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Successful establishment of infection by bacterial pathogens requires adhesion to host
cells, colonization of tissues, and in certain cases, cellular invasion—followed by intracellu-
lar multiplication, dissemination to other tissues, or persistence. Bacteria use monomeric
adhesins/invasins or highly sophisticated macromolecular machines such as type III secre-
tion systems and retractile type IV pili to establish a complex host/pathogen molecular
crosstalk that leads to subversion of cellular functions and establishment of disease.
Introduction

Bacteria are among the most diverse living organisms and

have adapted to a great variety of ecological environ-

ments, including the human body. Pathogenic bacteria

present an astounding arsenal of surface organelles and

secreted toxins that allow them to conquer many different

niches throughout the course of infection. Particularly fas-

cinating is the fact that some bacterial species, by com-

bining several of these munitions, are able to induce differ-

ent diseases, as illustrated by the well-known Escherichia

coli. Indeed, this important intestinal flora commensal can

be responsible for diverse illnesses according to the ex-

pression of different combinations of pathogenic factors.

For example, enteropathogenic E. coli (EPEC) induces

the destruction of the intestinal brush border microvilli

leading to diarrhea, while enterohemorrhagic E. coli

(EHEC, which includes the famous 0157:H7 strain) is re-

sponsible for hemorrhagic colitis and sporadically hemo-

lytic uremic syndrome. Other pathogenic E. coli including

enterotoxigenic (ETEC), enteroinvasive (EIEC), enteroag-

gregative (EAEC), or diffusely adhesive (DAEC) express

their own specific combinations of pathogenic factors, re-

sulting in yet other types of infections.

The complexity of the bacterial tools used for cell adhe-

sion and invasion ranges from single monomeric proteins

to intricate multimeric macromolecules that perform

highly sophisticated functions and can be truly considered

as nanomachines. Their huge diversity makes the task of

analyzing—and comparing them—difficult. As we gain in-

sight into the complex behavior of some pathogens, by

combining information issued from tissue culture assays

and in vivo studies, some concepts in the field need to

be reconsidered—in particular, the strict distinction be-

tween extracellular versus intracellular bacteria (see for

example Oh et al., 2005). Whatever these complex and

conflicting issues, much exciting research is currently pro-

viding new information and revealing the exquisite adap-

tations that bacterial pathogens have evolved to subvert
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specific host-cell functions. In this Review, we will address

some of the most remarkable strategies used by bacterial

pathogens to adhere, and in some cases invade, nonpha-

gocytic epithelial cells within their hosts.

Pili and Fimbria

Pili are adhesive hair-like organelles that protrude from the

surface of bacteria. Since pili can be used as appendages

for transfer of genetic material during bacterial conjuga-

tion, the term ‘‘fimbria’’ is more commonly used to de-

scribe pili, whose function is devoted to attach bacteria

to a surface. Identified initially only in Gram-negative or-

ganisms such as Escherichia coli, these filamentous sur-

face structures comprise a scaffold-like rod anchored to

the bacterial outer membrane and a bacterial adherence

factor or adhesin located at the tip of the scaffold, which

confers the binding specificity. Some pili, such as Type

IV pili, not only mediate adhesion but also perform com-

plex functions such as force-driven contraction, providing

bacteria with powerful tools to enhance their contact with

target surfaces. Gram-positive bacteria have more re-

cently been shown to also possess pili, and the mecha-

nisms by which these organelles are assembled as well

as their contribution to disease are the subject of new in-

tense investigation.

Structures Exported by the Chaperone/Usher

Pathway: P pili, Type I Pili, and Afa/Dr Adhesins

One of the first- and best-characterized fimbria is the

pyelonephritis-associated (P) pilus, expressed by E. coli

strains that colonize the urinary tract and subsequently

infect the kidney, also known as uropathogenic E. coli or

UPEC. P pili are encoded by the pap gene cluster, which

contains regulatory as well as biosynthetic genes for fim-

brial subunits, protein chaperons and outer membrane an-

chors. P pili biogenesis is the paradigm of the ‘‘chaperone/

usher’’ pathway (Figure 1A), in which the periplasmic

chaperone PapD transports each of the pilus subunits

to the outer membrane assembly platform/usher PapC,
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Figure 1. Pilus Biogenesis Machineries

(A) Chaperone/Usher-Mediated Pilus Biogene-

sis: Individual components of the pilus are

transported from the bacterial cytoplasmic

space to the periplasm via the type II secretion

system, a general pathway for bacterial protein

transport (i). In the absence of the chaperone

PapD, the pilus subunits are degraded (ii). Oth-

erwise, PapD stabilizes the subunits (iii) and

transports them to the outer membrane usher

PapC (iv). The pilus tip is assembled first, and

then pilus grow from their base (v). The final

quaternary structure is acquired outside the

bacterial outer membrane (vi) (adapted from

Sauer et al., 2000).

(B) Sortase-Mediated Pilus Biogenesis: Pilus

subunits present a signal peptide that pro-

motes their transport from the cytoplasm to

the bacterial cell wall by the type II secretion

system. Subunits are anchored to the bacterial

membrane through their cell wall sorting signal,

which are in turn cleaved by the sortase, form-

ing a sortase-subunit acyl intermediate. In the

case of C. diphteriae, SpaC is the first subunit

to be incorporated into the pilus; a conserved

lysine residue (K) at N terminus of SpaA attacks

the sortase-SpaC acyl intermediate, and the

remainder of the filament is assembled by a se-

quence of similar transpeptidation reactions.

The mature pilus is attached to the cell wall en-

velope (adapted from Ton-That and Schnee-

wind, 2004).
which in turn facilitates subunit translocation to the bacte-

rial surface (Thanassi et al., 1998). PapD binds pilus sub-

units to prevent their aggregation at the wrong time in

the periplasmic space and catalyzes subunits folding to

prime them for assembly (Bann et al., 2004). P pili bind

through the PapG adhesin to the a-D-galactopyranosyl-

(1-4)-b-D-galactopyranoside moiety of glycolipids of up-

per urinary tract cells. PapG variants recognize different

but related Gala-(1-4)-Gal receptors differently distributed

within host tissues and within the host population, so dif-

ferential expression of PapG adhesins drives tissue and

host specificity (Hultgren et al., 1991).

