have to be applied when the incoming particles are relativistic, but for qualitative 
arguments it is enough to recall that the maximum electron energy is always of the order of 
mv2. In the formula we shall use the (2 mv2) valid for non-relativistic hadrons, but eventually 
in the electron case a small correction will be applied. This implies that a hadron of about 200 
MeV per nucleon (v/c = 0.5) puts in motion electrons of energy smaller than about 100 keV. 
This limit does not depend upon the value of the hadron mass M: 
The lower limit of the energy Emin, is transferred in the most distant of all distant collisions.  

DIA 5 Computation of the maximum energy transferred to an atom described as 
ensemble of classical oscillators. 

The minimum can thus be computed within the oscillator model by computing the maximum 
impact parameter in distant collisions. This is determined by the adiabatic limit: the 
electromagnetic field of the passing particle varies so slowly (with respect to the time T = h/I) 
that the passage distorts only adiabatically the electronic orbitals that eventually are left back 
in the initial condition without any transfer of energy. This is similar to what happens when a 
spring is compressed and released very slowly and the energy spent is completely given back 
to the hand acting on the spring. Thus the atom cannot absorb energy if the duration of the 
electromagnetic pulse is equal to h/I. 

As shown above, classically the duration of the collision is bmax/v. But one has to take into 
account the fact that its electromagnetic field is squeezed longitudinally by the relativistic 
effects. This multiplies bmax by the usual relativistic shortening factor (1- v2/c2)½. Equating 
this time to h/I, the maximum impact parameter is obtained 

bmax = h v (1- v2/c2)-½/ I . 
By computing the numerical value one finds that the charged particles passes at hundreds of 
atomic diameters from the nucleus: distant collisions are very loose encounters indeed.  
Given the maximum impact parameter, the minimum momentum is computed by applying 
the uncertainty principle that fixes the momentum transfer  

pmin= h/ bmax = I (1 - v2/c2)½ / v. 

Note that in taking this ratio the constant h has disappeared. One can conclude that quantum 
mechanics is needed to compute the losses in matter, but eventually leaves no sign on the 
final formula. This is the second miracle that allows some great simplifier to deduce an 
approximate formula for the losses of charged particles in matter without even mentioning 
quantum physics. 
Knowing the momentum transferred to an electron, since this electron is non-relativistic the 
energy transferred can be computed with the formula of classical physics:  

Emin = pmin2 / 2m = I2 (1- v2/c2) / (2m v2). 

The Linear Energy Transfer is obtained by first multiplying the Rutherford probability for 
having an energy loss E by the energy lost E and then by summing this product between Emin 
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and Emax. Since the probability is proportional to 1/E2, the multiplication by E give a function 
that is proportional to 1/E. 

DIA 6 Integral to obtain the LET and formula of LET in water 

Then the integral of dE/E gives the natural logarithm of the ratio (Emax / Emin) of the two 
limits. By introducing the numerical factors, left out for simplicity in the above derivation, 
the Linear Energy Transfer comes out to be 

in water:       (0.0076  keV  )        z2          ln(        (2 mv2) 2               ) 
                            µm           v2/c2                  I2 (1- v2/c2)  

The numerical factor has the following expression that was not derived only for brevity: 

(e4 N A) / (16 p e m c2). 
This is the formula we have been looking for. The most important fact is that the LET is a 
function of v only, so that it is the same (a part the simple factor z2 ) for all charged particles 
having the same speed. This is true also for electrons, but for the small correction discussed 
above that reduces the value of the logarithm, typically in the range 10-20, by about 10%. 

DIA 7 Plot of LET of the model compared with the exact calculation. 

In the figure the results of the exact calculations, plotted as a function of (K/Mc2), are 
compared with the above formul. K is the kinetic energy of the particle of rest energy equal to 
Mc2. (The fraction k = K/Mc2 is related to the quantity g often used by physicists: g = k +1.)  

One can express the LET as a function of K/Mc2, the fractional kinetic energy of the 
incoming particle, because the only relevant parameter is the square of the velocity, and v2 
can be always expressed as a function of K/Mc2. 

