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Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the
worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with en-
hanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient
carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas
and discuss challenges and open questions as a call to action for the plant science community.

Introduction
Climate change is caused by an accumulation of greenhouse
gases (GHGs) (e.g. CO2, methane) in the atmosphere leading
to increased planetary heat-trapping and global warming.
The IPCC Sixth assessment report (IPCC, 2022) strongly sug-
gests that limiting global warming to 1.5�C above pre-
industrial levels will be needed to avoid severe climate
change effects. This will require halving global CO2 emissions
by 2030 and cutting them to net zero by 2050, as well as re-
moving an additional 2–10 billion metric tons (Gt) of CO2

each year. In some locations, warming may benefit certain
crops, and, over time, the optimal growing regions may shift
farther away from the equator. However, the effects of cli-
mate change are not limited to increasing temperatures and
heatwaves in many parts of the world but include changes
in rainfall, more severe and frequent storms, increased
drought, and increased threat of wildfires. All of these effects
are anticipated to adversely affect crop yields and food secu-
rity worldwide within the next 20 years (Zhao et al., 2017; Li
et al. 2019; Jägermeyr et al., 2021). As the impact of climate
change on crop systems intensifies, the need to develop
stress-resilient crops to combat food insecurity rises.

In this article, we explore several ways in which plant sci-
entists are working on solutions related to carbon sequestra-
tion to help achieve net zero CO2 emissions and crop
improvements to protect and enhance yields for increased
food security. The first section outlines challenges and
approaches for enhancing the carbon sequestration capacity
of crops (annual and perennial) and seagrasses, followed by
a section on improving photosynthesis. A third section
addresses engineering climate resilience in crops (resistance
or tolerance to abiotic and biotic stresses). The final section
describes the vision of a sustainable global bioeconomy
rooted in plant biology. We acknowledge that there are
other areas, not covered here, in which plant science can
play a role in mitigating adverse climate change effects, in-
cluding bioenergy, forestry, and ecosystem conservation.
Solutions in all of these areas are needed in the very near fu-
ture, and in the longer term. We do not provide an in-
depth review of these topics. Rather, the examples provided
here illustrate a few of the many avenues of research being
conducted by plant scientists around the world. A compan-
ion review by Verslues et al. (2023) addresses unresolved
questions in plant abiotic stress. We hope that these stories
help to inform the plant science community of the

possibilities, stimulate further research, and motivate plant
scientists at any stage of their careers to become involved in
work aimed at mitigating climate change and enhancing
food and energy security. Mitigating the climate change cri-
sis will require all hands on deck.

How can more carbon be retained in soil and
biomass?

Carbon sequestration in annual cropping systems
(By John K. McKay)

Annual cropping systems present opportunities for carbon
sequestration that have yet to be exploited. In addition to
the need to reduce GHG emissions, active atmospheric CO2

removal strategies, also called Negative Emissions
Technologies (NETs), are needed to attain net CO2 reduc-
tions and avoid the most damaging climate change out-
comes (National Academies of Sciences, Engineering, and
Medicine, 2019). Atmospheric CO2 removal technologies
need to be implemented now and increase to levels on the
order of 10 Gt CO2 per year by 2050, and 20 Gt CO2 per
year by 2100 (National Academies of Sciences, Engineering,
and Medicine, 2019).

Among NET for CO2 removal, soil carbon sequestration is
the least expensive and most ready to scale in the next dec-
ades (National Academies of Sciences, Engineering, and
Medicine, 2019). Current US cropping systems use genetics
that were not designed to minimize GHG emissions nor to
maximize carbon sequestration, yet heritable genetic varia-
tion for these traits exists in many crops. In addition, agricul-
tural soils experienced well-documented decreases in soil
carbon over the last century (Davidson and Ackerman,
1993) and are capable of sequestering all of the CO2 cur-
rently in the atmosphere (Ciais et al., 2013). Here, I review
the challenges with attempts to achieve soil carbon seques-
tration in current annual cropping systems, both with the
way in which the maize (Zea mays)–soy (Glycine max) rota-
tion was designed and the science to date on how manage-
ment might lead to predictable increases in soil carbon. I
then focus on genetic changes that are needed to create
carbon-negative crops, including optimal combinations of
traits that can be addressed in breeding programs.

The major, unaddressed problem for sustainability and
GHG emissions in annual cropping systems is excess nitro-
gen (N) in the form of synthetic fertilizer (Northrup et al.,
2021), which leaches into groundwater, rivers, and oceans
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and into the atmosphere as N2O, a GHG with an effect size
�300� that of CO2 (Albritton et al., 2001). An obvious ex-
ample is ethanol production from maize, where N is respon-
sible for 480% of GHG emissions overall (Kim et al., 2014).
For the parts of the world where the Green Revolution was
successfully deployed (Evenson and Gollin, 2003), a major
consequence is the exclusive use of crop genotypes that re-
quire high N inputs. To fix this N problem, we need to im-
prove N use efficiency (NUE) and greatly reduce N input.
Increasing NUE is feasible (Hirel et al., 2007; Northrup et al.,
2021) and can be achieved in part by removing a small
number of large-effect mutations that were selected to high
frequency in elite germplasm in the Green Revolution
(Moyers et al., 2018). Getting farmers to reduce N input is a
much greater challenge. First, overfertilizing every other year
is a well-established management practice of the maize-soy
rotation that encompasses 73 million hectares of farmland
in the USA. Although soybean is an N-fixing species, in
modern cropping systems high-yielding soy crops require
hundreds of kilograms of N per hectare (Salvagiotti et al.,
2008). Although fertilizer has recently increased in price, so
have crop commodity prices, and thus farmers remain in-
centivized to maximize N inputs. In the USA, the maize–soy
rotation is highly subsidized by federal funds in the form of
direct payment to farmers as well as mandates on using eth-
anol from fermentation of maize grain and biodiesel from
transesterification of soy lipids.

Most efforts in using annual cropping systems for soil car-
bon sequestration have focused on changes in management
that were originally designed for soil health (Ogle et al.,
2019), such as reduced tillage, greater residue retention, and
cover crops that are designed to increase the amount of
above-ground plant biomass left in the field per unit area
per year (McClelland et al., 2021). Most of the published
studies on the effect of management on soil carbon are lim-
ited to the top 30 cm of soil, which is where most of the
carbon inputs are expected (Ogle et al., 2019). However, this
top 30 cm is also the least durable soil carbon and can re-
spire back into CO2 in a few years. Getting soil carbon
inputs deeper into the soil is needed to achieve greater and
more durable carbon sequestration in agricultural systems
(Paustian et al., 2016a, 2016b, 2019) and will require genetic
changes in crops.

Genetic changes in annual cropping systems are needed
both to reduce inputs (Northrup et al., 2021) and achieve
carbon sequestration levels of tons per hectare per year
(Paustian et al., 2016a). Some changes can be achieved by
selecting against large-effect mutations that went to high
frequency during the Green Revolution. Prior to the
Green Revolution, putting large amounts of synthetic N
on agricultural fields reduced yield, as tall crops heavy
with grain were highly prone to lodging. In many cases se-
lection during the Green Revolution was based on recur-
rent backcrossing to dwarf lines and involved small
effective population sizes and low levels of effective re-
combination (Moyers et al., 2018). For example, in rice

(Oryza sativa), breeding during the Green Revolution led
to the fixation of mutations that reduce NUE (OsTCP19;
Liu et al., 2021b) and root growth (Dro1; Arai-Sanoh
et al., 2014) in the elite breeding lines.

It is worth considering the traits of an ideal annual crop
for carbon-negative supply chains for food, feed, fiber, and
fuel. As mentioned, genetic changes to lower N require-
ments and create deeper, more massive root systems can
make annual biomass feedstock production carbon negative
(Paustian et al., 2016a). Another key trait for carbon seques-
tration is population density, where increasing the number
of individuals per hectare leads to more root systems and
greater carbon input. Crop species that were not part of the
Green Revolution have promise in this respect (Amaducci
et al., 2008). For example, industrial hemp (Cannabis sativa)
was never bred for high N inputs, can be grown at popula-
tion densities of 500,000 plants per hectare, and has greater
root biomass below 50 cm than other major crops
(Amaducci et al., 2008). Root carbon composition is also a
genetic target, as some forms of carbon may be more recal-
citrant to degradation and therefore longer lived in soils.
The idea of engineering roots to create more recalcitrant
forms of carbon, such as suberin, is discussed below by
Busch and Chory. Suberin is one example; another is lignin,
which is a parameter in models of soil carbon (Parton,
1996). We found large heritable variation in percent lignin in
maize roots (Figure 1) and are testing the prediction that
genotypes with greater root lignin will lead to greater quan-
tity and durability of soil carbon.

Root exudates, a diverse set of simple carbon molecules
that are released passively or actively into the soil, also con-
tribute to soil organic carbon (SOC). Little is known regard-
ing the degree to which root exudates are controlled by
genetics versus the environment. Even less is known about
the genetic control of the abundance and composition of
root exudates, even in model species. This is due in part to
the difficulty of measuring the relevant phenotypes in agri-
culturally relevant environments. On the soil modeling side,
recent progress has been made in separating biomass and
exudate inputs to soil carbon, where exudates are predicted
to lead to increases in mineral-associated organic matter,
which in turn is predicted to have a longer residence time
than other soil carbon fractions (Zhang et al., 2021b).
Finally, the soil and root microbiome, which is influenced by
root exudates and plant genotype (Peiffer et al., 2013;
Wagner et al., 2020; Favela et al., 2021), influences the car-
bon retention properties of soils, although data on effect
sizes are lacking (Naylor et al., 2020). Ectomycorrhizae are
thought to be key drivers of SOC accumulation in forests
(Soudzilovskaia et al., 2019) and could be exploited in crop-
ping systems. Manipulating the soil and root microbiome of
cropping systems at scale will be much more difficult than
obtaining seed from new crop genotypes but is a possible
tool for engineering annual cropping systems for enhanced
carbon sequestration.
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Harnessing plants: A global initiative to enhance
plant-based carbon sequestration
(By Wolfgang Busch and Joanne Chory)

We consider solutions for carbon sequestration based on
plants’ abilities to draw down CO2 from the atmosphere via
photosynthesis and convert it to biomass. Earth’s soils con-
tain a large amount of carbon, estimated at approximately
2,300 Gt carbon to 3-m depth, which constitutes about
three times the current atmospheric pool of CO2

(Schlesinger and Bernhardt, 2020). The main source of SOC
is plant material (e.g. aboveground plant biomass, roots, and
root exudates), which can be stored in the soil or respired
back into the atmosphere. It is estimated that cropland and
grazing land soils (about 5 billion hectares globally) have an
enormous capacity for storing carbon (Sanderman et al.,
2017). Combined with existing agricultural infrastructure,
this capacity provides an opportunity to leverage genetics to
improve traits related to plant-mediated carbon
sequestration.

Several plant traits are good candidates for facilitating
plant carbon sequestration (Figure 2). Root biomass is one,
as it is estimated that a given mass of root inputs contrib-
utes about five times more SOC than the equivalent mass
of aboveground litter (Jackson et al., 2017). However, traits
associated with mechanisms that increase recalcitrance of
SOC to breakdown by soil microorganisms (SOC protection)
will also be required to increase residence time in soils.
Mechanisms of SOC protection include a complex interplay
between the chemical makeup of SOC, physical occlusion of
SOC within soil aggregates, formation of stable organo-
mineral complexes, and water-film connectivity between
SOC and microbes (Schmidt et al., 2011; Lehmann et al.,
2020). More than half of the global SOC is found in deep
soil layers (Jobbágy and Jackson, 2000), and the mean resi-
dence time of SOC increases with depth, implying lower de-
composability of root-derived carbon in deeper soil layers
(Gill et al., 1999; Prieto et al., 2016). Root biochemistry also
influences decomposability, and a prime candidate trait is

the amount of the natural product suberin in roots. Suberin
is a lipophilic complex polyester that is composed of very
long-chain fatty acids and polyaromatic compounds. Suberin
may be a good source for stable SOC due to its intrinsic bio-
chemical stability (Lorenz et al., 2007) and its interaction
with soil minerals and occlusion in topsoil microaggregates
(Kell, 2012; Lin and Simpson, 2016). We note that there are
numerous other plant traits that promise to be useful for
enhancing the capacity of plants to sequester carbon in the
soil (see some additional examples in the previous section
by McKay).

There are several significant challenges to utilizing crops
for carbon sequestration. Genetic trait enhancement is a
lengthy process and its adoption by the public will be chal-
lenging. Establishing a link between root traits and carbon
accumulation and permanence in agricultural soils will re-
quire substantial experimental efforts. Carbon accumulation
and persistence are also dependent on soil type, climate
parameters, and agricultural practices such as the use of
cover crops and no-till farming (Schmidt et al., 2018).
Although there is good potential for plant-based carbon se-
questration in the surface soil layer (up to 1.85 Gt C/year in
the top 30 cm of global cropland soils alone; Zomer et al.,
2017), an enhanced rooting depth and altered biochemical
makeup of roots could yield a much larger sequestration ca-
pacity. Finally, time is pressing—every year that goes by
without significant carbon drawdown will negatively impact
billions of humans and decrease the biodiversity of our
planet.

The Salk Harnessing Plants Initiative is working to identify
genetic and molecular mechanisms to increase root biomass,
root depth, and suberin root content. We use examples of
this research to highlight considerations for plant-based car-
bon sequestration that we have identified during this work.
Each of the target traits comes with specific challenges and
opportunities. For instance, increased root mass will elevate
the carbon input into soils and can improve the ability of
roots to forage for nutrients and water. However, increasing
root mass beyond a certain level might come at the expense
of yield. Nevertheless, the relationship between root biomass
and yield is not necessarily a zero-sum game as enhanced
water and nutrient uptake of a bigger root system can sup-
port a larger shoot. This might be particularly relevant under
drought or nutrient-limited conditions. An example of the
lack of a strict tradeoff of root biomass and yield in major
crops is the lack of correlation of yield and root biomass in
maize as well as soybean in a multi-location, multi-year
study (Ordó~nez et al., 2020). Increasing root depth promises
to increase the lifetime of the average carbon molecule de-
posited by roots in the soil, provide roots access to deeper
soil layers that can contain more moisture, and facilitate the
capture of nitrate that leaches deeper into the soil during
the growing season. However, surface roots are still impor-
tant for foraging immobile nutrients such as phosphorus.
Therefore, achieving an optimal balance between shallow
roots and deep roots will be important. As an effective

Figure 1 Quantitative variation in lignin content in maize root sys-
tems from a field study of 358 maize inbred lines. A description of the
experiment can be found in Woods et al. (2022).
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apoplastic barrier, suberin in specific areas of the root could
provide enhanced flood and drought resilience and might
enhance root growth in deeper, more anoxic layers of the
soil. Extensive variation for each of these traits between and
within species indicates that there are genetic mechanisms
that can be leveraged to improve them.