Type I pili are another kind of composite surface fibers

present in different pathogenic E. coli (UPEC and DAEC).

Type I pili are encoded by the fim gene cluster and also ex-

ported by the chaperone/usher pathway—in which FimC
716 Cell 124, 715–727, February 24, 2006 ª2006 Elsevier Inc.
is the periplasmic chaperone, FimD is the outer membrane

usher, and FimH is the pilus adhesin. FimH recognizes es-

sentially monomannose- and trimannose-containing gly-

coprotein receptors: commensal E. coli isolates present

FimH variants that bind with high affinity to trimannose

residues, while uropathogenic bacteria present FimH mol-

ecules that exhibit a higher affinity for monomannose res-

idues enriched within the urinary tract. Strikingly, FimH in-

teraction with cellular receptors can induce not only the

adhesion but also bacterial internalization within bladder

cells, resulting in bacterial persistence and chronic urinary

tract infections (discussed below).

Another family of adherent structures secreted by the

chaperone/usher pathway is the extremely heteroge-

neous family of Afa/Dr adhesins (Servin, 2005), identified

in UPEC and DAEC. Afa/Dr adhesins are typically



encoded by at least five afa genes (A through E), afaE cod-

ing for the actual adhesin. First characterized as afimbrial,

several members of this family have now been shown to

be assembled into true fimbrial structures: the sequence

of the adhesin dictates whether or not it will be assembled

into fimbriae, and genetically switching the genes encod-

ing the adhesins switches the adhesin type (Anderson

et al., 2004). Most of the Afa/Dr adhesins bind to the

Dra-blood group antigen of the complement regulatory

molecule CD55 (also known as DAF), but some are re-

ported to interact with carcinoembryonic antigen-related

adhesion molecules (CEACAMs), with type IV collagen

or with a5b1 integrins (see below).

Retractile Type IV Pili

Much current interest is focused in the study of type IV pili,

another category of polymeric adhesive surface struc-

tures expressed by many Gram-negative bacteria includ-

ing pathogens such as EPEC, EHEC, Salmonella enterica

serovar Typhi, Pseudomonas aeruginosa, Legionella

pneumophila, Neisseria gonorrhoeae, Neisseria meningiti-

dis, and Vibrio cholerae (Craig et al., 2004). These organ-

elles are essentially composed of a homopolymer of a

single pilin subunit, such as PilA in P. aeruginosa, PilE in

Neisseria spp., bundlin in EPEC or TcpA in V. cholerae.

An adhesive subunit has been characterized at the tip of

some pili, for example PilC in Neisseria spp. Besides the

structural subunit(s) of the pilus, many accessory mole-

cules including prepilin peptidases, putative nucleotide

binding proteins, prepilin-like proteins, cytoplasmic mem-

brane proteins, and outer membrane proteins are required

for pilus biogenesis. In some bacterial species, such as

EPEC and V. cholerae, type IV pili can aggregate laterally

forming bundles. The structure of the EPEC bundling-

forming pilus has been characterized recently, and it is

demonstrated that EPEC bundlin shows significant differ-

ences in its secondary and tertiary structure compared to

V. cholerae TcpA; nevertheless, EPEC and V. cholerae

type IV pili have virtually similar helical organization, sug-

gesting that evolutionary forces contribute to diversifica-

tion in pilin structure while pilus structure and function

are maintained (Ramboarina et al., 2005).

Unlike type I and P pili, which are assembled in the bac-

terial extracellular space, type IV pili are formed at the cy-

toplasmic membrane and the intact organelle is extruded

across the outer membrane (Wolfgang et al., 2000). How-

ever, the most striking feature of type IV pili is their ability

to retract through the bacterial cell wall while the pilus tip

remains firmly adhered to the target surface. In Neisseria

spp., it has been shown that the inner membrane ATPase

PilT is involved in type IV pilus retraction (Wolfgang et al.,

1998). PilT is also required for force-dependent pilus elon-

gation, suggesting that bacteria can modulate interaction

with surfaces by controlling tension on their pili (Maier

et al., 2004). Pilus retraction is required for a specialized

form of bacterial movement across semisolid surfaces

(such as the mucosal epithelia) called twitching motility.

Type IV pili are also involved in bacterial adhesion to

host cells. EPEC type IV bundle-forming pili, for example,
are required for initial bacterial attachment to brush bor-

der cells as a prelude for the ‘‘attaching and effacing’’

phenotype (Tobe and Sasakawa 2002) (see below).

P. aeruginosa type IV pili are the main adhesive organelles

recognizing the disaccharide b-GalNAc(1-4)bGal on epi-

thelial cells asialo-GM1 and -GM2 gangliosides (Suh

et al., 2001). In the case of Neisseria spp., PilC-mediated

adhesion to host cells via recognition of the complement

regulator CD46 has been reported (Kallstrom et al.,

1997), but recent studies suggest that the PilC ligand is

a still undefined protein (Kirchner and Meyer, 2005). Nev-

ertheless, type IV piliated Neisseria spp. are able to induce

several activities including CD46 tyrosine phosphoryla-

tion, CD46 redistribution under signaling bacteria and

release of CD46-enriched host membrane vesicles (Gill

et al., 2005; Lee et al., 2005). A minor subunit of the Neis-

seria spp. type IV pili, PilV, has also been described as

mediating bacterial adhesion to epithelial cells (Winther-

Larsen et al., 2001). Phase and antigenic variation have

been described for Neisseria spp. type IV pili, enabling

the pathogen to express new variants during the course

of infection and escape the immune system. Type IV pili

have been additionally implicated in other different func-

tions, including biofilm formation and DNA uptake by nat-

ural transformation.

