

Francesca Spinella, PhD Medical Scientific Liaisons

Genoma

NEXT GENERATION SEQUNCING

CLINICAL APPLICATION Non Invasive Prenatal Testing NIPT **Preimplatation Genetic Testing** Maternal DNA Placenta-derived cfDNA NGS PGT Embryonic cells

Chromosome analysis

Chromosome analysis is a test to look at the chromosomes in a sample of cells. It can help identify chromosome abnormalities such as aneuploidy and structural abnormalities.

Chromosome 1 = 200 Mb (megabases = millions of bases) Chromosome 21= 40Mb

Deletion/duplication >10Mb Microdeletion/microduplication <10Mb

Preimplantation Genetic Testing (PGT)

Preimplantation Genetic Testing (PGT) is the study of chromosomal and genetic alterations in the embryo before transfer to the mother's uterus.

Fecondazione in vitro.

Chromosomal aneuploidy and IVF outcome

Chromosomal aneuploidy is common in preimplantation embryos and provides an explanation for most implantation failures and recurrent miscarriages in in vitro fertilization (IVF) treatments

Aneuploidies, maternal age and fertility

- Aneuploidy increases with advancing maternal age
- Aneuploidy is almost always lethal (failed implantation/miscarriage)

eurofins

While an euploidies increase with age, live birth rate decreases

Genoma

% aneuploidy in embryos increases with maternal age

Data from 8000 blastocysts tested by NGS

% aneuploidy in embryos according to indication for PGS

Data from 8000 blastocysts tested by MGS

APPLICAZIONE DELLA PGT

Genetic testing for aneuploidies (PGT-A), which performs a preimplantation screening for PGT chromosomal abnormalities (increasing IVF success)

- Advanced maternal age
- Repeated implant failure
- Recurrent early miscarriages
- Severe male infertility

Genetic testing for PGT-SR structural aneuploidies

- Translocations (Reciprocal, Robertsonian)
- Deletions
- Duplication
- Inversions

Età materna e autcome clinico

- L'incidenza delle aneuploidie aumenta con l'avanzare dell'età materna
- L'aneuploidia è quasi sempre letale (impianto fallito / aborto spontaneo)
- Mentre l'aneuploidia aumenta con l'età, il tasso di natalità diminuisce

Aims of PGT-A

- Reduce the time it takes to get pregnant
- Selection of the best embryo for single embryo transfer
- Reduce the incidence of miscarriage
- Reduce the risk of having a baby with an aneuploidy condition

PGT-A Types of biopsies used

Embryonic cleavage stage is characterized by chromosomal instability (CIN).

Impossibility to detect mosaicism

COME SI ESEGUE UNA PGT-A

PGT Genetic screening workflow

TE biopsy

Single cells biopsy

NGS-based PGS

PGT NGS based

Data analysis

Sequences from each chromosome are counted using a dedicated software and compared with a chromosomically normal reference DNA

18

eurofins

Euploid embryo

Chromosomal position

NGS enables quantification of chromosome copy number

Genoma

eurofins

PGT results

Fully aneuploid embryo (trisomy 21)

Chromosomal position

*ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum Reprod Open 2020

٨

6

6

8 9

Chromosomal position

0

N

N

Ô

N.

Ś

~ + & & & & & & & & ~

2±0,2 copy numbers

PGT results

Validation study

4.00

3.60

3.20

2.80

2.40

2.00

1.60

1.20

0.80

0.40

N

r

3

Euploid

Copy number

It is recommended to perform validation studies with true aneuploid and euploid cell lines*

PGT results Mosaic embryo (monosomy 13)

Chromosomal position

PGT results

Classification

Clinical outcome based on PGT results

Classification

Euploid			Mosaic					Aneuploid		
0 %	10%	20 %	30%	40 %	50 %	60 %	70 %	80%	90 %	100%
		I								

% Chromosomal Mosaicism

Clinical Outcomes of Euploid vs. Mosaic Embryos

Ongoing Pregnancy/Birth rate

PGT-A Clinical outcomes

PGT-A allows to avoid the negative effect of maternal age on implantation rate

SART National Summary Report: Preliminary CSR for 2014. 2017.

PGT-A Clinical outcomes

eurofins Genoma

...however the total number of pregnancies will be lower because there will be less transfers per cycle

PGT Conclusion

PGT represents a useful tool for embryo assessment before transfer:

- to significantly reduce a couple's risk to have a pregnancy with a genetic disorder or chromosomal abnormality;
- to improve IVF clinical outcome, identifying and selecting for transfer chromosomally normal (euploid) embryos.
- The use of high-depth NGS ensures more accurate results as it also allows intermediate CNVs to be visualized by identifying mosaic embryos

Thank You

ROMA

Laboratori and Studi Medici Via Castel Giubileo, 11/62 - 00138 Roma (RM) E-mail: info@laboratoriogenoma.eu

MILANO

Laboratori and Studi Medici Via Enrico Cialdini, 16 - 20161 Milano (MI) E-mail: info@genomamilano.it

www.laboratoriogenoma.eu