Our work in enhancing these traits is being conducted in
parallel with model plants via forward and reverse genetic
approaches, as well as in diversity collections of major row
crops and cover crops to identify crop-specific targets using
genome-wide association studies (GWASs). While we are in-
terested in trait changes that will work in the field and
maintain crop productivity, it is not feasible to measure all
these root traits in the field at high throughput. We there-
fore rely on initial screening approaches in the laboratory or
the greenhouse to measure and engineer root traits, subse-
quently moving to in-soil or field-testing with a subset of
lines that display distinctive traits. We focus on root mass in
relation to depth, as the engineering or breeding goal is to
direct as much root mass as possible to a deeper depth, and
on enhancing the accumulation of suberin. Suberin is a
highly effective apoplastic diffusion barrier and producing it
everywhere in the root would be detrimental to plant
health. Therefore, we focus on specific root tissues that al-
ready produce suberin such as the periderm or the exoder-
mis, which are outer layers in mature root systems. We are
targeting such tissues as suberin sinks by using tissue-
specific promoters to drive suberin production, as well as
utilizing genes involved in the formation of these tissues to
produce additional tissue layers.

To quantitatively link these root traits to carbon charac-
teristics in the soil, we are working with soil scientists to
better estimate the soil carbon impact of crop varieties that
have different root mass, depth, and suberin content. We
aim to test the effects of genetic alterations via gene editing
or gene engineering approaches in crops over the next few
years. Recent advances in high-throughput phenotyping, se-
quencing, and functional single-cell genomics now provide a
way to leverage genes, gene constructs, and genetic variants
within and between species. We aim to have the proof of
concepts for enhanced crop traits within the next 3 years to
then partner with both NGOs and agriculture companies to
enhance varieties that are of interest to farmers.

There are numerous other opportunities for plant biolo-
gists to contribute to climate change mitigation efforts,
ranging from work on traits that will reduce agricultural
N2O or methane emissions to creating carbon
sequestration-friendly microbiota or mycorrhizal associa-
tions. As a community, we should think of and work toward
promising plant biology-based solutions.

Rapid de novo domestication of perennial crops
(By Lee R. DeHaan)

Most agricultural soils have lost 50%–70% of the SOC that
they had previously accumulated under native plant com-
munities; therefore, raising the carbon levels in historically
tilled agricultural soils offers the potential to partially miti-
gate climate change by capturing 30–60 Gt of organic car-
bon (Lal, 2003). The restoration of SOC in agricultural soils
would not only mitigate climate change through

Figure 2 Toward an ideal carbon-capturing crop plant. A, The ideal plant should accumulate suberin in the cell wall of its root cells and form a
vast and deep root system. To realize this goal, the existing literature and experimental evidence are curated to look for candidate genes affecting
root system architecture and root mass. This information is combined with root-specific promoters and suberin biosynthetic genes. B, The ideal
plant is created by capitalizing on both classical (breeding) and more recent (genome editing, genetic engineering) approaches to introduce favor-
able alleles and genes that will increase root biomass and transgenes that will increase the deposition of suberin in the root. In addition to trap-
ping more carbon, these ideal plants will replenish carbon-depleted soils with degradation-recalcitrant carbon polymers (indicated by the darker
color of the soil on the right). Figure credit: P. Salomé.
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sequestration but would also contribute to adaptation to
climate change by developing soils with greater nutrient
holding capacity, resistance to erosion from extreme rain
events, increased water infiltration, and water storage to sta-
bilize productivity in the face of erratic rainfall (Blanco-
Canqui et al., 2013).

Although planting long-lived perennial plants on degraded
agricultural soils would be one of the most effective ways to
rapidly restore soil carbon levels, this approach is limited be-
cause the herbaceous perennials currently available for use
in agriculture (mainly forage crops) produce biomass that is
unsuitable for direct human consumption (Paustian et al.,
2016a). Therefore, efforts are underway to develop new crop
plants that would have extensive long-lived root systems
and would achieve carbon sequestration levels similar to pe-
rennial biofuels (Crews and Rumsey, 2017; Dheri et al., 2022)
while simultaneously producing abundant human-edible
protein, starch, and oils through mechanically harvestable
grain (Glover et al., 2010).

Efforts to develop perennial grain crops began decades
ago, but recent advances in genetics and breeding are accel-
erating the timeline and the first successful perennial grains
are now entering fields and markets. A perennial rice breed-
ing program was initiated in 1996, targeting the roughly 19
million hectares of upland rice grown worldwide where for-
est land is often cleared and degraded (Sacks et al., 2003).
Annual rice (Oryza sativa ssp. indica) and the rhizomatous
perennial relative Oryza longistaminata were hybridized, and
a breeding program has produced lines for flooded paddies
that persist through eight harvests with yields and quality
traits on par with modern rice cultivars (Huang et al., 2018;
Hu et al., 2022). Perennial paddy rice is expected to reduce
GHG emissions and water consumption relative to annual
rice (Oda et al., 2019). The development of perennial rice for
upland conditions also remains possible in the near term.

Perennial grain sorghum is being developed through wide
hybridization of annual grain sorghum (Sorghum bicolor)
with perennial species (Figure 3). Progress for yield and sur-
vival has been made by selecting among progeny of crosses
between S. bicolor and the tetraploid perennial Sorghum
halepense, and evaluation under tropical conditions suggests
no barrier to high-yielding perennial varieties in warmer
regions (Cox et al., 2018b). Recently, diploid perennial grain
sorghum lines have been derived from diploid � tetraploid
crosses (Cox et al., 2018a) and from crosses between S. bi-
color and the perennial diploid species Sorghum propinquum
(Foster et al., 2020). Working at the diploid level is expected
to expedite the development of perennial grain sorghum by
simplifying crosses between perennial germplasm and locally
adapted S. bicolor varieties. Now, marker-assisted selection is
being initiated to accelerate progress in breeding for traits
related to perenniality and productivity (Cox et al., 2018b).

A wide array of perennial grain crops could likely be devel-
oped either by direct domestication of wild perennial spe-
cies or wide hybridization between crops and related
perennials. Perennial wheat with potential to improve soil

quality (Audu et al., 2022) is being developed through wide
hybridization (Hayes et al., 2018). A direct domestication
program is underway to develop the perennial sunflower rel-
ative Silphium integrifolium into a dual-purpose forage and
grain crop (Van Tassel et al., 2017). Various perennial legu-
minous species are also being considered for their suitability
for use as perennial grains (Schlautman et al., 2018).
Perennial flax (Linum) species are being evaluated for direct
domestication as perennial oilseeds (Tork et al., 2019).

Direct domestication of the cool season perennial grass
species intermediate wheatgrass (Thinopyrum intermedium;
Figure 3) was initiated in the 1980s, and now the harvested
grain is being produced and sold in North America under
the trade name Kernza (DeHaan and Ismail, 2017). With its
extensive root system (Sprunger et al., 2019), the crop has
potential for carbon storage belowground (De Oliveira et al.,
2020) and to accumulate microbial necromass (Peixoto
et al., 2020). However, genetic improvement for grain yield is
needed, since selected populations still have a yield potential
of less than half that of bread wheat (Triticum aestivum) in
the same region (Culman et al., 2013). In addition to the
currently limited genetic potential for grain yield, the crop
faces many challenges. New crops always struggle with the
need to coordinate supply chain development in concert
with expanding acreage. Novel perennial grains also intro-
duce a new array of challenges for farmers and agronomists,
such as controlling pests and diseases and managing for sus-
tained yield over many years. With intermediate wheatgrass,
the decline in yield that occurs in aging stands is an ongoing
challenge (Pinto et al., 2021).

Recent developments in plant biology, genetics, and
breeding have opened the door to breeding new crops with
carbon-storing perennial root systems and abundant grain
production at a time scale that can proceed at the pace of
commercial enterprise development (Runck et al., 2014).
Low-cost genome sequencing and innovative genome as-
sembly approaches are allowing the rapid generation of ref-
erence sequences even for large-genome perennial species.
Genomic information is now leveraged to perform genomic
selection (Meuwissen et al., 2001) which can greatly acceler-
ate the breeding of perennial crops. Whereas traditional
breeding of a perennial crop might require 5 or more years
per generation, involving field evaluation of multiple years
followed by intermating of selected individuals, genomic se-
lection uses a genomic prediction model based on the per-
formance of plants grown from multiple generations over
many years. Applying genomic models to genetic marker
data from seedlings of intermediate wheatgrass has accu-
rately predicted mature plant performance (Crain et al.,
2021). Speed breeding (Watson et al., 2018) paired with ge-
nomic selection has the potential to further accelerate pe-
rennial crop improvement by increasing the number of
generations that can be completed per year. Genomic selec-
tion with speed breeding is currently being implemented
with intermediate wheatgrass to complete two full cycles of
selection per year, compared to one cycle every 3 years with
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classical approaches. Although these methods hold great
promise, they remain to be validated across the many re-
peated cycles of selection necessary to produce a highly pro-
ductive domestic crop.

The application of genome editing techniques to the do-
mestication of wild species creates exciting possibilities to
compress the development timeline for new crops (Zsögön
et al., 2018). For instance, by comparing the genome se-
quence of the perennial Thinopyrum intermedium with re-
lated domestic grains, targets for genome editing to obtain
domestic phenotypes have been identified and a roadmap
for rapid domestication established (DeHaan et al., 2020).

Although new crop development is the primary approach
being used to produce new perennial grains, the rediscovery

of “orphan” perennial grain species is another approach wor-
thy of investigation. Pigeonpea (Cajanus cajan) is an N-fixing
semi-perennial shrub that is grown in Asia and southern
Africa. Although types that can be grown for several seasons
without replanting have been used in erosion control and
are still grown by some farmers, annual pigeonpea is now
the dominant form. A recent study in Malawi indicated that
farmers are less likely to adopt erratically performing peren-
nial pigeonpea due to social pressures and lack of trust in
the technology (Grabowski et al., 2019). Expanded acreage
of soil-conserving perennial pigeonpea may depend on the
development of improved management techniques spread
through peer learning, and new cultivars that enable consis-
tent production.

Figure 3 Examples of wide hybridization and direct domestication to develop perennial grains. The wild perennial Sorghum halepense (A) was hy-
bridized with the domestic species Sorghum bicolor (B) and selective breeding of the progeny produced lines with intermediate head and seed
size (C) and the ability to regrow from underground rhizomes (D). In an example of direct domestication, the mostly wild grass Thinopyrum inter-
medium can be harvested with conventional equipment (E) and cleaned to obtain a human-edible grain (F) that has properties similar to wheat,
as seen in this loaf made with an 80/20 blend of wheat and Th. intermedium flour (G). Domesticated Th. intermedium types now possess domesti-
cation traits, such as shatter resistance (H, at right).
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The basic genetic and physiological control of the peren-
nial growth habit has only recently been the subject of ex-
perimentation and remains poorly understood (Park et al.,
2017). This lack of understanding has thus far hindered the
development of perennial grain crops. With a clear under-
standing of the pathways involved, rapid conversion of exist-
ing annual crops into perennials could be possible.
Combined approaches of wide hybridization, genome edit-
ing, mutagenesis, and transgenics could be used to achieve
perennial growth in high-yielding cultivars. Because the need
for carbon sequestration in soils is urgent, these approaches
could be implemented in parallel, following the approach
used to develop COVID vaccines (Ball, 2020) to develop an
array of high-yielding perennial crops in the coming years.

The promise of seagrasses for carbon capture and
storage
(By Carlos M. Duarte)

Seagrasses are a group of about 74 angiosperm species that
complete their life cycle in the marine environment, where
they form lush meadows that rank amongst the world’s
most productive ecosystems (Duarte and Chiscano, 1999;
Hemminga and Duarte, 2000). Seagrass meadows are
strongly autotrophic, producing more organic matter than
consumed in the ecosystem (Duarte et al., 2010) and acting,
therefore, as sinks for CO2, much of which is buried in sea-
grass soils (Duarte et al., 2005, 2013a; Fourqurean et al.,
2012). The role of seagrasses as intense carbon sinks in the
biosphere is supported by their high photosynthetic effi-
ciency, low nutrient requirements, adaptations that mini-
mize carbon losses, and their capacity to cope with anoxic,
sulfide-rich sediments. Indeed, whereas seagrasses occupy an
estimated 0.08% of the ocean seafloor, they contribute an
estimated 12.7% of all organic carbon annually buried in the
ocean seafloor (Duarte et al., 2005). Yet at least one-third of
the historical global area occupied by seagrasses has been
lost, leading to the loss of this carbon sink and the risk of
remineralization and subsequent CO2 emission of the car-
bon stocks accumulated in their soils over millennia. Hence,
seagrass meadows represent a key component of the so-
called “blue carbon” strategies aimed at avoiding losses and
restoring coastal vegetated habitats to contribute to climate
change mitigation, through carbon capture and storage, and
climate change adaptation through the coastal protection
seagrasses offer (Duarte et al., 2013a; Macreadie et al., 2021).

A range of tools within plant sciences, from genomics and
metabolomics to microbiome investigations are providing
important insights into the underpinnings of the remarkable
carbon capture capacity of seagrass. Whereas the role of sea-
grasses in carbon capture and storage has been addressed
largely through the quantification of stocks (Fourqurean
et al., 2012) and burial rates (Duarte et al., 2005, 2013a), sea-
grass traits related to carbon capture and storage have been
poorly addressed. Here, I discuss the fundamental plant
traits that render seagrasses so efficient in carbon removal
and identify a number of promising areas where further

research may provide additional insights on their role.
Further efforts in resolving carbon concentration mecha-
nisms and the role of the microbiome, specifically the root
component, offer promise to contribute to developments in
carbon capture technologies and to increase the efficiency
of seagrass restoration, respectively.