Pili in Gram-Positive Bacteria

The presence of pili has been for many years the hallmark

of Gram-negative bacteria. However, in several Gram-

positive microorganisms, fimbrial structures have been

described in the past, and recently the mechanisms by

which Gram-positive pili are assembled have started to

be uncovered (Ton-That and Schneewind, 2004). In the

case of Corynebacterium diphtheriae, the agent of human

diphtheria, pili are composed of three subunits: SpA is the

major component of the pilus shaft, SpaB is spaced at

regular intervals along the shaft, and SpaC is located at

the pilus tip. These pili are generated by the sortase ma-

chinery, which had so far only been considered as a path-

way to covalently anchor proteins presenting the LPXTG

motif to the cell wall peptidoglycan. Study of the assembly

mechanisms of Gram-positive pili suggests that sortases,

through their transpeptidase activity, also link pili subunits

(Figure 1B). A similar sortase-mediated export of pilin sub-

units seems to exist in other pathogenic species such as

Clostridium perfringens, Actinomyces naeslundii, Strepto-

coccus agalactiae, Streptococcus mutans, and Strepto-

coccus pneumoniae (Lauer et al., 2005). However, in

species such as Ruminococcus albus, the pilus subunit

presents homology to that of Gram-negative type IV pili;

moreover, pili are morphologically similar to type IV pili,

suggesting that Gram-positive bacteria have also evolved

multiple molecular strategies for pili formation.

As in Gram-negative pathogens, Gram-positive pili

seem to play an important role in the adhesion of bacteria

to host surfaces. In the case of the buccal pathogen Strep-

tococcus parasanguis, the distal FimA subunit promotes

adhesion to saliva-coated hydroxyl apatite; Actinomyces

spp., another buccal pathogen, binds salivary proline-rich
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molecules and mucosal tissues via type 1 and type 2 fim-

bria, respectively (Ton-That and Schneewind, 2004). Inter-

estingly, the recently discovered Streptococcus pyogenes

pili have been unwittingly used during more than five

decades for serotyping; new data show that immunization

of mice with recombinant S. pyogenes pilus proteins con-

fers protection against challenge with virulent bacteria,

highlighting the key role of these pili for infection (Mora

et al., 2005).

Adhesins

Besides pili and fimbria, a plethora of different bacterial

nonpolymeric adhesins exist which recognize many differ-

ent elements of host-cell surfaces, including components

of the extracellular matrix such as collagens, laminins,

elastin, proteoglycans, and hyaluronan. Adhesive glyco-

proteins such as vitronectin, fibrinogen, and specially

fibronectin—which can be present as secreted or plasma

membrane-associated molecules—are also recognized

by many different species of bacterial pathogens. Integral

host membrane adhesion receptors such as integrins,

cadherins, selectins, and CEACAMs are receptors of

many pathogens for adhesion, and some times for cell en-

try (see section on invasion).

Fibronectin Binding Proteins

Impressive for its broad repertoire of adhesins is S. pyo-

genes (responsible for cutaneo-mucosal infections includ-

ing necrotizing fasciitis), which presents more than twelve

fibronectin and collagen binding proteins, some of them

displaying additional enzymatic activities such as serine

protease activity in the case of ScpA or lipoproteinase ac-

tivity in the case of SfbII (Kreikemeyer et al., 2004). Staph-

ylococcus aureus, agent of polymorphic cutaneo-mucosal

infections and toxic shock syndromes, also express fibro-

nectin binding proteins that present mechanico-functional

properties similar to those of the streptococcal proteins,

despite absence of phylogenetical relationships between

them (Schwarz-Linek et al., 2003). For example, the major

adhesins SfbI of S. pyogenes and FnBP-A of S. aureus

bind ECM-associated fibronectin and induce the cluster-

ing of fibronectin bound integrin receptors, triggering

intracellular signaling (Ozeri et al., 2001; Joh et al., 1999;

see below).

Autotransporters

The so-called autotransporters are proteins located on the

bacterial surface. They represent the simplest form of pro-

tein export in bacteria: molecules secreted by this system,

known as type V secretion, contain an N-terminal leader

peptide for secretion across the inner membrane, a C-ter-

minal domain that forms a pore in the outer membrane,

and a passenger domain that is autotransported through

the outer membrane pore to be exposed on the bacterial

surface, for cleavage in certain cases (Henderson et al.,

2004). Originally it was proposed that a single autotrans-

porter was required for its own transport, but it has been

suggested recently that several autotransporters may as-

sociate to generate a pore that can support the transport

of even folded passenger domains (Veiga et al., 2002).
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Several autotransporters have been associated with ad-

hesion in E. coli: antigen 43, the only autotransporter that

undergoes phase variation, contains RGD motifs impli-

cated in integrin binding and confers low levels of adhe-

sion to cells; AIDA-A is expressed by DAEC strains and

is responsible for their particular diffusively adhesive

phenotype; the ETEC-expressed TibA is the first surface-

localized glycoprotein described for E. coli and its glyco-

sylation confers adhesive properties. In Helicobacter

pylori, the etiological agent of several gastric diseases

including gastric cancer, several adhesins have been de-

tected and one of these adhesins, BabA, is an autotrans-

porter. BabA recognizes the Lewis b (Leb) blood group an-

tigen present on red blood cells and in the gastric mucosa

(Ilver et al., 1998); inflammation of the gastric tissue leads

to increased expression of other Lewis antigens normally

expressed at low levels such as sialylated sLex and sLea,

and H. pylori recognizes these molecules via the sialic acid

binding protein (SabA) (Mahdavi et al., 2002), suggesting

that H. pylori infection favors the expression of its own

receptors in target tissues. In the case of Yersinia entero-

colitica and Yersinia pseudotuberculosis (the agents of

enteric yersiniosis), YadA is the prototype of the new

subfamily of trimeric autotransporters, in which three

autotransporter subunits associate to form the functional

pore (Cotter et al., 2005); YadA mediates adhesion to col-

lagen, laminin, and fibronectin (Nummelin et al., 2004).