The rest energies of the charged particles used in radiotherapy are collected in the table. 

 

Table 1. Properties of the charged particles used in hadrontherapy 
Charged 
particle 

 
z 

Rest energy 
Mc2 

[MeV] 

Kinetic energy for which 
K/Mc2 = 0.40  

[MeV] 

Kinetic energy per nucleon  
for which K/Mc2 = 0.40 

[MeV/u] 

electron -1 0.51 0.20 - 

proton 1 938 375  375 

Helium ion 2 3'700 1'480  370 

Carbon ion 6 11'170 4'470 370 

Neon ion 10 18'600 7'4500 370 

 
In the double-logarithmic graph of the figure, for fractional kinetic energies k smaller than 
about 0.4 (i.e. for v/c<0.7) the LET is practically represented by a straight line with an 
accuracy that is definitely better than 5% over almost the full range of energies. This implies 
that a simple power law can be used to describe the LET for the kinetic energies used in 
hadrontherapy – as shown in the last two column of the table. The simple expression that can 
be used is 

LET in water:       0.12 z2  keV / µm
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For k = (K /.Mc2) larger than 1 the particles are relativistic and the velocity does not increase 
any longer with energy. The LET is practically constant and equal to 0.21 keV/µm.. In the 
range between 0.4 and 1 no simple rule applies. 

Note that a classical calculation (no relativity and no quantum physics) would have given in 
the denominator k1 instead than k0.82. The power 1 corresponds to a power 2 in the speed v of 
the moving charge, due to the fact that the faster the particle goes the smaller is the impulse pt 
given to an atomic electron. The energy transferred then goes as v2. This is the physical origin 
of the k-1 law of the LET in classical physics. All what the relativistic and quantum 
complications have done is to modify a 1 in a 0.82! 

The above formula (reduced by 10%) is also valid for electrons up to k = 0.4, i.e. kinetic 
energies less than about 200 KeV. Above 0.5 MeV the loss is practically constant and equal 
to 0.19 keV/µm in water, 10% less than for hadrons. 
Now we can go back to the problem of the fraction of the lost energy that is spent in distant 
collisions. In the semiclassical model the fraction Fdistant is simply as the ratio of two 
logarithms which are proportional to the integrals of the losses from Emin to the energy 2I 
separating close and far collisions and from Emin to Emax 

ln(Emin / 2I) / ln(Emax / Emin) 
This is essentially the fraction Fdistant plotted in the figure for electrons. The graph shows that 
the fraction of the energy lost by a charged particle in distant collisions is equal to 60% of all 
the losses independently of the kinetic energy of the fast particle. 

DIA 8 Ratio of the energy lost in close collision to the total energy lost.  

We are interested in Fdistant because it quantifies the fraction of all the losses that are deposited 
locally, i.e. very close to the molecule that reacted to the far away passage of the charged 
particle. 

The large fraction of ionisation and excitations without production of delta rays should be 
always taken into account when using the usual statement that fast electrons, for instance, are 
‘sparsely ionising’ radiations. 
 

 
5. MULTIPLE SCATTERING 

In the interactions with the nuclei of the traversed matter electrons are much more disturbed 
than hadrons because of the much smaller mass with respect to the masses of the target 
nuclei. 
A pencil beam of hadrons acquires in matter a radius that increases with the depth, as shown 
if the figure. Note that the heavier nuclei disperse much less than the protons. Anyway, the 
widening of a pencil beam is small with respect to the depth reached, so that the penetration 
in matter practically equals the length of the actual path followed by the average particle. 
This fact is used in the computation of the range of hadrons in matter. 

DIA 9 Widening of a pencil beam of hadrons and high energy electrons in water. 
Electrons in matter. plural and multiple scattering. Practical range 

As far as the electrons are concerned, it is interesting to remark that electrons of many 
hundred MeV, i.e electrons having energies similar to the ones of the protons used in therapy, 
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do not behave very differently from protons as far as the dispersion in light matter is 
concerned. 