What do we know?

The high productivity of seagrass meadows even under low
light conditions (Duarte and Chiscano, 1999) supplies much
of the carbon sequestered in seagrass meadows (Kennedy
et al., 2010). The keys to the high productivity of seagrass
meadows are efficient light use (Enr�ıquez et al., 1994), low
nutrient requirements (Duarte, 1990), and carbon concen-
trating mechanisms that allow seagrasses to use both CO2

and HCO�3 to support their high photosynthetic rates
(Larkum et al., 2006). The analysis of the full genome se-
quence of the seagrass Zostera marina pointed to a number
of evolutionary adaptations required for these species to col-
onize the ocean from freshwater angiosperm ancestors
(Olsen et al., 2016). Some of these adaptations help explain
their high carbon removal, including the loss of volatiles,
consistent with the loss of stomata through which they are
emitted for airborne communication and plant defense,
which reduces losses of carbon and the probability of infec-
tions, as stomata are a main entry point for pests and
pathogens in terrestrial plants (Olsen et al., 2016).

The seagrass genome also revealed new combinations of
structural traits related to the cell wall, enabling the synthe-
sis of cutin-cuticular waxes, suberin–lignin near the plasma
membrane, and macroalgal-like sulfated polysaccharides
(Olsen et al., 2016), recently confirmed by direct analyses of
the seagrass cell walls, which revealed the presence of
fucose-containing sulfated polysaccharides, apiogalacturonan
and lignin (particularly in roots and rhizomes; Pfeifer et al.,
2022). This composition, together with low N and phospho-
rus content, renders seagrass tissues highly recalcitrant to
microbial degradation (Enr�ıquez et al., 1993), helping to ex-
plain high seagrass-derived lignin concentrations in seagrass
soils (Nakakuni et al., 2021) and the high organic carbon
preservation supporting high carbon sequestration rates.
The full genome sequence conducted to date excluded en-
dophytic prokaryotes (Olsen et al., 2016), which also have
important contributions, as exemplified by the recent dis-
covery of a symbiosis with an N-fixing, root-endophytic bac-
teria, which helps explain the high productivity of seagrass
in oligotrophic environments (Mohr et al., 2021).

Seagrass morphology is a basic underpinning of their role
in carbon removal. They are able to form dense canopies,
exceeding 15 m2 of leaf surface per m2 of ground covered
(Romero et al., 2006), and their rhizomes and roots also
form a dense web in the sediments, with 0.18–3 m2 of rhi-
zome per squaremeter and 0.47–1 m2 of roots per square-
meter of soil (Duarte et al., 1998). The dense web of
seagrass leaves acts as a filter that retains particles entrained
in the flow and dissipates wave and turbulent energy,
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enhancing the deposition and retention of particles in their
soils (Hendriks et al., 2008). Meanwhile, the dense web of
rhizomes and roots in the sediments injects a significant
fraction of seagrass net production (2.8%–48.6% of total net
production; Duarte et al., 1998) into the soil and provides
physical cohesion, thereby reinforcing the soils against the
erosive force of storms and extreme-energy events, such as
tsunamis (Chatenoux and Peduzzi, 2007; Sasa et al., 2012).

Rhizome growth and meristematic dominance are the
keys to the exponential clonal growth of seagrasses, which is
a major driver of the efficiency of seagrass restoration proj-
ects in restoring seagrass carbon removal (Duarte et al.,
2013b), as demonstrated in assessments of the carbon re-
moval benefits of seagrass restoration (Marbà et al., 2015;
Oreska et al., 2020). Seagrass restoration traditionally was
small in scale and relatively expensive and inefficient, largely
due to small planting units (van Katwijk et al., 2016).
However, observations from hundreds of restoration projects
(van Katwijk et al., 2016) have led to major recent successes,
such as the cost-effective restoration of 36 km2 of Zostera
marina meadows in Virginia’s coastal waters, with major car-
bon removal benefits (Orth et al., 2020), as well as the long-
term success of Posidonia australis restoration in SW
Australia, again coupled with important carbon removal
benefits (Marbà et al., 2015). Hence, seagrass restoration has
a significant scope to contribute to climate action
(Macreadie et al., 2021). There is ample scope for plant sci-
ence to contribute to enhancing the success of seagrass res-
toration, through, for instance, the use of probiotic
applications (Peixoto et al., 2022) or selective breeding of
seagrasses used for restoration to enhance their resistance,
and thereby restoration success, in areas experiencing ma-
rine heat waves (Zabin et al., 2022).

Lack of oxygen in seagrass soils, where oxygen penetration
is limited to the top few mm of seagrass soils, slows down
microbial degradation and the bioturbation activity of ben-
thic fauna, thereby improving the efficiency of carbon burial.
Anoxic sediments support sulfate-reducing bacteria, produc-
ing sulfide that is toxic to seagrass. However, seagrasses pro-
tect themselves from toxic sulfide intrusions by releasing
oxygen through their roots, transported from photosyntheti-
cally produced oxygen in their leaves to their roots and rhi-
zomes (Borum et al., 2006), thereby maintaining a protective
oxidized layer a few millimeters thick around their roots and
rhizomes (Brodersen et al., 2015). Oxygen transport from
photosynthetic production sites to roots is enabled by the
development of a lacunae system that provides gaseous con-
nectivity between leaves, rhizomes, and roots (Borum et al.,
2006). While continuous within organs, they are interrupted
between organs by diaphragms one cell thick, perforated by
interstitial pores (0.5–1.0 lm), which provide protection
from flooding while allowing gas flow (Roberts et al., 1984).
In addition, the below-ground tissues of seagrasses exhibit
physiological adaptations which allow them to rely tempo-
rarily on anaerobic fermentative metabolism (Borum et al.,
2006).

Known unknowns

Carbon concentrating mechanisms that allow seagrasses to
support their high photosynthetic rates and circumvent
boundary-layer rate-limiting effects are not fully resolved
(Larkum et al., 2006). Seagrass carbon metabolism remains
poorly understood and seems to neither fully conform to C4

nor Crassulacean acid metabolism (Larkum et al., 2006).
Genomic analyses conducted to date have focused on the
seagrass genome and ignored the rich community of endo-
phytes. There is a growing number of analyses of the sea-
grass microbiome, including bacteria and fungi (Tarquinio
et al., 2019; Garcias-Bonet et al., 2021; Torta et al., 2022), but
they remain mostly descriptive and functional analyses are
limited, despite evidence that endophytes may play a major
role in supporting nutrient metabolism (Mohr et al., 2021)
and detoxification (Crump et al., 2018). For instance, re-
cently discovered cable bacteria in seagrass roots could alle-
viate critical sulfide toxicity and promote nutrient uptake by
mobilizing soil iron and phosphorous with acidification asso-
ciated with electrogenic sulfide oxidation, and by stimulating
dissimilatory nitrate reduction to ammonium and even fix-
ing N2 (Scholz et al., 2021).

Opportunities around unknown unknowns

Overall, limited progress has been made in applying modern
concepts and tools of plant science to further our understand-
ing of seagrass carbon removal, where an ecological focus pre-
vails. This is not surprising given that seagrasses represent only
0.02% of angiosperm species and have little scope to emerge
as model organisms. Yet, the strong selection pressure required
for angiosperms to cope with life in the marine environment
and anoxic, sulfide-rich sediments is likely to have generated
novel mechanisms that can open new pathways in biotechnol-
ogy. Understanding the carbon concentration mechanism of
seagrass can open the door for hybrid photosynthesis technol-
ogies for carbon removal (Kornienko et al., 2018), while resolv-
ing the functional role of their microbiome can help improve
the outcomes of seagrass restoration. The limited effort of
plant science on seagrass research to date suggests the exis-
tence of “unknown unknowns” and, therefore, a potential for
new discoveries that can lead to applications in carbon re-
moval, conservation ecology and, more broadly, plant science.

Can we improve photosynthesis?

Photosynthesis: A key target for improving crop
productivity, sustainability, and resilience in the
face of climate change
(By Elizabeth A. Ainsworth and Andrew D.B. Leakey)

Photosynthesis heavily influences crop productivity, resource
use efficiency, and sensitivity to stresses. Therefore, strategic
engineering of photosynthetic metabolism and the morpho-
logical features of leaves that control carbon and water
fluxes can: (1) increase the food, fuel, fiber, and feed pro-
duced by crops; while (2) reducing demand for water and
improving agricultural GHG balance; and (3) making crops
more resilient to future climatic and atmospheric conditions.
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Detailed models of photosynthetic metabolism (Zhu et al.,
2012; Bellasio, 2019) and crop function can identify engi-
neering strategies (Kromdijk et al., 2016; Leakey et al., 2019;
Wu et al., 2019). Synthetic biology is also opening doors for
novel photosynthetic systems to be custom designed to
new environments (Zhu et al., 2020, and discussed below by
Lu and Liao). Here, we discuss engineering for greater photo-
synthesis under near-future elevated atmospheric CO2 con-
centrations and temperatures, plus improved
photosynthetic water use efficiency (WUE) and NUE.

Despite a general effect of higher atmospheric CO2 en-
hancing photosynthesis in C3 plants, global warming is
expected to have profoundly negative consequences for crop
photosynthesis and productivity by the middle to end of this
century (Slattery and Ort, 2019). Rising temperatures also in-
crease vapor pressure deficit (Ficklin and Novick, 2017),
which may increase irrigation demand in the future and limit
the potential yield of current crop genotypes grown under
standard management practices (Ort and Long, 2014;
DeLucia et al., 2019). Photosynthesis is a temperature-
dependent process, with rates increasing to an optimum,
then decreasing once that temperature optimum is exceeded
(Moore et al., 2021). This temperature dependency reflects
the biochemical processes that determine rate limitations,
namely Rubisco activity (and the balance between photosyn-
thetic carbon assimilation and photorespiration) and
ribulose-1,5-bisphosphate regeneration. While in vitro
Rubisco carboxylation rates increase beyond �50�C, de-
creased discrimination by Rubisco for oxygen and increased
solubility of oxygen relative to CO2 with rising temperatures
inhibit net photosynthetic carbon assimilation in temperate
C3 crops at temperatures exceeding �30�C, due to increased
photorespiration (Moore et al., 2021). Rubisco activase is a
key target for improving photosynthesis at elevated tempera-
tures because of the thermolability of the enzyme (Salvucchi
and Crafts-Brandner, 2004) and the observation that acti-
vases from species or genotypes adapted to warmer climates
are more thermostable (Scafaro et al., 2016).

Work in Arabidopsis thaliana suggested that simply over-
expressing a thermostable Rubisco activase could improve
photosynthesis and growth in high temperature conditions
(Kurek et al., 2007), but that result was not translated to
crops where overexpression of Rubisco activase resulted in
lower Rubisco content (Fukayama et al., 2012, 2018). Studies
in rice discovered that over-expression of both Rubisco and
Rubisco activase were required for enhanced photosynthesis
at both optimal and high temperatures (Qu et al., 2021;
Suganami et al., 2021). A highly thermostable Rubisco acti-
vase identified in the Crassulacean acid metabolism plant
Agave tequilana (Shivhare and Mueller-Cajar, 2017) and
greater understanding of the mechanisms of thermostability
in different Rubisco activase isoforms (Scafaro et al., 2019;
Degen et al., 2020) provide potential guides for further im-
proving thermotolerance in crops.

Another target for improving photosynthesis at elevated
temperatures is reducing photorespiration, the process that

recycles 2P-glycolate at the expense of ATP and NADH
(Walker et al., 2016). A number of genetic engineering strat-
egies have successfully demonstrated that photorespiration
can be partially bypassed, resulting in improved photosyn-
thetic carbon assimilation (Kebeish et al., 2007; Carvalho
et al., 2012; South et al., 2019). Recently, transgenic tobacco
(Nicotiana tabacum) was developed to recycle 2P-glycolate
in the chloroplast via overexpression of plant malate syn-
thase and Chlamydomonas (C. reinhardtii) glycolate dehy-
drogenase and simultaneous RNAi to downregulate a
glycolate–glycerate transporter (South et al., 2019). When
these plants were grown in the field at elevated tempera-
tures ( + 5�C), they showed greater resilience to heat stress
compared to wild-type (Cavanagh et al., 2022), providing
strong proof-of-concept for this strategy.

Growth at elevated CO2 (550–600 ppb, which is in the
range of predicted average atmospheric CO2 concentrations
by 2050) generally enhances yields of C3 crops in major tem-
perate growing regions (Ainsworth and Long, 2021). This pri-
marily results from enhanced photosynthetic CO2 fixation
driven by greater Rubisco carboxylation rates combined
with inhibition of Rubisco oxygenation rates (Stitt, 1991).
Even if C3 plants acclimate to elevated CO2 in the long term
by downregulating investment in Rubisco content and elec-
tron transport capacity, photosynthesis is generally stimu-
lated along with NUE (Leakey et al., 2009). Field experiments
with transgenic plants overexpressing Calvin–Benson–
Bassham (CBB) cycle enzymes further enhanced the benefits
of elevated CO2 on carbon gain and yield by increasing pho-
tosynthetic electron transport capacity (Rosenthal et al.,
2011; Köhler et al., 2017). If coupled with breeding or engi-
neering to maintain high sink capacity, which is a prerequi-
site to maximizing the potential of photosynthetic
enhancements in elevated CO2 (Ainsworth and Long, 2021),
this provides a widely applicable pathway to a greater CO2-
fertilization effect on yield.