Tir: The Bacterially Encoded Cellular Receptor

of EPEC and EHEC

Besides their whole arsenal of pili and fimbria, EPEC and

EHEC have developed an original bacterial adhesion sys-

tem in which the bacteria provides both the ligand and the

receptor. EPEC and EHEC induce a characteristic lesion

known as the ‘‘attaching and effacing’’ (A/E) phenotype:

after intimate attachment to intestinal epithelial cells via

their adhesins and bundle-forming pili, bacteria induce

the local effacement of absorptive microvilli and the accu-

mulation of host cytoskeletal proteins, leading to the

formation of pedestal-like structures on which bacteria

perch. The molecules required for the induction of A/E

lesions are encoded in a region known as the locus of

enterocyte effacement (LEE), which codes for a type III se-

cretion system (TTSS). The TTSS gene cluster codes for

structural proteins required for the formation of a needle

complex or injectisome that traverses the bacterial cell

wall and the host-cell plasma membrane (Figure 2); it

also codes for chaperones and secreted effectors that

will be delivered to the host cytoplasm through the needle

complex and will modulate cellular functions favoring bac-

terial survival. One of the effector proteins of the EPEC/

EHEC TTSS is Tir (translocated intimin receptor), which

is injected into host target cells and then is inserted into

the host-cell membrane, where it functions as a receptor

for another LEE encoded molecule, the outer membrane

protein intimin (Kenny et al., 1997)(Figure 3A). In the

case of EPEC, Tir is phosphorylated by host kinases

such as Fyn and Abl (Phillips et al., 2004; Swimm et al.,

2004) on tyrosine-474 and is involved in the recruitment



Figure 2. Type III Secretion System

Schematic figure of the Gram-negative TTSS. A cylindrical base, sim-

ilar to the flagellar hook-basal body complex, spans the periplasm and

is associated with the two bacterial membranes where ring-like struc-

tures are detected, ensuring stabilization of the whole structure upon

the bacterial cell envelope. An elongated hollow extracellular structure

called the needle extends around 50 nm outside the bacterial cell wall

(it varies according to the different bacterial species) and can be in-

serted into eukaryotic membranes. Energy derived from ATP hydroly-

sis drives translocation of bacterial proteins (known as TTSS effectors)

from the bacterial cytoplasm to the eukaryotic cell cytoplasm, where

they can hijack host signaling pathways.
C

of the host adaptor molecule Nck, which in turn recruits

the Wiskott-Aldrich syndrome protein (N-WASP) and the

actin-related protein 2/3 (Arp2/3) complex, which nucleate

actin cytoskeleton leading to the formation of the bacte-

rial-associated pedestals (Figure 3B). Actin binding pro-

teins such as a-actinin, talin and vinculin are also recruited

to the pedestal. EPEC Tir has a GTPase activating protein

(GAP) activity that has been implicated in the down-regu-

lation of pedestals formation (Kenny et al., 2002). EPEC Tir

can also trigger Nck-independent pedestal formation,

which depends on tyrosine-474 and tyrosine-454 phos-

phorylation, recruiting a still unknown phosphotyrosine

binding adaptor involved in N-WASP and Arp2/3 binding

(Campellone and Leong, 2005). EHEC Tir generates

pedestals in the absence of phosphotyrosines or Nck by

associating with the TTSS effector EspFU, which binds

N-WASP and stimultates Nck-independent actin assem-

bly (Campellone et al., 2004; Garmendia et al., 2004).

Tir is so far the only example of a bacterial receptor that

is encoded by the bacterium itself. The murine pathogen

Citrobacter rodentium has also acquired by horizontal

gene transfer the LEE, which enables it to form pedestals

(Deng et al., 2001).

Invasive Strategies

The extracellular milieu can be a harsh environment in

which pathogens are subjected, in addition to physical

stresses (such as low pH or shear stress imposed by

flow of mucosal secretions or blood) to many other host

defense mechanisms including cellular exfoliation, com-

plement deposition, antibody labelling and subsequent

recognition by macrophages or cytotoxic T cells, etc. Sev-

eral bacterial species have evolved molecular strategies

to actively induce their entry into target cells for replication

and/or dissemination to other host tissues. Invasion can

proceed by direct engagement of surface host-cell recep-

tors or by direct translocation of bacterial proteins into the

host-cell cytosol that will promote rearrangements of the

plasma membrane architecture, inducing pathogen en-

gulfment. A growing number of bacteria that were so-far

considered as extracellular have been shown to invade

host cells, probably using intracellular compartments for

persistence in target tissues.

Invasin and Other Ligands Involved in Integrin

Engagement and Bacterial Uptake

The ability of adhesion receptors, such as integrins or cad-

herins, to transmit biochemical signals and mechanical

(B) (i) Transmission electron microscopy of osmotically shocked Sal-

monella exhibiting TTSS complexes on the bacterial cell envelope

(open arrows). The scale bar represents 100 mm. Reprinted with per-

mission from Kubori et al., (1998). (ii) Electron microscopy of osmoti-

cally shocked and negatively stained Shigella showing TTSS scattered

over the bacterial cell envelope. The scale bar represents 100 mm. Re-

produced with permission from Blocker et al., (2003). (iii) Electron mi-

crographs of negatively stained S. enterica serovar Typhimurium TTSS

and (iv) surface rendering of the TTSS base. Reprinted with permission

from Marlovits et al., (2004).
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force across cell membranes depends on interactions

with the actin cytoskeleton. Several pathogens seem to

have exploited their interaction with host-cell recep-

tors—and particularly with a5b1 integrin—not only to ad-

here but also to trigger actin cytoskeleton rearrangements

that can lead to cellular invasion. The first bacterial inva-

sion protein ever described was invasin (Isberg et al.,

1987), a surface protein of Y. enterocolitica and Y. pseudo-

tuberculosis. Invasin is related to EPEC/EHEC intimins

and binds with high affinity to multiple members of the

Figure 3. Tir/Intimin Interaction

(A) EPEC, via its TTSS, injects into the cytosol of target cells the protein

Tir, which integrates into the host-cell plasma membrane, dimerizes,

and functions as a receptor for the bacterial outer membrane intimin.

Tir/intimin interaction promotes Tir phosphorylation by Fyn and Abl, in-

ducing the recruitment of the protein adaptor Nck, which in turn re-

cruits N-WASP and the Arp2/3 complex, leading to actin polymeriza-

tion and the formation of structures known as pedestals. Actin

binding proteins such as talin are recruited to the pedestal, stabilizing

the structure.