The behaviour of low energy electrons is shown in the next figure. 
Three different regimes can be recognised in the case of low energy electrons. In the first 
layers few large angle scattering are important. This is called ‘plural’ scattering. At greater 
depth many small angle scattering combine statistically so that the average angle of the 
initially collimated beam increases as the square root of the thickness. This is called 
‘multiple’ scattering and statistical formula exists to compute the spreading of a beam. 
Finally, when the electrons have spent almost all of their kinetic energy in collisions, the 
memory of the initial direction is lost and the phenomenon is called of ‘complete diffusion’. 

It is not possible to define an average range of electrons in matter, as it is done for hadrons. 
The quantity used is then the ‘practical range’ Rp, obtained by extrapolating (in the almost 
linear region) the graph of the number of electrons as a function of depth. For instance from 
the figure one can deduce that the practical range of 20 keV electrons in water is 0.7 10-3 cm, 
i.e 7 microns. 
 

6. RANGE OF HADRONS IN MATTER 
By neglecting multiple scattering, the range of hadrons in matter obtained by remarking that a 
particle looses the kinetic energy DK in a distance Dx = DK / LET. The range is then 
computed as the sum of a large number of small steps. 

DIA 10 Integral of LET to obtain the range of hadrons. Good to 5% 

For the energies of interest in therapy (K/Mc2£ 0.4) it is enough to integrate the approximate 
expression that gives the LET as proportional to The integral of K¾ is 7 K7/4/ 4 so that, taking 
into account the numerical factors, 

Rwater = (425 cm) (A/z2) (K /.Mc2)1.82                (hadrons). 

The mass number A enters because Mc2 has been expressed as A´931 MeV. 
Table 2. Properties and ranges of the charged particles used in hadrontherapy 
Charged 
particle 

 
z 

Rest energy 
Mc2 

[MeV] 

Kinetic energy for 
Rwater = 20.0 cm 

(exact calculation) 
[MeV/u] 

 
k= 

K /.Mc2 

Range computed with 
simple formula 

[cm] 

proton 1 938 172 938 19.4 

Helium ion 2 3'700 173 3'700 20,3 

Carbon ion 6 11'170 330 11'170 21.3 

Neon ion 10 18'600 410 18'600 19.2 

This is a simple formula valid to better than 5%, as shown by comparing the number listed in 
the last column with the value 20.0 cm obtained in a complete calculation. The accuracy 
improves when the energy is reduced and the range is smaller than 20 cm in water. 

 
 

7. THE BRAGG PEAK 
As shown in the DIA 11 by taking the power 1/1.82 of the formula of the range in water one 
obtains the kinetic energy as a function of the range: 



  good to 5% 
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A z 

Mc2 

(MeV) 
K/A 

(MeV) K(MeV) R(cm) 

p 1 1 938 172 172 19.4 
He 4 2 3'700 174 695 20.3 
C 12 6 11'200 330 3'960 21.3 
Ne 20 10 18'600 410 8'200 19.2 

average 20.0 

 
 Rexact = 20.0 cm 

 z2      Mc2 

R =        1                            K     0.82    dK    ∙ Mc2 

  z2 0.12   MeV/mm        Mc2                Mc2 ò 
= (425 cm)     A     K     1.82  

R =  S    DK     =  S    DK 
DK                  LET 
Dx 
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DIA 11 Plot of the Bragg peak in water for protons.  

The result is 
K / Mc2 = (z2/A)1/1.82  (Rwater/R*)1/1.82. 

Here a convenient unit of length, that comes out naturally in this phenomenon, has been 
introduced: R*= 425 cm. 

By substituting this formula in the expression giving the LET, one can express the LET as a 
function of the residual range 

LET = L* (z1.1 A0.45) (R*/ Rwater)0.45. 
The power 0.45 is the ratio 0.82/1.82 and the exponent 1.1 of z is (2- 2 0.45). In this formula 
L* is the natural unit of energy loss: L*= 0.12 keV/µm. 
We conclude that, if the LET  can be expressed as a power law of K, all Bragg peaks of light 
ions in water have the same shape, but the numerical values are higher than the proton one by 
the factor (z1.1 A0.45) compared with the exact calculation in Table 3. This dependence is 
clearly superior to the one (z A0.5).that could be derived with simple classical arguments. 
 