Greater atmospheric CO2 also causes stomatal closure,
resulting in lower transpiration and greater WUE (Leakey
et al., 2009, 2019). This can reduce drought-induced stress
and yield loss (Fitzgerald et al., 2016). However, interactions
with abscisic acid signaling, canopy micrometeorology, and
N fixation can also cause the CO2-fertilization effect on yield
to be lost under hot and dry conditions (Gray et al., 2016).
There is also significant uncertainty about which of these
responses will occur in tropical locations where water avail-
ability, high temperatures, and soil fertility might be most
limiting (Leakey et al., 2012). A possible target to improve
yield in times and places of drought is to reduce the
amount of water lost through stomata to the atmosphere
relative to photosynthetic CO2 uptake, that is increasing
WUE by reducing stomatal density or accelerating stomatal
closing speed (Leakey et al., 2019). Modeling suggests that
prioritizing reductions in water use over increases in carbon
gain when trying to enhance WUE may lead to better yield
outcomes in many growing environments for both C3 and
C4 species, especially as atmospheric CO2 concentrations
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continue to rise (Leakey et al., 2019; Wu et al., 2019).
Successful pursuit of this strategy would increase productiv-
ity while making currently marginal land viable for produc-
tion, reduce freshwater use for irrigation, and make crops
more resilient to climate change.

Crop productivity today is highly dependent on fertilizer
application, which has negative environmental effects
through nitrate run-off and release of the potent GHG ni-
trous oxide. The need for N inputs is strongly linked to the
high N cost of photosynthetic proteins. However, there may
be potential to re-invest N in different photosynthetic com-
ponents to increase carbon gain and improve NUE (Evans
and Clarke, 2019).

Enhancing plant CO2 fixation through synthetic
biology
(By Kuan-Jen Lu and James C. Liao)

Synthetic biology encompasses engineering natural or non-
natural enzymes or pathways into plants to accomplish a
designated purpose. In addition to the approaches discussed
above, here we discuss attempts using synthetic biology to
enhance CO2 fixation, focusing on recycling photorespiration
products and CO2-fixation pathways (Figure 4).

Recycling photorespiration products

Plant photorespiration produces a nonproductive product,
2P-glycolate, through the oxygenase activity of Rubisco. 2P-
glycolate is converted to glycerate in peroxisomes and to
CO2 in mitochondria in a process requiring ATP and
NADPH with CO2 and ammonium released (Walker et al.,
2016). Current synthetic pathways for reducing photorespir-
atory CO2 loss involve the following types:

Breakdown of one glycolate (a C2 compound) to two CO2 in
chloroplasts without ATP or NADPH consumption (Figure
4A). The released CO2 can be reassimilated by Rubisco, and
no ammonium would be released. For example, an engi-
neered “GOC” pathway in rice consists of a glycolate oxidase
(OsGLO3), an oxalate oxidase (OsOXO3), and a catalase
(OsCATC) overexpressed in rice chloroplasts (Shen et al.,
2019). Glycolate is converted to oxalate, which is completely
oxidized to two CO2 by OsOXO3. OsCATC is required for
decomposing H2O2, preventing plants from oxidative stress.
Rice plants engineered with the GOC pathway showed a
22% increase in photosynthesis, but increases in yield were
inconsistent and dependent on the season in field tests
(Shen et al., 2019). An earlier example overexpressed a ma-
late synthase (MS) from pumpkin (Cucurbita pepo), a cata-
lase (CAT) from Escherichia coli, and a peroxisomal glycolate
oxidase (GO) in Arabidopsis chloroplasts (Maier et al., 2012).
In this manner, glycolate is completely oxidized to CO2 via
both the heterologous and endogenous enzymes. The trans-
genic Arabidopsis had a greater rosette number and size
with higher biomass under the ambient CO2, short-day con-
ditions. However, introduction of the above three genes in
tobacco did not result in increased biomass in greenhouse

studies (South et al., 2019). When GO was replaced with
Chlamydomonas glycolate dehydrogenase (GDH), which
produces NADH instead of H2O2, transgenic tobacco
showed higher carbon assimilation rates, resistance to pho-
torespiration stress, and a significant increase in biomass in
the field tests (South et al., 2019). Under high temperatures
( + 5�C), this pathway decreased yield loss by 11%–21%
(Cavanagh et al., 2022).

Conversion of two glycolate (C2) to one glycerate (C3) with
CO2 release in chloroplasts (Figure 4B). The synthetic path-
way originated from E. coli, consisting of dehydrogenase
(GDH), glyoxylate carboligase (GCL), and tartronic semialde-
hyde reductase (TSR). Unlike the first approach, this syn-
thetic pathway preserves 75% of carbon from two glyoxylate
to produce one glycerate, which is returned to the CBB cy-
cle (Kebeish et al., 2007). The remaining carbon is CO2 pro-
duced via GCL. Expressing the above genes in Arabidopsis
chloroplasts increased the growth rate and biomass yield.
This synthetic pathway was shown to benefit crop plants
such as Camelina sativa and potato (Solanum tuberosum) in
greenhouse and growth chamber conditions (Nolke et al.,
2014; Dalal et al., 2015).

Fixation of an additional CO2 to compensate for the carbon
loss by GCL (Figure 4C). The synthetic malyl-CoA glycerate
(MCG) cycle also uses GCL, and TSR to convert two glyoxy-
lates to glycerate, which is then converted to phosphoenol-
phyruvate (PEP). The oxygen-insensitive PEP carboxylase
(PPC) then carboxylates CO2 and PEP to OAA (C4), fol-
lowed by splitting OAA to acetyl-CoA and glyoxylate (Yu
et al., 2018b). The glyoxylate is then recycled in the GCL re-
action. The net result is the conversion of glyoxylate (or gly-
colate) to a productive biosynthetic product, acetyl-CoA,
without carbon loss. The MCG cycle has been accomplished
in Synechococcus elongatus PCC7942, a photoautotrophic cy-
anobacterium (Yu et al., 2018b). Compared to the wild-type,
the strain expressing the MCG cycle fixed higher amounts of
CO2 to produce more acetyl-CoA and its derived compound
ketoisocaproate, an intermediate in leucine biosynthesis.

Fixation of an additional CO2 to glycolate after activation
(Figure 4D). An elegant tartronyl-CoA (TaCo) pathway was
demonstrated recently, in which glycolate is activated to
glycoly-CoA, which is then caboxylated to tartronyl-CoA
and then to glycerate. This approach requires a new-to-
nature enzyme, glycolyl-CoA carboxylase, which was devel-
oped by rational design and high-throughput screening
(Scheffen et al., 2021).

Rubisco-independent, synthetic CO2 fixation pathways

Six Rubisco-independent CO2-fixation pathways in microor-
ganisms have been identified in nature (Berg, 2011), and a
number of theoretical synthetic pathways have been
designed in silico based on reported enzyme activities and
thermodynamics (Bar-Even, 2018). The first step in imple-
menting synthetic pathways is to demonstrate the pathway
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feasibility in a cell-free system. This in vitro demonstration
requires in-depth processes in solving problems in co-factor
regeneration, enzyme stability, and pathway control.
Through these processes, incompatibility of enzyme reac-
tions, kinetic barrier, and thermodynamic limitations can be
identified. To date, two Rubisco-independent synthetic CO2-
fixing pathways, CETCH and reductive pyruvate synthesis
(rPS)–MCG (Figure 4E), have been demonstrated, and
achieved similar or increased CO2 fixation rates in vitro
compared with the CBB cycle in vivo (Schwander et al.,
2016; Luo et al., 2022). The CETCH pathway consists of 17
enzymes from different organisms (Schwander et al., 2016).
An oxygen-insensitive carboxylase/reductase (CCR) from
Methylorubrum extorqens was chosen as the carboxylase to
fix CO2 in the CETCH cycle because of its high carboxylase
activity and broad substrate range. The carboxylation sub-
strate acrylyl-CoA and crotonyl-CoA in CETCH were regen-
erated to complete the cycle for continuous fixation of CO2.
The fixed carbon is converted to glyoxylate as the output.

The rPS–MCG cycle consists of two parts (Luo et al.,
2022). The first utilizes the MCG cycle described above. In
the second part, rPS converts acetyl-CoA to pyruvate
through a series of reactions that takes two acetyl-CoA to
make a crotonyl-CoA, which is carboxylated by CCR to pro-
duce a C5 compound. The C5 compound is split into a C3
(pyruvate) and C2 (acetyl-CoA) through a series of carbon
rearrangement reactions that complete the cycle. The rPS–
MCG cycle exhibits a self-replenishing feature as it can

export any of its intermediates as a product, such as acetyl-
CoA (C2), pyruvate (C3), and malate (C4). This self-
replenishing characteristic is also seen in almost all naturally
evolved cycles. Since the output C2, C3, or C4 intermediates
are essential for cell growth, it is potentially malleable for
in vivo engineering. Introduction of the CETCH cycle or the
rPS–MCG cycle in a plant would require the activity of
many heterologous enzymes, along with co-enzyme B12,
which is absent in plants. Hence, enzyme design, pathway
evaluation in prokaryotes, plant-associated microbiome engi-
neering, and various genome editing strategies have been
proposed to facilitate this process (Erb et al., 2017; Gupta
et al., 2021; Ke et al., 2021).

Engineering carbon dioxide-responsive C3 crops to
sustain higher productivity under a CO2-rich,
warmer climate
(By Rajeev N. Bahuguna and S. V. Krishna Jagadish)

C4 plant species are overrepresented in agriculture systems
and have substantially higher productivity compared to C3

crops mainly due to higher photosynthetic efficiency (Rao
et al., 2012; Sales et al., 2021). Yet a number of C3 crops are
important food sources for millions of people globally, in-
cluding cereals such as wheat, rice, barley (Hordeum vulgare),
oats (Avena sativa), and many vegetable and tree crops.
Therefore, efforts to increase the photosynthetic efficiency
and productivity of C3 crops are underway to help meet the
increasing global food demand (Cui 2021). The high CO2

Figure 4 Synthetic biology approaches for recycling photorespiration and CO2-fixation pathways. A and B, Photorespiration engineered for break-
down of one glycolate to two CO2 molecules (A) or conversion of two glycolate to one glycerate plus one CO2 molecule (B). The CO2 released in
the chloroplast is recycled back to the CBB cycle for carbon reassimilation (Maier et al., 2012; Shen et al., 2019; South et al., 2019). C, The MCG-cy-
cle engineered to convert glycolate to acetyl-CoA without carbon loss (Yu et al., 2018b). D, Creation of a new enzyme, such as glycolyl-CoA car-
boxylase, to achieve glycolate recycling to produce glycerate with input of ATP and an additional CO2 molecule (Scheffen et al., 2021). E, Rubisco-
independent CETCH and rPS-MCG synthetic CO2-fixation pathways (Luo et al., 2022).

Climate change challenges, plant science solutions THE PLANT CELL 2023: 35; 24–66 | 35

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/35/1/24/6759373 by D

ipartim
ento Istologia Em

briologia M
edica user on 06 M

arch 2024



saturation point for photosynthesis of C3 plants (intercellu-
lar CO2 levels �600 mmol mol–1) makes them more respon-
sive to elevated CO2 than C4 plants, which are saturated for
CO2 under current atmospheric CO2 levels (Loladze, 2014;
Dingkuhn et al., 2020; Kundu et al., 2022). Thus, C3 crops
provide a unique opportunity to harvest more carbon from
a CO2-rich environment and convert it to biomass and yield
(Broberg et al., 2019; Ainsworth and Long, 2021).

In contrast to the positive effect of CO2 on C3 photosyn-
thesis, the global rise in temperature is a major factor limit-
ing the yield of major cereal crops (Lobell and Gourdji, 2012;
Teixeira et al., 2013; Zhao et al., 2017). A rise in night tem-
perature has been shown to have a large impact on the pro-
ductivity of C3 crops such as rice (Peng et al., 2004; Welch
et al., 2010) and wheat (Hein et al., 2020, 2022; Impa et al.,
2021). Recent studies suggest that high night temperature
(HNT) is related to physiological changes such as an in-
creased rate of night respiration (RN) and a reduced rate of
starch accumulation in developing grains in rice (Bahuguna
et al., 2017; Shi et al., 2017), wheat (Narayanan et al., 2016a,
2016b; Impa et al., 2020), and barley (Garc�ıa et al., 2015,
2016). Hence, the positive effect of CO2 on C3 photosynthe-
sis and augmented rate of night respiration under HNT
have opposing effects on carbon-balance dynamics under
CO2-rich, warmer environments (Song et al., 2014; Dusenge
et al., 2019). While the sensitivity of RN to a rise in tempera-
ture is well documented (Atkin and Tjoelker, 2003), variable
effects of the long- and short-term impact of elevated CO2

on RN have been reported, ranging from direct inhibition of
respiration to no significant impact or even an increase un-
der long-term exposure to elevated CO2 (Griffin et al., 1996;
Gonzalez-Meler et al., 1996, 2004; Ziska and Bunce, 1998;
Drake et al., 1999; Baker et al., 2000; Davey et al., 2004; Ayub
et al., 2014). However, none of these studies considered the
genetic background for CO2 responsiveness, which could be
a major determinant of the effect of elevated CO2 on RN,
and carbon balance dynamics in C3 crops (Figure 5).

Despite the well-documented photosynthetic enhance-
ment of C3 crops under elevated CO2 (Leakey et al., 2009),
active selection in C3 crops for CO2 responsiveness has not
been given adequate attention (Ziska et al., 2012; Dingkuhn
et al., 2020). The complexity of field-based CO2 enrichment
facilities and space constraints for screening and characteriz-
ing a large number of genotypes remain major bottlenecks
for identifying potential CO2-responsive genotypes. Recently,
Shimono et al. (2014) and Kikuchi et al. (2017) demon-
strated that altering planting density provides a means of
assessing phenotypic plasticity in rice genotypes under en-
hanced resource availability (e.g. space, light, nutrients).
Interestingly, genotypes responsive to higher available
resources under low planting density responded similarly
under an elevated CO2 environment (Shimono et al., 2014).
Subsequently, in a series of field experiments, Bahuguna
et al. (2022) assessed the variable phenotypic plasticity of
194 diverse rice genotypes by measuring parameters related
to photosynthesis, biomass, and yield under different

Figure 5 Schematic diagram showing average annual atmospheric [CO2] level for 2021 and the effect of rising night temperature (Tmin) on rice
productivity by enhanced respiration: photosynthesis ratio (RN/A) resulting in augmented release of carbon at the cost of biomass and yield in
conventional genotypes. On the contrary, introgression of CO2-responsiveness trait in C3 crops facilitates enhanced carbon sequestration and allo-
cation of additional carbon into biomass, and compensating Tmin-induced carbon losses. LCR, least CO2-responsive; HCR, high CO2-responsive.
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planting densities. A wide genetic variability observed for
the phenotypic plasticity under a resource-rich environment
showed a strong relationship (R2 = 0.71) with CO2 respon-
siveness under realistic CO2 conditions using a field-based
free air CO2 enrichment facility. Further, the high CO2-re-
sponsive (HCR) genotypes showed significantly higher rates
of photosynthesis (A) and lower rates of RN resulting in a
lower RN/A ratio as compared to the least CO2-responsive
(LCR) genotypes. Interestingly, elevated CO2 was identified
as the major driver influencing carbon-balance dynamics
and the phenotypic response of HCR genotypes resulting in
higher biomass and yield under elevated CO2 + HNT condi-
tions, whereas the LCR genotype was severely affected by
HNT despite exposure to elevated CO2.