(B) Scanning electron micrograph of EPEC perching on top of pedes-

tals on HeLa cells (reprinted with permission from Finlay and Cossart,

1997).
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b1 chain integrin family (Isberg and Leong, 1990), subvert-

ing normal interactions of these adhesion molecules with

fibronectin. Invasin, in fact, binds to integrins with higher

affinity than fibronectin, and crystal structure of invasin re-

veals that it presents an optimized surface for integrin

binding, including several key residues shared with fibro-

nectin, but in the context of different folds and surface

shapes (Hamburger et al., 1999). The short cytoplasmic

tail of integrins has no enzymatic activity but recruits com-

ponents that serve as linking or docking proteins for cyto-

skeletal-associated elements. The focal adhesion kinase

(FAK) or the Src family of kinases are often associated

with physiological integrin-mediated signaling, and

Y. pseudotuberculosis subverts the function of these pro-

teins to invade nonphagocytic cells (Alrutz and Isberg,

1998; Bruce-Staskal et al., 2002). Integrin engagement

by invasin leads also to activation of several small

GTPases, including Rac1, a member of the Rho family

of master actin regulators, and Arf6, which has been

implicated in membrane trafficking; these proteins pro-

mote the recruitment to the bacterial entry site of the

phosphatidylinositol-phosphate-5-kinase Ia, inducing the

local production of phosphatidylinositol-4,5-biphosphate

(Wong and Isberg, 2003), an important second messenger

affecting the subcellular localization and activation of

actin-regulating molecules (Pizarro-Cerdá and Cossart,

2004) (Figure 4A). It is important to note that the invasive

behavior of Y. enterocolitica and Y. pseudotuberculosis

is only required during the initial stages of disease for bac-

terial translocation through epithelial layers, since in vivo

bacterial proliferation takes place in the extracellular

space and these species have developed an important

arsenal of anti-phagocytic molecules (Yersinia outer pro-

teins or Yops) that are injected into target cells via

a TTSS to block the potential internalization of bacteria

upon adhesion.

Several bacterial pathogens that have been traditionally

considered as extracellular-living microorganisms and

that interact with integrins for adhesion to host tissues

have been shown in recent years to be able to invade

host cells; however, the in vivo relevance of many of these

in vitro observations remains to be established. For exam-

ple, clustering of fibronectin-bound b1 integrin receptors

by streptococcal SfbI triggers the recruitment of the Rho

GTPases Cdc42 and Rac, as well as recruitment/phos-

phorylaton of FAK, producing actin rearrangements that

eventually lead to bacterial internalization (Ozeri et al.,

2001). Similarly, staphylococcal FnBP-A-induced a5b1 in-

tegrin clustering leads to FAK activation and Src-depen-

dent phosphorylation of cortactin, a molecule involved in

the recruitment of the Arp2/3 complex for actin polymeri-

zation; actin binding proteins such as vinculin, tensin, and

zyxin are also recruited to the bacterial attachment site,

promoting S. aureus internalization (Agerer et al., 2005).

For DAEC, it has been reported that interaction between

Afa/Dr members and a5b1 integrins also results in bacte-

rial internalization (Plancon et al., 2003); some Afa/Dr mol-

ecules can additionally interact with CEACAMs, triggering



Figure 4. Invasive Molecular Strategies of Salmonella, Shigella, Yersinia, and Listeria

(A)The Yersinia outer membrane invasin interacts with b1 integrin receptors and favors activation of the small RhoGTPase Rac1, which will indirectly

modulate the phosphatidylinositol metabolism to induce actin rearrangements at the site of bacterial entry, promoting invasion. Host kinases such as

FAK or Src also participate in the process.

(B) Salmonella translocates several effectors into target cells, some of them allowing the initial uptake of the bacterium: SipC is part of the TTSS and

drives actin polymerization and actin-filament bundling; SopE activates Rho GTPases, fostering actin polimerization and membrane ruffle formation;

SopB modulates inositol-polyphosphate metabolism, activating indirectly the same Rho GTPases as SopE; and SipA blocks the actin depolymeriza-

tion factor cofilin, favoring also membrane ruffle formation. SptP plays a role once the internalization has taken place, inactivating the Rho GTPases,

inhibiting actin polymerization, and helping the closure of the plasma membrane over internalized bacteria.

(C) Shigella also translocates several TTSS effectors into target cells to induce invasion: the translocon component IpaC nucleates the formation of

actin filaments; VirA indirectly stimulates the RhoGTPase Rac1 favoring actin polymerization (the host tyrosine kinases Abl/Arg also activate indirectly

Cdc42 and Rac1) and inhibits microtubule polymerization; IpgD affects phosphoinositide metabolism and promotes the extension of membrane ruf-

fles by decreasing the interactions between the plasma membrane and the actin cytoskeleton; IpaA activates the host protein vinculin, inducing actin

depolymerization and recovery of the plasma membrane architecture once the bacteria are internalized.

(D) Listeria invades target cells combining two molecular pathways. In the InlA-dependent pathway, the sortase-anchored bacterial protein InlA in-

teracts with the cell adhesion molecule E-cadherin and promotes the subversion of cell adherens junction machinery (including b- and a-catenins) to

induce entry. The myosin VIIA probably generates the contractile force required for bacterial engulfment. Actin polymerization relies, among other

molecules, on the RhoGTPase Rac1.