                            Table 3. Ion dependence of the height of the Bragg curve 

  
proton 

 
He ion 

 
Carbon ion 

 
Neon ion 

Value at 20.0 cmm (Table 2) 1 4.02 23.0 47.6 

z1.1 A0.45 1 4.00 22.0 48.5 

z  A0.5 1 4.00 20.8 44.7 

 
Hadrons interact through the strong force with the nuclei of matter. These nuclear interactions 
cannot be described analytically, but are very important for the dose deposited by the nuclear 
fragments and the break-up of the nuclei of matter. One has to use Montecarlo simulations 
that are usually normalised to a total cross section determined by Sihver et al. 

DIA 12 Nuclear interactions of Carbon in water.  

I have no time to discuss this important subject. 
 

8. RANGE OF ELECTRONS IN MATTER 
The practical range of electrons is plotted in the next figure, which shows that - at variance 
with what happens in Aluminium - in such a light material the practical range Rp is 
approximately equal to the range measured along the path. This range can be computed using 
the LET by reducing the hadron losses by 10%, but here the situation is more complicated 

DIA 13 Practical range of electrons.  



THE BRAGG PEAK 
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NUCLEAR INTERACTIONS 
 

The nuclear cross section varies with energies 
 

 
[Sihver et al] 

 
 

Monte Carlo results (Geant 3) 
 
 



PRACTICAL RANGE OF ELECTRONS 
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1    0.1 µm  @ 100 nm 
10 2.5 µm 
25 10 µm 
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Indeed we have to recall that 
(i) the only quantity that counts is the fractional kinetic energy K/Mc2 and  

(ii) for K/Mc2>1 electrons have an almost constant value of LET: 0.18 keV/µm. 
On the other side, for K/Mc2<0.4 the same formula derived for the hadrons applies with a  
reduction of 10% and the substitution A= m/M= (0.51 MeV) / (931 MeV) = 5.5 10-4: 
Rpwater = (0.21 cm) (K /.0.5 MeV)1.82 + (K – 0.25 MeV) /(1.9 MeV/cm)         (electrons). 

DIA 14 Formula to obtain the practical range of electrons, with table.  

To compute the range at all energies we use the hadron formula up to K/Mc2 = 0.5 and 
assume a constant LET at higher energies. The practical range in water can thus be written as 
the sum of two terms, which are given in Table 3 for four different energies. 

One can conclude that the semi-classical model gives electron ranges that are good to about 
15%. This is an excellent result, taking into account the fact that the very definition of 
practical range and its identification with R are subject to experimental and theoretical 
uncertainties. 

 
Table 4. Practical ranges of electrons in water 

  Electron energy 
 

Two terms  
[cm] 

Range computed with 
simple formula 

 

Range read from the figures  
 

0.020 MeV= 20 keV 0.0006 + 0 0.0006 cm = 6 µm 7 µm 

0.20 MeV= 200 keV 0.04 + 0 0.04 cm = 400 µm 450 µm 

2 MeV 0.06 + 0.92 0.98 cm 1.1 cm 

10 MeV 0.06 + 5.1 5.2 cm 5.0 cm 

 
 

9. CONVENTIONAL RADIATIONS 
The above arguments, centred on the LET and the range of charged particles in matter, have 
two important consequences for conventional radiotherapy.  
The first point I want to discuss is the possibility to compute the practical range of the 
electron beams used in radiotherapy. The figure shows the dose distributions measured with 6 
MeV and 18 MeV electrons. The measured ranges agree well with the one computed by the 
simple formula derived above, that give 3.1 cm and 9.4 cm respectively. 

DIA 15 Ranges and radiation due to electrons used in radiotherapy.  