This study demonstrated that the impact of HNT on grain
yield, total biomass, and grain weight was compensated by
elevated CO2, but this response was mainly confined to the
HCR genotypes (Bahuguna et al., 2022). Thus, LCR or con-
ventional genotypes are expected to lose biomass and yield
under an elevated CO2, warmer climate due to augmented
respiratory carbon losses, whereas HCR genotypes could ac-
cumulate more carbon per unit area and maintain their bio-
mass and yield by compensating for carbon losses under
HNT (Figure 5). In addition, the ability to fix additional car-
bon with a lower respiration-to-photosynthesis ratio in HCR
genotypes provides an opportunity to sequester a substan-
tial amount of carbon into biomass. There is, however, a
need for prediction models for simulated carbon fluxes at
temporal and spatial scales to assess the carbon sequestra-
tion potential of CO2-responsive C3 crops. In conclusion, the
introgression of a ‘CO2-responsiveness’ trait into elite rice va-
rieties and other C3 crops could help sustain and enhance
crop yield in a warmer environment.

The C4 rice project
(By Jane Langdale)

In the majority of photosynthetic organisms, both in water
and on land, CO2 is fixed by Rubisco into the three-carbon
compound 3-phospho-glycerate, the first intermediate of
the CBB cycle. The efficiency of this C3 photosynthetic path-
way is compromised because Rubisco also reacts with oxy-
gen, forming 2-phospho-glycolate, which has to be
detoxified in the energetically costly photorespiratory path-
way (Walker et al., 2016). Because of this energetically waste-
ful competitive reaction, the decrease in atmospheric CO2

levels that occurred during the Oligocene (Pearson et al.,
2009) would have been accompanied by photosynthetic in-
efficiencies at a global scale.

The reported drop from �800 to �400 ppm atmospheric
CO2 during this period is thought to have driven, at least in
part, the evolution of the C4 photosynthetic pathway that
concentrates CO2 at the site of Rubisco and thus minimizes
photorespiration (Sage, 2016). In the C4 pathway, CO2 is ini-
tially fixed by phosphoenolpyruvate carboxylase (PEPCase),
which is oxygen insensitive. This carboxylation reaction
occurs in the outer mesophyll cells of the leaf, with the

four-carbon reaction product subsequently transported to
inner bundle sheath cells for decarboxylation and re-fixation
by Rubisco in the Calvin cycle (Figure 6). Given the special-
ized leaf anatomy and compartmentalization of metabolic
reactions required for C4 function, evolution of the pathway
must have involved functional modification of multiple
genes, including those encoding enzymes, metabolite trans-
porters, and regulators of cell-type patterning. Despite this
apparent complexity, the C4 photosynthetic pathway
evolved over 60 times independently and is represented in
diverse families of flowering plants (Sage, 2016). The adap-
tive success of the C4 photosynthetic strategy is demon-
strated by the fact that just 2% of plant species utilize the
pathway but C4 plants are responsible for �25% of terres-
trial primary productivity (Still et al., 2003).

Why C4 rice?

In addition to strategies that aim to improve the efficiency
of the C3 photosynthetic pathway (discussed above, and see
Ort et al., 2015; Johnson, 2022) or to introduce Crassulacean
acid metabolism into C3 plants (Schiller and Bräutigam,
2021), the enhanced efficiency of C4 photosynthesis provides
a potential engineering opportunity for improved yield and
resilience against abiotic stresses in C3 crops. Although the
C4 pathway utilizes two extra ATP molecules per CO2 fixed
than the C3 pathway, in warm and dry environments where
dissolved oxygen conditions are relatively high, these energy
costs are offset by those not spent on photorespiration (3.5
ATP per O2 fixed). In general, C4 plants also use less water
(Kocacinar et al., 2008) and N (Evans and von Caemmerer,
2000) per CO2 fixed and have substantially faster growth
rates (Monteith 1978). Physiological models that incorporate
these factors predict that if C4 traits could be introduced
into C3 plants, enhanced radiation, N, and WUEs could gen-
erate substantial yield increases, particularly in warm envi-
ronments where crops are rainfed and fertilizer applications
are limited (Mitchell and Sheehy, 2006).

Importantly, the level of atmospheric CO2 at which C4

outcompetes C3 is dependent on temperature; C4 is favored
below 550 ppm CO2 at 35�C, 450 ppm at 30�C, and 350
ppm at 25�C (Ehleringer et al., 1997). Although future pre-
dictions of atmospheric CO2 levels differ depending on fossil
fuel usage scenarios, with current levels at 419 ppm and an-
nual increases of 2–3 ppm over the last decade (https://gml.
noaa.gov/ccgg/trends/gl_gr.html), the status quo would re-
sult in atmospheric CO2 levels of �500 ppm by 2050. C4

plants could thus outperform C3 plants where temperatures
exceeded �33oC, which given climate warming predictions
could be much of the global agricultural landscape for at
least part of the year. Leaving predictions aside, long-term
field experiments at elevated ( + 180 ppm) CO2 demon-
strated that the biomass of C3 but not C4 grasses was en-
hanced over the first 12 years of the project but then C4

outperformed C3 in the following 8 years (Reich et al., 2018).
This switch was correlated with net N mineralization rates
in the soil, which were initially enhanced by elevated CO2 in
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C3 plots but were later depressed. Despite the difficulties in
predicting exactly how plants will respond to global change,
C4 engineering is thus a plausible strategy, albeit one with
significant challenges.

Strategy

The C3 species rice is an obvious target for C4 engineering
because it is one of the world’s top three staple crops and
in many parts of Asia it is the major source of calorie intake.
With predicted population increases, the one hectare of
land that provided enough rice to feed 27 people in Asia in
2007 will need to support at least 43 people by 2050—a
60% increase in demand (Zeigler, 2007). Successful conver-
sion of a C3 plant into one that utilizes the C4 pathway
requires that leaf anatomy be modified to reduce the num-
ber of mesophyll cells between veins to the extent that
there is an approximate 1:1 ratio of mesophyll:bundle sheath
cells in the leaf; that chloroplast development is activated in
the normally achlorophyllous bundle sheath cells; and that
C4 pathway enzymes and metabolite transporters are com-
partmentalized and functional in either the mesophyll or
bundle sheath cells.

When the C4 Rice Project (www.c4rice.com) was initiated,
genes encoding all of the enzymes of the C4 pathway had
been identified in maize and other C4 species, as had some

of the genes encoding metabolite transporters (reviewed in
Langdale, 2011), but regulators of C4 leaf anatomy had not
been identified. The strategy to introduce C4 traits into rice
was thus three-pronged: (1) introduce compartmentalized
C4 metabolism into existing bundle sheath cells and the
mesophyll cells immediately adjacent to them by expressing
maize genes in specific cell-types of rice; (2) activate chloro-
plast development and photosynthesis in existing bundle
sheath cells by expressing a known regulator of chloroplast
development in maize (the Golden2 [ZmG2] gene; Hall
et al., 1998); and (3) identify regulators of C4 leaf anatomy
in maize with a view to future manipulation in rice. The
ultimate goal was to combine the metabolic prototypes
generated in the first two strands with the anatomical
prototype.

Much of the first decade of the project was spent devel-
oping tools in rice to enable this strategy, for example ro-
bust transformation pipelines, cell-type-specific promoters,
and modular cloning technology. Ongoing research contin-
ues to characterize potential regulators of C4 leaf anatomy
and to evaluate whether manipulation in rice can modify
cell-type patterning in the leaf (Wang et al., 2013a, 2017a;
Schuler et al., 2018; Hughes et al., 2019; Hughes and
Langdale, 2020, 2022)—but much more discovery research is
needed before an anatomical prototype can be designed

Figure 6 Schematics of C3 CBB and NADP-ME C4 Cycles. A, CBB C3 cycle. B, NADP-ME C4 cycle. C, Transverse leaf sections and corresponding
schematics of C3 rice (left) and C4 maize (right). Bars = 30 lm. Adapted from Langdale (2011), Figures 1 and 3.
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and engineered (Sedelnikova et al., 2018). Recent work has,
however, made progress toward engineering C4 metabolic
prototypes.

Progress

Maize genes encoding C4 pathway enzymes have been
expressed in specific cell types of both an elite cultivar of
indica rice (IR64) and a model cultivar of japonica rice
(Kitaake), and in both cases the pathway is partly functional.
Specifically, primary carboxylation by PEPCase is seen in me-
sophyll cells, but subsequent decarboxylation in bundle
sheath cells has yet to be detected (Lin et al., 2020;
Ermakova et al., 2021). Creating a fully functional cycle will
require a better understanding of metabolite flux within and
between the two cell types, which may require the develop-
ment of more sensitive detection methods. In a second ad-
vance, chloroplast development has been activated in the
normally achlorophyllous bundle sheath cells of rice,
through constitutive expression of ZmG2 (Wang et al.,
2017b). No fitness penalty was observed in greenhouse-
grown lines expressing ZmG2, in either IR64 or Kitaake back-
grounds (Wang et al., 2017b) and although only evaluated
in the nonelite Kitaake background, field-grown lines overex-
pressing ZmG2 exhibited up to 30% yield increases (Li et al.,
2020). These examples validate the overall engineering strat-
egy but there is still a long way to go before a full transition
to C4 can be achieved in any C3 species.

Can we develop climate-resilient crops?

The trait development pipeline: Bridging the gap
between upstream science and breeding for
adaptation to climate change
(By J. Damien Platten and Amelia Henry)

Improving the adaptability of crops is a key strategy to miti-
gate the effects of climate change on productivity (Aggarwal
et al., 2019). We focus on rice breeding in this section; how-
ever, the pipeline we describe (Figure 7) could easily be ex-
tended to other crops, taking into consideration the
challenges and parameters unique to each species. For ex-
ample, the platform is being adopted across the CGIAR
partnership for global food security (https://www.cgiar.org/)
for other mandate crops. In rice breeding, abiotic stress tol-
erance was not a selection target during the Green
Revolution, and some evidence suggests that stress tolerance
was even selected against due to tight linkage between
stress tolerance loci and loci conferring unfavorable agro-
nomic traits (Vikram et al., 2015). Subsequently, a range of
breeding approaches has been taken to improve stress toler-
ance, including introgression of quantitative trait loci (QTLs)
for stress tolerance traits as well as direct selection for grain
yield under stress using traditional varieties as the sources of
stress tolerance. Characterization of stress-tolerant varieties
has revealed that combinations of physiological traits have
been affected by selection for yield under stress (Anantha
et al., 2016; Kumar et al., 2021), which may explain some of
the difficulty in developing superior varieties through

introgression of single genes/QTLs. With a few exceptions
(i.e. Sub1 varieties for submergence such as Swarna-sub1
[Mackill et al., 2012] and drought-tolerant DRR dhan 42
[IR64 qDTY2.2 + qDTY4.1; Swamy et al. 2013]) the majority
of recently released stress-tolerant varieties were convention-
ally bred (i.e. by crossing and selecting over several
generations).

The use of genes and QTLs through marker-assisted selec-
tion could shorten the breeding process. Although hundreds
of stress-tolerance genes, QTLs, and physiological mecha-
nisms have been identified, only a small number of these re-
search outputs have been used in breeding (Wissuwa et al.,
2016; Cobb et al., 2019; Platten et al., 2019) and the fre-
quency of known abiotic stress QTLs in the current elite
breeding material remains low (Juma et al., 2021). There is
thus a need to bridge the gap between upstream science
and breeding for adaptation to climate change so that valu-
able traits/genes/QTLs are more actively utilized in breeding
pipelines.

Modern breeding strategies have shifted to a paradigm of
population improvement based on elite x elite crossing
(Juma et al., 2021) within core panels, which for stress-prone
areas have been selected from the most stress-tolerant geno-
types available (i.e. Khanna et al., 2022). This strategy
presents significant opportunities for upstream plant biolo-
gists to contribute to breeding efforts. With a defined list of
genetic backgrounds (many of which have already been se-
quenced; see, for example, Mansueto et al., 2017) to which
potential stress tolerance traits/genes/QTLs can be com-
pared, those that best complement the elite breeding pool
can be prioritized. However, although traditional varieties
are the most promising source of stress tolerance, they also
typically possess detrimental traits that make them unsuit-
able for use in elite � elite crossing. A defined protocol is
needed to deliver useful traits/genes/QTLs from traditional
varieties into elite backgrounds and into the breeding pool.

In seeking to bridge the gap between upstream plant sci-
ence and breeding for stress tolerance, an understanding of
breeding program needs is critical. In the briefest terms, reli-
ability is key: a gene/QTL must reliably improve the target
trait, in relevant elite genomic backgrounds and in relevant
environments (field locations). Therefore, the growth stages,
genetic backgrounds, and environmental conditions relevant
to breeding programs should be reflected in the study sys-
tems used in upstream research. One example is in the vali-
dation of candidate genes for stress tolerance: this is
frequently done in the background of japonica rice due to
the established transformation protocols. However, the rice
type preferred in most stress-prone rice-growing regions is
indica, which grows better than temperate japonica rice in
field trials in the tropics. Use of the relevant genetic back-
ground is important because stress tolerance alleles are of-
ten absent in japonica genomes and thus their level of stress
tolerance is more easily improved, exaggerating apparent ef-
fect size. Other recommendations for increasing the likeli-
hood of upstream research outputs being taken up by
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breeding are to take additional steps such as validation of
identified QTLs in relevant elite genomic backgrounds and
to link with researchers who can evaluate the material under
field conditions.