(E) In the InlB-dependent pathway of Listeria, the loosely cell-wall-attached bacterial protein InlB interacts with the molecule gC1qR, and with the

signaling receptor Met, which recruits several molecular adaptors, which will perform several functions including the recruitment of a PI3K (involved

in the activation of the RhoGTPase Rac1 and the polymerization of actin), and also the ubiquitination of Met and the endocytosis of the receptor via

a clathrin-dependent mechanisms. A balance between actin polymerization and actin depolymerization required for efficient bacterial entry is con-

trolled by regulation of the activities of the Lim kinase and the actin depolymerizing factor cofilin.
activation of Cdc42 and the subsequent phosphorylation

of the actin binding proteins ezrin, radixin, and moesin,

leading to the formation of elongated microvilli underlying

the adhering DAEC (Berger et al., 2004). In the case of
Neisseria spp., members of the opacity-associated

(Opa) outer membrane proteins (which are subject to

phase variation as their type IV pili) have been reported

to induce invasion: in particular, Opa50 binding of a5b1
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integrins induces pathogen internalization in epithelial

cells in vitro (van Putten et al., 1998). Most other Opa pro-

teins can bind CEACAMs, inducing not only bacterial inva-

sion but also increased adhesion of infected cells to the

ECM, counteracting the exfoliation of epithelial cells that

normally takes place as an innate immune response

against infection (Muenzner et al., 2005).

UPEC: Pili-Mediated Invasion for Persistence

As mentioned above, type I pili mediate interaction be-

tween UPEC and the urinary tract. The main characterized

receptor for the adhesin FimH in bladder epithelial cells is

the monomannose moiety of the tetraspanin molecule ur-

oplakin 1a (UP1a) (Zhou et al., 2001b). UP1a forms a com-

plex with three other uroplakin proteins to assemble into

plaques that almost cover the entire luminal surface of

the bladder epithelium, providing an impermeable layer

that is critical for bladder function. Interestingly, FimH in-

teraction with bladder cells triggers a signal transduction

cascade that results in the uptake of bacteria (Martinez

and Hultgren, 2002). The specific signaling role of UP1a

in the FimH-mediated entry has not been clearly estab-

lished; it has been proposed that the highly dynamic phys-

iological endocytosis of the UP1a-containing plaques is

hijacked by UPEC to produce invasion. The presence of

plasma membrane microdomains known as lipid rafts,

which function as platforms for recruitment of signaling

molecules, are also required for invasion of target cells

by the FimH-dependent pathway (Duncan et al., 2004).

Entry into bladder cells needs the activity of the type I

phosphatidylinositol 3-kinase (PI3K), a lipid kinase in-

volved in the production of the important second messen-

ger phosphatidylinositol 3,4,5-triphosphate. Several pro-

teins are phosphorylated during UPEC entry into bladder

cells including FAK, which associates with the PI3K,

boosting its lipid kinase activity. Formation of complexes

of the actin binding proteins a-actinin/vinculin also takes

place, probably stabilizing actin filaments surrounding in-

vading UPEC. Cdc42 and RhoA are also required for the

FimH-dependent cell invasion process by UPEC (Martinez

and Hultgren, 2002). FimH has been additionally reported

to bind some other glycosylated and nonglycosylated re-

ceptors different from UP1a, including extracellular matrix

structural proteins (laminin and fibronectin), CEACAMs,

and the GPI-anchored protein CD48, which mediates

FimH-dependent entry of UPEC in mast cells (Shin et al.,

2000). It has been proposed that infection of bladder cells

leads to the establishment of a bacterial reservoir that is

probably involved in the recurrent urinary tract infections

associated with UPEC (Anderson et al., 2003).

Salmonella and Shigella: Paradigms of TTSS Users

for Invasion

Salmonella spp. and Shigella spp. were long considered

as distinct species due to their characteristic associated

diseases: acute gastroenteritis or systemic typhoid fever

in the case of Salmonella, and dysentery in the case of Shi-

gella. Using molecular biology tools and genomics, it has

been established that these microorganisms belong to

the same bacterial cluster as E. coli, having acquired by
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horizontal transfer similar genes that enable them to invade

and colonize target cells in specific ways (Parsot 2005). In

Salmonella enterica serovar Typhimurium, up to five viru-

lence gene clusters or pathogenicity islands (SPIs) have

been identified which encode different proteins involved

in invasion of target cells (SPI-1) and establishment of in-

fection within the intracellular environment (SPI-2 to 5).

SPI-1 and SPI-2 code for two different TTSS. Entry of

Shigella flexneri depends also on a TTSS encoded on a

virulence plasmid pathogenicity island. The size of the

S. flexneri LPS, regulated by its glucosylation, controls

the TTSS accessibility to the cell surface (West et al., 2005).

Both pathogens trigger important cytoskeletal changes

at the host-cell plasma membrane to promote invasion

(Cossart and Sansonetti, 2004). The S. enterica SPI-1-

TTSS is involved in the translocation of proteins that mod-

ulate actin rearrangements, subverting in certain cases

the functions of endogenous host-cell proteins by pre-

cisely mimicking their activity. Two of these effectors,

SopE and SopE2, are bona fide guanine nucleotide ex-

change factors (GEFs) for Cdc42 and Rac1 and mimic

host-cell GEFs, catalyzing the GTP loading and activation

of these small GTPases, which results in formation of

membrane extensions required for bacterial engulfment

(Hardt et al., 1998). A still-unknown indirect cascade of

Cdc42 and Rac1 activation is mediated by another SPI-

1-TTSS effector, SopB (also known as SigD), which is an

inositol phosphatase that generates phosphatidylinosi-

tol-3-phosphate and inositol-1,4,5,6-tetraphosphate upon

invasion (Zhou et al., 2001a). Interestingly, recovery of

normal cellular architecture is observed once S. enterica

has completely invaded target cells, highlighting that

the activation of the Rho GTPases and actin polymeriza-

tion must be transient. In fact, S. enterica translocates an-

other SPI-1-TTSS effector, SptP, which is a GAP for both

Cdc42 and Rac1, accelerating the GTP hydrolysis and the

consequent inactivation of these Rho GTPases after inva-

sion (Fu and Galan, 1999). The half-life of SptP is longer

than that of SopE or SopE2, assuring in the long term

the balance toward recovery of the normal cell architec-

ture after bacterial internalization (Kubori and Galan,

2003). Two additional translocated proteins, SipC and

SipA, modulate directly actin dynamics: SipC is part of

the translocon-complex (together with SipB) that inserts

as a pore into host membranes and allows secretion of

effectors in the host-cell cytoplasm, and drives actin poly-

merization and actin filament bundling (Hayward and Kor-

onakis, 1999), while SipA antagonizes the functions of the

actin depolymerizing factor cofilin and of the actin filament

severing protein gelsolin, preventing disassembly of

formed actin fibers (McGhie et al., 2004)(Figure 4B).