To discuss the second consequence one should recall that electrons irradiate energy in the 
form of high-energy photons. The filtered energy spectrum of these photons goes from about 
0.5 MeV to the energy of the electrons. 
These photons transfer energy to the traversed tissues because they set in motion atomic 
electrons by the so-called Compton effect. This is just the scattering of two particles, a high-
energy-photon and an electron practically at rest in matter. For reasons that I shall not discuss 
here, the energy transferred by a beam of X-ray - irradiated by electron in a far away heavy 
target -decreases exponentially with the depth. This quantity is called KERMA for Kinetic 
Energy Released in Matter.  
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0.020 MeV= 20 keV  6 µm 7 µm 

0.20 MeV= 200 keV 400 µm 450 µm 

2 MeV 0.98 cm 1.1 cm 
10 MeV 5.2 cm 5.0 cm 
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CONVENTIONAL RADIOTHERAPY 
 

       

                                                         R( 6  MeV) = 3.1 cm 
                                                         R(18 MeV) = 9.4 cm 

 
 

Electrons radiate a continuum spectrum of “X-rays” 
 
 

 
 

for the radiated spectrum   
 

effective energy EX @  2 Ke 
5 

R= 0.06 cm + 
K – 0.25 MeV 
 1.9 MeV/cm 



DIA 16 Figure on the build up effect  

The second consequence is an understanding of the reason for which high-energy X-rays 
spare the surface tissues. As well known, the dose increases in the first few centimetres due to 
the ‘build-up’ effect.  
If the X-ray beam - produced by electrons of energy Ke - was not attenuated in matter, and all 
the electrons moved forward with the same range R, the position D of the peak of the dose 
would be equal to R. 

But there are many phenomena that play important roles when one is faced with the 
understanding of experimental data. 

DIA 17 Figure on the build up effect  

The photons have energy EX in the range that goes from 0.5 MeV and Ke and the Compton 
electrons have energy between zero and EX. All ranges are thus present and one can only say 
that D is expected to be smaller than the range computed using the energy Ke of the electrons 
radiating the photons in the heavy target. This is shown in the Table 
 

Table 5. Peak of the dose in depth for different energies of the radiating electrons  
Ke 

(MeV) 
D  

(cm) 
K(D) 

(MeV) 
 

K(D) / Ke 

2 0.5 1.1 0.55 

8 2.2 4.2 0.52 

20 4.5 8.6 0.43 

70 11 21 0.30 

 
The fact that the ratio decreases with the energy shows that the phenomenon is complicated. 

 
 

10. DISTRIBUTIONS OF THE LINEAR ENERGY TRANSFER 
A somewhat unfashionable but still (in my opinion) useful way of representing the way in 
which energy is transferred by radiation to matter makes use of the spectra of LEY. In such a 
graph the area under each part of the curve represents how much energy is transferred by 
particles that have the value of the LET represented on the horizontal axis.  

DIA 18 LET spectra for three beams of X-rays of increasing energy  

When comparing the effects of hadrons with photons an important reference point is the LET 
vale of 10 keV/µm. 

Indeed radiobiological studies have shown that for LET values larger than this the cell killing 
follows from radiobiological processes different from the ones acting for LET in the range 
0.2 – 1 keV/µm. This delicate, and somewhat controversial, point will be discussed in the 
next presentation. With this last figure I want only to underline that, due to the many low 
energy electrons and delta rays, high-LET depositions are present also in a field of 
conventional radiations. Hadrontherapy is different from conventional radiotherapy, but in 
reality the underlying microscopic phenomena are the same. What changes is the relative 
weight.



RADIOTHERAPY WITH X-RAYS 
 

 

 
 

 
 

The finite range of the electrons produced in 
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The depth D of the maximum is proportional to the 
range of the Compton electrons set in motion in the 
first layers 

 
 

The phenomenon is complicated  
Ke 

(MeV) 
D 

(cm) 
K(D) K(D)/ Ke 

2 0.5 1.1 0.55 
8 2.2 4.2 0.52 
20 4.5 8.6 0.43 
70 11 21 0.30 
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SPECTRA OF THE LET DUE TO X-RAYS 
 

By increasing the energy of the X-rays the 
energy deposited with LET > 10 keV/µm 

decreases 

 
also 

“sparsely ionizing” radiations deposit energy with “high” LET 
 
 

 

 

25 MV 

 

Cobalt 60 

 

220 keV 