On the other side of the gap, downstream science must
make released varieties and advanced breeding lines more
accessible to upstream scientists. Familiarity with this mate-
rial is important because in some cases, key genes have been
identified and advocated as promising breeding targets with-
out the recognition that they are already present in the
breeding pool. Furthermore, the availability of improved ma-
terial to upstream researchers will help to ensure that target
loci are effective in those genetic backgrounds. Downstream
science also must stay up to date and gain access to the

most recently identified traits/genes/QTLs to incorporate
into the breeding program, while at the same time effec-
tively connecting with local breeders who can conduct wide-
spread testing and who understand the needs of farmers in
stress-prone regions. This “bridge building” among scientific
disciplines is critical to the development of more efficient
pipelines that bring novel improvements to crops for cli-
mate change-affected farmers.

To strengthen linkages between upstream and down-
stream development efforts, a framework has been devel-
oped that organizes and codifies trait development efforts.
This “Trait Development Pipeline” developed at the
International Rice Research Institute (Figure 7) applies stage
gate systems widely used in industry (Covarrubias-Pazaran

Figure 7 The Trait Development Pipeline for delivery of valuable stress tolerance traits/genes/QTLs from upstream research into the elite breeding
pool for improvement of crop productivity under climate change. The Trait Development Pipeline is organized into six stages: 1) guidelines for
prioritizing traits (assessment), 2) defining standards for phenotyping protocols, 3) identifying donors and QTL (including refining marker quality
metrics), 4) introgressing and 5) validating traits/genes/QTLs into elite genetic backgrounds to develop the elite donor lines that are 6) handed to
the breeding program for crossing. Those elite donor lines will then be systematically crossed and tested in target environments where climate
change is increasingly affecting the degree of abiotic stress affecting crop production. Created with BioRender.com
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et al., 2022) to assess trait development progress against de-
fined advancement criteria. The organization by stages ena-
bles external review of the progress at each stage and
provides decision points on whether to proceed, giving an
opportunity to discontinue efforts that are not likely to
make an impact in breeding programs.

The current Trait Development Pipeline is organized into
six stages that link a variety of research disciplines, and the
pipeline provides a structure that gives a framework for
teamwork between these areas. The pipeline starts with an
assessment of the trait of interest in the context of priority
traits needed by farmers and consumers that are not already
present in the elite breeding pool (see “Product concepts”
and “Market segments”; Covarrubias-Pazaran et al., 2022). A
set of criteria regarding the availability and reliability of phe-
notyping protocols for the trait, potential donor genotypes,
mapping populations, QTLs, and markers determine ad-
vancement to subsequent stages in the Trait Development
Pipeline. The pipeline is dynamic and subject to modifica-
tion over time based on researcher feedback and as techni-
ques and technologies change. The outputs of the Trait
Development Pipeline are validated donor lines containing
new traits/genes/QTLs in a fully elite background. These
“elite donor lines” can be used in the elite � elite crossing
work to improve the most advanced breeding lines which
will be evaluated in multilocation trials, evaluated by local
researchers, and considered for release as varieties for dis-
semination to farmers. In this way, the outputs of trait/
gene/QTL discovery realize an ongoing impact across the
breeding pool rather than improving just a single variety.
Such sustained improvement through mainstream breeding
programs will facilitate the deployment of new technologies
to as many climate-change-affected crop production market
segments as possible.

Application of the pipeline to known genes and QTLs
helps to identify gaps in knowledge and products available,
and addressing these gaps is already enabling the rapid in-
troduction of a wide variety of genes contributing to disease
resistance, heat, drought, cold, and salinity tolerance into
mainstream rice breeding efforts. Breeding programs are
thus able to respond in a far more agile manner to changing
climate and market demands. As these genes are deployed
into elite backgrounds, it becomes easier for small breeding
programs to also leverage their value; the “heavy lifting” of
eliminating highly unfavorable genomic backgrounds, break-
ing linkage drag, and developing coupling-phase linkages has
been done, so only minimal or no additional effort is re-
quired to move the new genes to other elite breeding pro-
grams. Thus, the value of new genes is no longer exclusively
available to large, well-resourced programs.

Enhancing climate resilience through the use of
crop wild relatives
(By Damaris A. Odeny)

Crop wild relatives (CWRs) are wild species that are closely
related to domesticated crops and can be used for crop

improvement. Breeders have traditionally used CWRs as
sources of superior traits, including key traits for enhancing
adaptation to climate change (Dempewolf et al. 2014). The
main breeding objectives for climate change adaptation in-
clude resilience to abiotic stresses (drought, heat, salinity,
and flooding/waterlogging) and biotic stresses brought
about as a result of the increase in atmospheric CO2 and el-
evated average temperatures. Here, we provide examples of
recent progress in the use of CWRs in managing these
stresses and highlight specific areas where work is needed.
Table 1 provides a summary of the use of CWRs in breeding
for tolerance to abiotic stresses.

Drought stress

Despite the complexity of drought stress (Ilyas et al., 2021),
CWRs have been reported that are more efficient than crop
relatives in drought-related physiological processes such as
higher WUE, higher CO2 assimilation, deeper root systems,
more efficient regulatory networks, leaf curling, and stomatal
closure, as well as showing an abundance of allelic diversity
within candidate genes. For example, higher WUE, higher car-
bon assimilation, and greater carboxylation efficiency were
reported in wild lettuce (Lactuca serriola; Eriksen et al., 2020),
and Moenga et al. (2020) reported novel divergent drought
tolerance mechanisms in wild chickpea (Cicer reticulatum)
that would be a great resource for improving cultivated
chickpea (Cicer arietinum). Drought-related transcription fac-
tors of the Asr (abscisic acid, stress, ripening) family have a
high level of diversity in CWRs (Cortés et al. 2012) that might
be further exploited to improve cultivated crops. Most
drought studies to date in CWRs have focused on major
crops, and there is tremendous scope to undertake similar
studies in minor and under-researched crops.

Heat stress

Heat stress is one of the greatest concerns for crop produc-
tion considering the increasing effects of climate change.
The wild wheat relatives Triticum monococcum, T. dicoc-
coides, and Aegilops speltoides ssp. liqustica and CWR-
derived wheat genotypes were among the most heat toler-
ant when tested alongside elite wheat genotypes (Peng
et al., 2013; El Haddad et al., 2021). Similar observations have
been made in wild rice, Oryza meridionalis Ng. and O. aus-
traliensis, in which heat tolerance was associated with a
more stable activation of Rubisco (Scafaro et al., 2016).
Overexpressing a thermostable variant of Rubisco activase
from CWR significantly improved yield in domesticated rice
(Oryza sativa L.; Scafaro et al., 2018). More studies on the
physiological and molecular basis of heat tolerance in wild
versus domesticated species are needed to enhance the de-
ployment of novel heat tolerant alleles in crop improvement.

Salinity tolerance

Halophytic plants adapt to salinity through three distinct
mechanisms, all of which have been identified in various
CWRs: osmotic stress tolerance, Na + or Cl– exclusion, and

Climate change challenges, plant science solutions THE PLANT CELL 2023: 35; 24–66 | 41

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/35/1/24/6759373 by D

ipartim
ento Istologia Em

briologia M
edica user on 06 M

arch 2024



tolerance of tissue to accumulated Na + or Cl–. Wild rela-
tives of adzuki bean, Vigna nakashimae and V. riukiensis,
prevented Na + accumulation in roots and stems, and toler-
ated accumulated Na + , respectively (Yoshida et al., 2016). A
wild relative of tomato, Solanum pennellii, showed greater
induction of antioxidant activity than cultivated tomato
(Solanum lycopersicum L.) under salt stress (Frary et al.,
2010). Salinity tolerance has also been reported in Oryza gla-
berrima (Platten et al., 2013), Hordeum spontaneum (Kiani-
Pouya et al., 2020), and in Aegilops spp. (Zamani Babgohari
et al., 2013).

Flooding tolerance

Flooding tolerance has been mainly studied in rice leading
to the identification of the SUB1 locus (Mackill et al., 2012).
Additional submergence-tolerant alleles (SUB1A-1) were
identified from wild rice species O. nivara and O. rufipogon,
together with a likely presence of other submergence mech-
anisms in other wild rice accessions (Niroula et al., 2012).
Two anaerobic germination QTLs (qAGP1 and qAGP3) from
O. nivara introgression lines (Liu et al., 2021a) potentially

can be used to enhance flooding tolerance in elite SUB1
genotypes, which are not always tolerant to anaerobic con-
ditions during germination. Wild species with tolerance to
waterlogging/stagnant flooding have been reported to pos-
sess unique alleles for aerenchyma formation (Zhang et al.,
2017), or to provide a stronger barrier to radial oxygen loss
(Pedersen et al., 2021). The availability of these different
sources of flooding/waterlogging resistance in CWRs pro-
vides an opportunity to introgress the beneficial alleles into
elite varieties, especially where genomics-assisted introgres-
sion and selection is possible.

CWRs as sources of resistance/tolerance to biotic stress

Introgression of disease resistance genes into cultivated crop
species is perhaps the most beneficial use of CWRs in crop
improvement to date. Major genes have been introgressed
from CWRs for resistance to late blight (Phytophthora infes-
tans) in potato (Solanum tuberosum L.; Ghislain et al., 2019),
blast disease (Magnaporthe oryzae) resistance in rice (Yoshida
and Miyashita, 2009) and several other key pathogens in
wheat (Rani et al., 2020) and tomato (Sharlach et al., 2013),

Table 1. Examples of wild relatives used to enhance abiotic stress tolerance in cultivated crops

Crop More resilient wild species Trait of interest Reference

Wheat Aegilops cylindrica Drought Pour-Aboughadareh et al. (2017)
Ae. crassa
Ae. caudata
Triticum urartu
T. monococcum Heat Khanna-Chopra and Viswanathan (1999);

Peng et al. (2013); El Haddad et al. (2021)T. dicoccoides
Ae. speltoides ssp. liqustica
T. ararticum
Ae. speltoides Salinity Ahmadi et al. (2018)
Ae. caudata
Ae. cylindrica
T. boeoticum

Sorghum Sorghum macrospermum Drought Cowan et al. (2020)
S. brachypodum Ochieng et al. (2020)
S. arundinaceum
S. sudanense
S. purpureosericeum

Banana Musa balbisiana; Drought Eyland et al. (2022)
M. acuminata ssp. errans

Rice Oryza rufipogon Salinity Tin et al. (2021)
O. nivara; O. coarctata Zhang and Xie (2014)
O. nivara; O. rufipogon Flooding Niroula et al. (2012)
O. meridionalis Ng. Heat Scafaro et al. (2012); Scafaro et al. (2016);

Scafaro et al. (2018)O. australiensis
Maize Zea nicaraguensis Flooding Mano et al. (2006);

Z. luxurians Mano et al. (2005);
Z. mays ssp. huehuetenangensis
Z. diploperennis Drought Shaibu et al. (2021)

Tomato Solanum cheesmaniae; Salinity Dehan and Tal (1978); Shalata and Tal (1998);
Mittova et al. (2002); Frary et al. (2010);
Pailles et al. (2020)

S. pennellii
S. galapagense
S. pimpinellifolium Heat Driedonks (2018)

Tepary bean Wild Phaseolus acutifolius Drought Buitrago-Bitar et al. (2021)
Adzuki bean Vigna nakashimae; V. riukiensis Salinity Yoshida et al. (2016)
Eggplant Solanum insanum Salinity Brenes et al. 2020)
Chickpea Cicer reticulatum Drought Moenga et al. (2020)
Sugarcane Saccharum spontaneum Salinity Kasirajan et al. (2021)
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just to mention a few. Pest resistance also benefited from
CWRs (Therezan et al., 2021), among the most recent being
the introduction of fall armyworm (Spodoptera frugiperda) re-
sistance from wild relatives of maize (Singh et al., 2022).
Climate change-related warmer average temperatures and al-
tered weather patterns are contributing to altered patterns in
the occurrence of crop pests and pathogens and the emer-
gence of new pests and pathogens around the globe, as ex-
plored in more detail in the section by Rim et al. below. More
studies will be needed to focus on the introgression of quanti-
tative resistance from wild to cultivated species to improve
the durability of resistance to various diseases and pests.

De novo domestication for resilience to climate change

Despite several wild relatives having remarkable tolerance to
biotic and abiotic stresses, successful introgression of these
traits into elite backgrounds has been difficult due to linkage
drag (Nevo and Chen, 2010) and the complexity of most
traits. De novo domestication, the incorporation of domesti-
cated genes into the nondomesticated species to develop
new crops (Razzaq et al., 2021), presents a novel opportu-
nity for immediate utilization of the novel resilience alleles
in CWRs. The availability of vast genomic and phenomic
resources allow for machine learning (Niazian and Niedbała,
2020) and more precise genome editing (Hua et al., 2019).
An excellent example of de novo domestication has been
reported in Solanum pimpinellifolium (Zsögön et al., 2018).
There are now several countries that have exempted
genome-edited plants from genetically modified organism
regulations, making it possible to utilize de novo domesti-
cated plants as soon as they are generated.

Development of disease-resistant crops for a
changing climate
(By Ellen Youngsoo Rim, Alexandra M. Shigenaga, Pamela

C. Ronald)

Plant reactions to a single stress differs from those of plants
exposed to combined abiotic and biotic stresses, with a shift
in signaling pathways and transcriptomic responses (Atkinson
and Urwin, 2012; Prasch and Sonnewald, 2013; Sharma et al.,
2013). Thus, understanding how plants respond to pathogen
stress under nonoptimal environmental conditions is essential
for the development of resilient crops in a changing climate
(Chaloner et al., 2021; Velásquez et al., 2018).