In the case of S. flexneri, the translocon components

IpaB and IpaC are homologous (although not identical in

structure and function) to S. enterica SipB and SipC, and

IpaC nucleates the formation of actin filaments beneath in-

vading bacteria as SipC does (Kueltzo et al., 2003). IpaB

interacts with the hyaluronic receptor CD44 and mobilizes

this host protein in cholesterol-rich lipid rafts, allowing the



Figure 5. Imaging of Bacterial Interac-

tions with Target Cells

(A) 3D reconstruction from confocal images de-

picting how translocation of IpaB (green) from

Shigella (blue) to the cytoplasm of target cells

induces the rearragement of the actin cytoskel-

eton (red) that will permit bacterial entry (image

courtesy of Jost Enninga).

(B) 3D reconstruction from confocal images il-

lustrating the recruitment of clathrin (red)

around internalized Listeria (green; merge of

clathrin and internal Listeria: yellow) during

the first minutes of invasion. External Listeria

(light blue) is located on top of host cell (image

courtesy of Esteban Veiga).
potential recruitment of other signaling molecules at the

site of bacterial entry (Lafont et al., 2002). The Abl/Arg ty-

rosine kinases phosphorylate the molecular adaptor Crk,

which presumably activates a GEF for Cdc42 and Rac1

(Burton et al., 2003). Crk also recruits cortactin, which is

phosphorylated by Src and is implicated in the Arp2/3-

dependent actin nucleation at the bacterial internalization

site (Bougneres et al., 2004). Indirect stimulation of actin

polymerization via Rac1 and WAVE2 is orchestrated via

the TTSS effector VirA, which also inhibits microtubule po-

lymerization (Yoshida et al., 2002) (Figure 4C). S. flexneri

IpgD is an homolog inositol phosphatase of S. enterica

SopB, decreasing the plasma membrane levels of phos-

phatidylinositol-4,5-biphosphate and consequently limit-

ing the membrane/cytoskeleton interactions favored by

this phosphoinositide; IpgD thus promotes extension of

membrane filopodia necessary for bacterial engulfment

(Niebuhr et al., 2002). S. flexneri also induces actin depo-

lymerization by activating the actin binding protein vinculin

via the TTSS effector IpaA (Bourdet-Sicard et al., 1999),

allowing recovery of the plasma membrane architecture

after invasion.

Two elegant studies have recently approached the real-

time visualization of TTSS effectors secretion upon con-

tact with target cells. In the case of S. enterica, it was de-

termined that the translocation process is extremely fast,

and the pool of stocked intrabacterial SipA can be com-

pletely injected between 100–600 s (Schlumberger et al.,

2005). Concerning S. flexneri, it was observed that IpaB

and IpaC are synthesized and stocked within bacteria in

association with chaperons before actual contact with tar-

get cells; kinetics of secretion of IpaB and IpaC are rapid

and highly concurrent as revealed by live-cell imaging,

indicating that quick ejection of these effectors is the

rate-limiting step for the invasion process (Enninga et al.,

2005) (Figure 5A).

Listeria: Engagement of E-cadherin and Met

Signaling Pathways

The Gram-positive pathogen Listeria monocytogenes is

an intracellular parasite able to traverse three human bar-

riers—the intestinal barrier, the blood-brain barrier, and

the feto-placental barrier—leading to several clinical man-

ifestations including gastroenteritis, meningitis, or abor-
C

tion (Dussurget et al., 2004). Traversal of these different

barriers is mediated by InlA, the prototypic member of

the internalin family of leucine-rich repeat molecules,

which is present in all the L. monocytogenes serovars.

The InlA receptor is the cell adhesion molecule E-cad-

herin, a protein involved in homophilic interactions re-

quired for the maintenance of cell adherens junctions.

The InlA/E-cadherin interaction is species-specific, since

only E-cadherins possessing a proline residue at position

16 (as is the case for human E-cadherin) are able to bind

InlA (Lecuit et al., 1999). Initial interaction between InlA

and E-cadherin requires integrity of lipid rafts (Seveau

et al., 2004). Engagement of E-cadherin by InlA leads to

recruitment of two catenins to the bacterial internalization

site: b-catenin binds to the C-terminal cytoplasmic do-

main of E-caderin, and recruits at the same time a-catenin

(Lecuit et al., 2000) (Figure 4D). Recruitment of a-catenin

depends also on ARHGAP10, a molecule that exhibits

GAP activity for RhoA and Cdc42 (Sousa et al., 2005). Ac-

tin polymerization in the InlA-dependent pathway relies on

Rac, cortactin and Arp2/3, but the molecular events lead-

ing to the activation of this cascade remain unknown. The

unconventional myosin VIIA and its ligand vezatin are also

required for the InlA-mediated entry of L. monocytogenes,

probably generating the tension required for internaliza-

tion of engulfed bacteria (Sousa et al., 2004). Traversal

of the intestinal barrier and of the feto-placental barrier

by subversion of cellular E-cadherin function by InlA has

been established (Lecuit et al., 2001, 2004), and it is sus-

pected that traversal of the blood-brain barrier probably

also requires InlA/E-cadherin interactions.