Diverse plant–pathogen interactions have been shown to
be affected by adverse environmental conditions, leading to
increased host susceptibility, or in some cases, increased
host resistance (Velásquez et al., 2018). Various plant species
become more susceptible to fungal, viral, or bacterial patho-
gens in response to elevated temperatures (Cohen and
Leach, 2020; Velásquez et al., 2018). For example, exposure
to elevated temperature combined with drought stress led
to greater susceptibility to Turnip mosaic virus due to down-
regulated defense response gene expression (Prasch and
Sonnewald, 2013). However, there are examples where high
temperatures led to enhanced host resistance against

pathogen pressure (Venkatesh and Kang, 2019). Similarly,
the impact of increased atmospheric CO2 in relation to
plant–pathogen interactions remains unsettled. For example,
high CO2 concentrations led to increased susceptibility of
wheat to fungal infection (Váry et al., 2015), whereas soy-
bean (Glycine max) exhibited either enhanced or reduced
susceptibility to infection, depending on the pathogen stud-
ied (Eastburn et al., 2010). Deeper insight into the complex
interplay among abiotic and biotic stresses will inform ongo-
ing work to mitigate crop damage caused by extreme cli-
mate conditions or pathogens.

One mitigation strategy is the application of beneficial
microbes that enhance plant health and immunity. For in-
stance, Actinobacteria in the genus Streptomyces are enriched
in the root microbiome of plants under drought stress
(Naylor et al., 2017). Application of Streptomyces strains to
seeds improved wheat growth and yield in drought field con-
ditions (Yandigeri et al., 2012). Beneficial strains of
Trichoderma fungus heightened plant immunity and antago-
nized pathogenic fungi (Ty�skiewicz et al., 2022). Soil applica-
tion of Trichoderma reduced fungal infection in soybeans,
tomatoes, peanuts (Arachis hypogaea), and other crops (Zin
and Badaluddin, 2020). Inoculation with Trichoderma has
also been shown to enhance tolerance to abiotic stresses
such as drought and salinity (Zhang et al., 2016; Scudeletti
et al., 2021). Biocontrol strategies present an opportunity to
enhance resilience to environmental stress and disease pres-
sure, while reducing the use of chemical pesticides or fertil-
izers that can further damage the environment.

Another strategy well-aligned with sustainable agriculture
practices is the introduction of genetic improvements that
protect crops against pathogens and confer resilience to abi-
otic stress in a heritable manner. There are numerous exam-
ples of genetic alterations in crops leading to resistance to
specific pathogens, many of which were achieved through
the introduction of immune receptors (Ercoli et al., 2022).
Immune receptors are activated by direct or indirect interac-
tion with microbial molecules to elicit host defense
responses. Advances in genome sequencing and analysis
have accelerated the discovery of immune receptors and
other beneficial genetic traits in cultivated crop varieties and
their wild relatives (Ercoli et al., 2022; Zsögön et al., 2022;
and discussed in the section above by Odeny). For instance,
a previously unknown variant of the immune receptor FLS2
was identified in the genome of a wild grape species (Vitis
riparia; Fürst et al., 2020). The introduction of the new FLS2
variant conferred resistance to Agrobacterium tumefaciens in
tobacco, offering a potential strategy to control crown gall
disease, which affects many crops including nut trees and
grapevines. Once identified, desirable genetic traits can be
introduced into crops through methods such as marker-
assisted breeding or genetic engineering. The use of gene-
stacking to introduce multiple protective genes into a single
background will likely be an important consideration in en-
gineering climate resilience (Figure 8).
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Genome engineering tools such as CRISPR–Cas9 and tran-
scription activator-like effector nucleases allow greater con-
trol over the sequence and genomic location of these
genetic changes. Crop engineering is an especially promising
avenue for mitigating vector-borne plant diseases, which are
anticipated to rise as higher temperatures expand the geo-
graphical distribution and survival of insect pests (Perilla-
Henao and Casteel, 2016; Huang et al., 2020; Skend�zi�c et al.,
2021). For instance, introduction of proteins that target the
insect vector or the pathogen itself can confer host resis-
tance. Expression of antimicrobial proteins that bind the
membrane of Xylella fastidiosa, the causative agent of
Pierce’s Disease, decreased disease incidence in grapevines
(Vitis vinifera; Dandekar et al., 2019). Such genetic strategies
may lead to more effective and sustainable management of
vector-borne diseases, which have relied heavily on chemical
insecticides.

Introduction of beneficial traits, however, have mainly fo-
cused on the development of crop varieties with resistance
to a single stress. Major hurdles remain in engineering crops
with combined stress tolerance (Steinwand and Ronald,
2020). For one, enhanced stress tolerance is often accompa-
nied by fitness costs, such as reduced plant growth and
yields (Velásquez et al., 2018; Venkatesh and Kang, 2019).
Additional genetic interventions can reduce detrimental

effects of overactive defenses. For instance, growth penalties
associated with powdery mildew resistance in wheat were
reversed upon ectopic activation of genes encoding sugar
transporters through a mechanism yet to be elucidated (Li
et al., 2022). In another example, necrosis associated with
broad spectrum potato virus resistance was eliminated
through mutating the regulatory region of the resistance-
conferring immune receptor (Harris et al., 2013).
Alternatively, protective genes can be designed to be
expressed under specific conditions. High temperatures in-
crease susceptibility of the model plant Arabidopsis to the
bacterial pathogen Pseudomonas syringae pv. tomato
DC3000 (Pst; Wang et al., 2009; Huot et al., 2017). Disease re-
sistance genes expressed under a heat-inducible promoter
protected against Pst infection after exposure to high tem-
perature without pleiotropic growth defects (Leng et al.,
2021). Another challenge is that pathogens can overcome
resistant traits by developing novel virulence strategies or by
evolving mechanisms to evade detection by existing im-
mune receptors. Gene stacking might be used to delay or
prevent the evolution of resistance-breaking pathogens un-
der diverse climate stresses.

A promising avenue to simultaneously reduce crop loss to
pathogen and environmental stress is introducing disease re-
sistance in the context of climate resilience (Rivero et al.,

Figure 8 Development of crops with enhanced resilience to abiotic and biotic stress. Crops are exposed to a variety of stresses. Abiotic stresses
will intensify as the following climate conditions change: water availability, precipitation, temperatures, and atmospheric CO2 levels. Biotic stres-
sors that plants encounter will vary, but may consist of: bacteria, fungi, oomycetes, nematodes, viruses, and insect pests. As climate change alters
environmental conditions and plant-pathogen interactions, strategies to develop more climate-ready and disease-resistant crop varieties include
breeding or genome engineering approaches with stacking disease resistance genes, stacking climate tolerance and disease resistance genes, and/
or addition of beneficial microbes (see text for examples).
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2022; Figure 8). Identification of resistance genes that are
more effective under abiotic stress, such as increased temper-
ature, is one approach (Chen et al., 2018; Dossa et al., 2020).
For example, stacking the rice disease resistance genes Xa4
and Xa7 provided enhanced resistance to Xanthomonas ory-
zae pv. oryzae (Xoo), the causal agent of bacterial blight dis-
ease, under high temperature conditions (Dossa et al., 2020).
Alternatively, disease resistance genes can be introduced into
crop varieties that already sustain high resilience to abiotic
stress. The introduction of six genes associated with resistance
to the fungal pathogen Magnaporthe oryzae, the causal agent
of rice blast disease, into a rice variety with elevated drought
tolerance resulted in plants that are both resistant to blast in-
fection and tolerant of drought stress in the field (Carrillo
et al., 2021). Another approach is stacking genes, through
breeding or genome engineering, to confer both abiotic stress
tolerance and disease resistance. For example, submergence
(Sub1) and salt (Saltol) tolerance genes were stacked with
eight pathogen and pest resistance genes in an elite rice line
(Das and Rao, 2015); this line showed resistance to M. oryzae,
Xoo and gall midge, as well as tolerance of submergence and
salinity. In some cases, genes can act as regulatory hubs to
control abiotic and biotic signaling pathways and are particu-
larly valuable candidates to target for crop engineering
(Husaini, 2022). For example, the rice transcription factor
MADS26 orchestrates abiotic and biotic stress responses.
Downregulation of MADS26 led to enhanced resistance to M.
oryzae and Xoo as well as drought tolerance in the field
(Khong et al., 2015). The effectiveness of each of these strate-
gies to develop resilience to multiple types of stress will vary
depending on the crop, pathogen, and environmental condi-
tions. Research on various strategies and their evaluation un-
der field conditions will be crucial to combat the negative
effects of climate change on agricultural systems.

Mycorrhizal and rhizobial symbioses under climate
change challenges
(By Xiaowei Zhang, Ertao Wang)

N cycling strongly influences climate change as it is closely
correlated to the production of CO2, N2O, and CH4.
Currently, crop productivity is highly dependent on fertilizer
application, particularly N, which has negative environmen-
tal effects through nitrate run-off and release of the potent
GHG nitrous oxide. The development of high-yielding, dis-
ease-resistant crops can be aided significantly by improving
associations with symbiotic microorganisms that enhance
nutrient assimilation in the host plant. Here, we summarize
the potential application of engineered mycorrhizal and rhi-
zobial symbioses in developing self-fertilizing crops and
maintaining sustainable agriculture in the era of global cli-
mate change (Figure 9).

Mycorrhizal symbiosis

Plant roots are associated with diverse microbes, including
bacteria, fungi, and viruses collectively called the rhizosphere
microbiome. Among them, mycorrhizal fungi are known to

improve plant access to nutrients, particularly phosphorus
and N. Two major groups are arbuscular mycorrhizal fungi
(AMF), which colonize host roots and are widely distributed
in plants, and ectomycorrhizae, mainly associated with trees
and shrubs (Genre et al., 2020). The soil region influenced
by mycorrhizal roots is called the mycorrhizosphere
(Priyadharsini et al., 2016), where mycorrhizal fungi sequester
carbon and form aggregate particles in soil that have a ma-
jor impact on the composition of microbial and plant com-
munities (Priyadharsini et al., 2016; Wang et al., 2021).
Under a warmer climate, mycorrhizal fungi can increase car-
bon sequestration by influencing the root/shoot ratio (Zhou
et al., 2022). Ectomycorrhizal fungi can significantly affect
the carbon sequestration capacity of certain soils, for exam-
ple in boreal forests (Clemmensen et al., 2015; Genre et al.,
2020). Colonization by AMF can mitigate adverse effects of
drought and salt stress by improving nutrient uptake, mini-
mizing oxidative damage, and increasing osmotic adjustment
(Hameed et al., 2014; Klinsukon et al., 2021).

Several challenges restrict the application of AMF in agri-
culture as a biofertilizer. Plants vary widely in response to in-
dividual mycorrhizal fungi (Klironomos, 2003), and results of
research focusing on one or few AMF species under con-
trolled conditions may not translate to field conditions. In
addition, many aspects of the signaling and nutrient ex-
change pathways are shared between mycorrhizal fungi and
biotrophic pathogens (Wang et al., 2012; Zhang et al., 2015;
Jacott et al., 2017; Jiang et al., 2017; Zhang et al., 2021a).
Thus, it is critical to dissect how plants distinguish between
AMF- and pathogen-influenced agronomic traits and engage
productively with symbiotic microorganisms while simulta-
neously restricting pathogens.

Mycorrhizal fungi strongly influence host plant phospho-
rus acquisition. Interestingly, the phosphate starvation re-
sponse was found to be a core regulator in both a direct
phosphate uptake pathway via root hairs and epidermis and
an indirect phosphate uptake pathway via mycorrhizal sym-
biosis (Shi et al., 2021), suggesting the possibility of develop-
ing crops that use phosphorus and N more efficiently by
coordination of the direct phosphate uptake pathway and
mycorrhizal pathway in future.

N fixation in legumes and nonlegumes

Biological N fixation is the process by which nitrogenase (an
enzyme found only in certain prokaryotes known as diazo-
trophs) converts dinitrogen gas from the atmosphere into
ammonia and is the main path for the formation of com-
bined N in nature. Three forms of N fixation are found in
nature: free-living, associative, and symbiotic (Soumare et al.,
2020). In associative N fixation, N-fixing microorganisms liv-
ing on the surfaces or in the interstitial spaces of the plant
host use photosynthetic products from the plant as carbon
sources to fix N for their own use and provide the excess
fixed N to the host (Soumare et al., 2020). In symbiotic N
fixation, N-fixing bacteria colonize the cells of plant organs
such as root nodules and supply N to support host growth

Climate change challenges, plant science solutions THE PLANT CELL 2023: 35; 24–66 | 45

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/35/1/24/6759373 by D

ipartim
ento Istologia Em

briologia M
edica user on 06 M

arch 2024



and development, in systems such as Rhizobium/legume,
Frankia/alder, and Cyanobacteria/Australian cycads
(Pankievicz et al., 2019; Soumare et al., 2020). The rhizo-
bium–legume symbiosis is the most important N fixation
system in terrestrial communities.

Three mechanisms have been proposed to develop N self-
fertilizing cereal crops to enhance climate change resilience
(Figure 9B):

1. Increasing associative N fixation. Diazotrophs are present
in the carbon-enriched mucilage in maize aerial roots and

Figure 9 Mycorrhizal symbiosis and N self-fertilizing crops. A, Positive effects of mycorrhizal symbiosis. The mycorrhizal hyphal network forms a
mycorrhizosphere (light brown) which can enlarge the plant nutrient absorption area and supply a convenient zone for root-related microbes.
Benefits from mycorrhizal symbiosis include increased tolerance or resistance to abiotic or biotic stresses. B, Three steps to develop N self-fertiliz-
ing cereal crops to enhance climate change resilience. (1) Increasing associative N fixation. The mucilage (light green) is rich in carbohydrates and
harbors abundant diazotrophic microbiota (pink). Engineered cereal plants (such as maize) have the ability to produce rhizophine, which can be
perceived by engineered diazotrophs (orange). (2) Transferring symbiotic N fixation to cereal plants. Cereal crops are engineered for symbiotic N
fixation by expressing the chimeric receptors perceiving rhizobia signals and overexpressing key symbiotic regulators (CSSP genes, CRE1, etc.) and
nodule development genes (SCR-SHR, LBD16, etc.) to form nodule-like structures. (3) Autonomous N fixation in cereal crops. The ideal plant
which could assimilate N2 into ammonium is created by overexpressing rhizobial N fixation genes in plant cells.
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were found to contribute 29%–82% of the N nutrition of
Sierra Mixe maize in a 5-year field experiment (Van Deynze
et al., 2018). Engineering the cereal host and/or the diazo-
trophs to enhance this association is therefore a promising
avenue to increase biologically fixed N in crops.