Invasion of epithelial cells implicates another member of

the internalin family, InlB. This protein is loosely attached

to the bacterial surface by GW motifs that interact nonco-

valently with lipoteichoic acids, as opposed to InlA, which

is covalently linked to the bacterial cell wall peptidoglycan

by a sortase through its C-terminal LPXTG motif. InlB can

be released from the bacterial cell wall upon contact with

glycosaminoglycans of the extracellular matrix (Jon-

quieres et al., 2001), and soluble InlB can interact through

its GW motifs with a host-cell membrane molecule, the re-

ceptor for the globular head of complement C1q molecule

(gC1q-R) (Braun et al., 2000); however, the functional
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significance of this interaction is not understood yet. The

main cellular receptor for InlB is the hepatocyte growth

factor receptor Met, a receptor tyrosine kinase (Shen

et al., 2000), which binds to the leucine rich repeats of

InlB. The interaction between InlB and Met is species spe-

cific, since InlB recognizes human but not rabbit Met (Khe-

lef et al., 2006). Activation of Met by InlB leads to recruit-

ment of several molecular adaptors such as Gab1, Cbl,

and Shc, which promote the plasma-membrane associa-

tion of the PI3K (Ireton et al., 1996) (Figure 4E). PI3K then is

involved in activation of Rac and induction of actin poly-

merization through the activity of WAVE and the Arp2/3

complex (Bierne et al., 2001, 2005). Actin rearrangements

are also controlled downstream of Rac by the actin depo-

lymerizing protein cofilin and by the cofilin-modulating

enzyme LIM kinase (Bierne et al., 2001). Internalization of

Met upon interaction with its natural ligand HGF is clathrin

dependent and involves Cbl, which is also an ubiquitin li-

gase that ubiquitinates Met. As shown recently, Cbl pro-

motes the recruitment and activity of the clathrin-depen-

dent endocytosis machinery at the site of bacterial entry

and bacterial internalization (Veiga and Cossart, 2005)

(Figure 5B). InlB, thus, seems to exploit unexpectedly

the normal trafficking of its receptor to promote invasion

(Li et al., 2005). Whether the recruitment of the endocyto-

sis machinery is also occurring for other bacteria is an

open question. Integrity of lipids rafts is also required for

the InlB-dependent pathway; however, in contrast to the

InlA/E-cadherin case, it is not the initial interaction be-

tween InlB and Met that is favored by lipid rafts, but the

signaling downstream of PI3K activation (Seveau et al.,

2004). Potentiation of L. monocytogenes entry into target

cells by InlA and InlB also requires other cell surface pro-

teins such as the autolysins Ami and Auto, or the choles-

terol-dependent cytolysin listeriolysin O (LLO) (Dussurget

et al., 2004).

Rickettsia: A Human Pathogen Closely Related

to Plant Symbionts

Members of the a-proteobacteria group display diverse

interactions with higher eukaryotes. Species such as

Sinorhizobium melitoti or Agrobacterium tumefaciens are

plant symbionts or parasites, respectively. Other species

such as Rickettsia spp. or Brucella spp. are animal intra-

cellular parasites—and have been classified as ‘‘select

agents’’ for bioterrorism. Interestingly, virulence/symbio-

sis systems are conserved between these different groups

of pathogens/symbionts, indicating that an original ances-

tor evolved to adapt to different environments in plants or

animals.

Rickettsia spp. are agents of epidemic typhus and the

Mediterranean spotted fever and are strict intracellular,

noncultivatable bacteria. Two outer membrane proteins,

rOmpA and rOmpB, have been described as putative

adhesins favoring respectively R. conorii and R. japonica

attachment to epithelial cells in vitro (Li and Walker,

1998; Uchiyama 2003). rOmpB, which belongs to a family

of autotransporters in Gram-negative bacteria, has been

recently described as the bacterial ligand of a R. conorii
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receptor on target cells, Ku70, a component of the DNA-

dependent protein kinase (Martinez et al., 2005). As

described above for several bacterial receptors on host-

cell plasma membranes, association of Ku70 with choles-

terol-enriched lipid rafts is required for invasion. As shown

for Met during the InlB-dependent internalization of

L. monocytogenes, ubiquitination of Ku70 by Cbl is also

a prerequisite for bacterial entry. Interestingly, structural

motifs at the N-terminal domain of Ku70 share homology

with integrin domains, and it has been already proposed

that Ku70 can function as a receptor for fibronectin (Mon-

ferran et al., 2004). Activation of Src and FAK, two impor-

tant events strongly associated with b1-integrin activation,

are also detected during invasion of target cells by R. con-

orii; Cdc42 (but not Rac1), PI3K, cortactin and the Arp2/3

complex are also molecules required for entry (Martinez

and Cossart, 2004).

Conclusions

Pathogenic bacteria have evolved an incredibly large and

diverse array of adhesion and invasion molecules that en-

able them to exploit a variety of host-cell surface compo-

nents and occupy different niches within the human body.

While major advances have recently been made concern-

ing the biogenesis, assembly and structure of previously

known pili, fimbriae, invasins, and type III secretion sys-

tems, new adhesive structures have unexpectedly been

discovered in Gram-positive bacteria such as strepto-

cocci, highlighting the ever growing diversity of the strate-

gies used by pathogenic bacteria to adhere and colonize

their hosts. In some cases, bacterial components mimic

structurally the normal ligand as in the case of Yersinia in-

vasin when binding to integrins; in other cases, the bacte-

rial protein only exploits the specific signaling properties

of a given host-cell component, as in the case of Listeria

internalin binding to the adhesion molecule E-cadherin.

The special case of EPEC/EHEC Tir protein which is first

injected by the bacterium to serve as a receptor for an-

other bacterial surface protein intimin has remained

unique and not described in the other enterobacteriacae.

In many cases, it is difficult to assign to a given protein an

adhesin versus an invasin function, as many invasins are

often working as adhesins. In the case of Salmonella and

Shigella, the bacteria are not highly adherent, but their in-

vasion machinery is particularly efficient. It seems that

contact with the cell inevitably leads to entry, owing to

the efficiency of the bacterial TTSS effectors injected di-

rectly into the host cytosol, which insidiously interfere

with the cytoskeleton and other components critical for

the entry process. How contact occurs is thus a critical is-

sue, and in this case, as for many bacterial pathogens,

membrane organization and presence of microdomains

seem to govern key events in the internalization process.

As demonstrated for Listeria, the presence of microdo-

mains may be critical for the adhesion step. It may also

be required for later stages during signaling. The events

that occur at the plasma membrane are as yet far from

being understood. It is clear that the challenge for the



future will be to understand how bacteria coordinate in

time and space the expression of their different effectors

and how the cell reacts to this aggression. Understanding

how cells behave in front of a pathogen may also provide

key answers to more general questions in cell biology

such as signaling during adhesion or during a variety of

other stress conditions.
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