It has been shown that the engineered expression in
Medicago truncatula and barley (Hordeum vulgare) of rhizo-
pine, a small molecule compound synthesized by a few rhizo-
bia, could be sensed by engineered bacteria Azorhizobium
caulinodans ORS571 with a 103-fold increase in perception
sensitivity (Geddes et al., 2019; Haskett et al., 2022). This pro-
vides the possibility of increasing N fixation from endophytic
and free-living bacteria associated with crop plants, although
the in situ nitrogenase activity was suboptimal. Further experi-
ments should explore optimizing the expression levels of rhi-
zopine biosynthetic genes to reduce fitness costs in host
plants due to excessive gene expression.

2. Transferring symbiotic N fixation to cereal plants. The asso-
ciation of legumes with N-fixing bacteria requires several
molecular processes common to the mycorrhizal associa-
tions that are more widespread in plants, showing that the
evolution of the Rhizobium–legume symbiosis utilized many
existing processes that facilitate mycorrhizal interactions
(Roy et al., 2020; Wang et al., 2022). This close relationship
provides a possibility to engineer symbiotic N fixation into
non-legume cereal crops by synthetic biology (Mus et al.,
2016). Some progress has been made toward this goal: (i)
The overexpression of chimeric receptors, for which the ex-
tracellular domains of the rice Myc factor receptors MYC
FACTOR RECEPTOR1 (OsMYR1) and CHITIN ELICITOR
RECEPTOR KINASE1 (OsCERK1) were replaced with those
from the M. truncatula Nod factor receptors NOD FACTOR
PERCEPTION (MtNFP) and RECEPTOR-LIKE KINASE3
(MtLYK3), respectively, triggers calcium spiking in response
to a low concentration Nod factor treatment in rice (He
et al., 2019). (ii) The overexpression of several symbiotic reg-
ulators induces spontaneous root-nodule-like structures
(Soyano et al., 2013; Tirichine et al., 2007; Yang et al., 2022).
(iii) The key development genes in M. truncatula SHORT
ROOT (MtSHR), SCARECROW (MtSCR), and LLOB-DOMAIN
PROTEIN16 (MtLBD16) specify cortical cell fate with the abil-
ity to de-differentiate to form nodule primordia in response
to symbiotic signals (Schiessl et al., 2019; Soyano et al., 2019;
Dong et al., 2021). This constitutes a genetic toolkit to gen-
erate nodule-like structures to accommodate N-fixing rhizo-
bia, that is by engineering the expression of these key
regulators of nodule organogenesis in cereal crops. However,
creating the micro-aerobic conditions necessary for rhizobia
in the nodule organs of cereal crops to perform N fixation is
still a black box.

3. Autonomous N fixation in cereal crops. An ideal approach
for self-fertilizing cereal crops would be to make them fix N
autonomously. A detailed study showed that the smallest N
fixation operon consists of 9 genes, nifB, nifH, nifD, nifK, nifE,
nifN, nifX, hesA, and nifV in Paenibacillus WLY78 (Wang

et al., 2013b). Transgenic Arabidopsis expressing a nine-nif
gene cassette (nifBHDKENXhesAnifV) showed moderate ni-
trogenase activity and resulted in higher biomass and chlo-
rophyll compared to control plants grown in low-N or N-
free medium (Yao et al., 2021). If the results of this study
can be validated, this will provide the possibility to construct
cereal crops capable of autonomous N fixation in the future.

Enhancing climate resilience in the hardy staple
crop cassava
(By Marnin Wolfe, Eder Jorge de Oliveira, and Ismail Rabbi)

Cassava (Manihot esculenta) is a staple root crop grown on
more than 28 million hectares and crucial to the food secu-
rity of almost half a billion people. Cassava is uniquely posi-
tioned as one of the most climate change resilient crops
due to its ability to tolerate prolonged droughts, often ex-
ceeding 5 months. The cultivation of cassava has continued
to increase in tropical regions, where climate change
impacts will be particularly adverse (El-Sharkawy, 1993; Parry
and Rosenzweig, 1993; de Oliveira Aparecido et al., 2020). In
this section, we overview the innovations that have recently
accelerated cassava genetic improvement, the challenges
that drought and heat are expected to pose in coming deca-
des, and address prospects to improve climate resilience
through interdisciplinary innovations.

The NextGen cassava breeding project: A decade of

innovation

Cassava is a clonally propagated crop domesticated in South
America that continues to radiate throughout the tropics.
Phenotypic recurrent selection has been the mainstay of cas-
sava breeding in much of its history. As a result of its 12- to
24-month growth cycle, low multiplication rate and low-
seed set, phenotypic selection requires 4–6 years between
crosses, a major bottleneck for genetic improvement
(Ceballos et al., 2015). Cassava has emerged as a model for
the adoption of new breeding technologies among root and
tuber crops, including the incorporation of improved experi-
mental designs and phenotyping, as well marker-assisted se-
lection (Mbanjo et al., 2021).

In 2012, the Next-Generation Cassava (NGC) Breeding
Project initiated a multi-disciplinary effort to accelerate ge-
netic improvement, notably using genomic selection at
breeding programs in Africa and Latin America. NGC part-
ners in Africa include the International Institute of Tropical
Agriculture and the National Root Crops Research Institute
in Nigeria; the West Africa Center for Crop Improvement in
Ghana; the National Crops Resources Research Institute,
Uganda, and Makerere University in Uganda; and the
Tanzania Agricultural Research Institute in Tanzania. In
South America, collaborators include EMBRAPA in Brazil
and the International Center for Tropical Agriculture in
Colombia. In the USA, collaborators are Cornell University,
the Boyce Thompson Institute at Cornell, the University of
Hawaii, and the USDA-ARS in Ithaca, NY. The details of
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partners and funding found at https://www.nextgencassava.
org.

Instead of requiring phenotyping breeding lines over many
years before selecting new parents, genomic selection ena-
bles breeders to predict performance based on genome-
wide genetic markers, even at the seedling stage
(Figure 10A). Genotyping of all germplasm and targeted
phenotyping of representative subsets make breeding value
prediction in early stages possible, increasing selection inten-
sity and reducing selection cycle time (Heffner et al., 2009).
The transition from phenotypic to genomic selection has
gained momentum in cassava through the NGC, and while
breeding cycle times are 50% shorter, selection intensity and
accuracy are higher (Wolfe et al., 2017), and the rate of im-
provement is demonstrably increased relative to previous
decades (Figure 10B).

Several additional innovations came to cassava under
NGC, including: (1) GWAS enabling the cataloging and vali-
dation of trait-linked single-nucleotide polymorphisms used
for marker-assisted selection (Wolfe et al., 2017; Zhang et al.,
2018; Rabbi et al., 2020); (2) Cassavabase.org, an open-access,
breeding database for efficient management of phenotype
and genotype data (Morales et al., 2022); and (3) use of
plant growth regulators for improved flowering and seed set
(Hyde et al., 2020). Genomic resources developed during the
last decade, including reference genomes (Lyons et al., 2021)
and HapMap (Ramu et al., 2017; Kuon et al., 2019) have laid
a foundation for trait-discovery research. These technologies
collectively will enable breeders worldwide to tackle the
food-security challenges posed by climate change.

Climate resilient cassava breeding: Innovations for the

next decade

Although cassava is considered a drought-tolerant species
(Okogbenin et al., 2013), there is still a large gap between
the yield obtained by farmers in semi-arid regions (9.5
t.ha–1) and yield observed under experimental water deficit
(23.6 t.ha–1) with improved genotypes (de Oliveira et al.,
2015). Fortunately, there is enormous genetic variability to
tap for drought tolerance for future genetic improvement
(de Oliveira et al., 2017; Figure 10C). Most cassava field test-
ing by breeders is done in both high-rainfall and drought-
prone environments. Over the annual cropping cycle, geno-
types are routinely exposed to 3–5 months of drought and
higher temperatures during which they are evaluated for
leaf retention, greenness, and damage by dry season pests
such as green mites (Ezenwaka et al., 2018). Advanced test-
ing is usually done in multienvironment trials, including low
rainfall, heat-stressed environments (Hershey, 1984).
Although genetic control of drought tolerance in cassava, as
measured by yield under drought, is complex with strong
genotype-by-environment interaction (de Oliveira et al.,
2015), a recent GWAS identified candidate genes with
known association to drought tolerance and markers useful
for breeding (dos Santos Silva et al., 2021).

The complexity of drought-tolerance genetic architecture
suggests that genomic selection, augmented by genome
editing and cutting-edge phenomics, will be necessary for
the rapid development of climate-resilient cassava varieties.
Currently, final yield is the basis for selection for drought tol-
erance (Khadka et al., 2020). However, yield is affected by
many factors into drought and is only measurable after 10–
12 months. Earlier stage, nondestructive evaluation of physi-
ological drought responses and root bulking is needed.
Remote sensing of photosynthetic performance using drones
with hyperspectral imaging (Verma et al., 1993; Banerjee et
al., 2020) and root yield using ground penetrating radar is
now possible (Agbona et al., 2021). High-throughput pheno-
typing plus genomic prediction and GWAS-based discovery
are powerful tools for climate-resilience breeding (Juliana
et al., 2019; Jha et al., 2020). Pilot tests have been conducted
on cassava for association with above and below-ground
traits (Selvaraj et al., 2020).

Genome editing and metabolic engineering are promising
supplements to exploiting existing natural diversity.
Transformation of cassava to express isopentenyl transferase
resulted in increased water retention and leaf retention un-
der water stress (Zhang et al., 2010). The overexpression of
transcription factors like DEHYDRATION-RESPONSIVE
ELEMENT BINDING PROTEIN (DREB), ABA-RESPONSIVE
ELEMENT BINDING PROTEIN1 (AREB1), and ABA-
RESPONSIVE ELEMENT BINDING FACTOR2 (ABF2) were
also shown to increase drought tolerance in some species
(Rivero et al., 2007). In Arabidopsis, CRISPR/Cas9 was used
to modify the OPEN STOMATA2 (OST2) gene resulting in
greater drought tolerance through enhanced stomatal re-
sponse (Osakabe et al., 2016). Engineering multiple traits
such as improving light reaction efficiency, reducing photo-
respiration, improving sucrose synthesis to increase sucrose
loading and stimulate cambium activity could improve
starch synthesis and metabolite transport into storage roots
and increase sink capacity (Obata et al., 2020; Sonnewald
et al., 2020). In cassava, there are no published studies on
the use of genome editing to mitigate drought response,
but several studies have demonstrated the feasibility of using
CRISPR/Cas9 for virus resistance (Gomez et al., 2019) and re-
ducing cyanogenic compounds (Gomez et al., 2021).

Climate change will disproportionately impact already
food insecure regions of the world (Easterling and Apps,
2005). Cassava, already a hardy crop, can help to attenuate
some of those negative impacts. For example, cassava
planted under free-air CO2 enrichment has been shown to
positively respond with increased yield and higher WUE
(Rosenthal et al., 2012; Ruiz-Vera et al., 2020). Given suffi-
cient investment, the role of cassava as a food-security and
industrial crop will continue to expand and serve as a buffer
to future climate change-related food insecurity. We have
described ways in which cassava is a “climate-smart”
crop and an important staple for millions in the tropics.
Now is the time to continue the modernization in cassava
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breeding and biotechnology to benefit the most vulnerable
populations.

The carbon nutrient penalty: Will it matter?
(By Gabriel Castrillo, Martin R. Broadley, and David E. Salt)

Hidden hunger, the lack of sufficient dietary micronutrients
including iron (Fe) and zinc (Zn), is a major problem for a
significant portion of the world’s human population
(Kumssa et al., 2015; Lenaerts and Demont, 2021).
Experiments with plants cultivated in growth chambers
have suggested that elevated atmospheric CO2 is associated
with a decline in mineral nutrients in a number of crops, for
example, decreased Fe and Zn concentrations in wheat, bar-
ley, and rice (Manderscheid et al., 1995; Fangmeier et al.,
1997; Seneweera and Conroy, 1997; la Puente de et al., 2000;
Pleijel et al., 2000). Free-air CO2 enrichment (FACE) experi-
ments with plants grown under standard field management
practices, with various crops including soybean, sorghum
(Sorghum bicolor), potatoes, wheat, barley, and rice (Prior
et al., 2008; Högy and Fangmeier, 2009; Högy et al., 2009;
Erbs et al., 2010; Fernando et al., 2014a, 2014b; Ujiie et al.,

2019), showed similar decreases in mineral nutrients. A
more comprehensive set of FACE experiments were
reported across three countries, with multiple sites and
crops (Myers et al., 2014, Dietterich et al., 2015), which con-
firmed decreases in Zn and Fe concentration of 5%–10% for
C3 grains and legumes at the elevated CO2 concentrations
predicted for 2050 (546–586 ppm). A large meta-analysis
representing numerous FACE and non-FACE experiments
also identified similar reductions in Zn, and in other dietary
mineral nutrients such as calcium (Ca) and magnesium (Mg;
Loladze, 2014). This carbon nutrient penalty was projected to
cause a decrease in the global availability of dietary Fe and
Zn of between 2.5% and 3.6% by 2050 (Beach et al., 2019);
producing the forecast that many countries that currently
have high levels of hidden hunger will continue to do so.

A better understanding of the impact of elevated CO2 on
mineral nutrient concentrations in crops requires concomi-
tant consideration of elevated temperature, as they go hand
in hand. Combined FACE and temperature (T-FACE) experi-
ments have begun to address the possible impact of ele-
vated temperatures on the carbon nutrient penalty. In

Figure 10 Genomic selection (GS) in a cassava breeding program. A, Each breeding cycle begins with a crossing block trial where seeds are gener-
ated. The first evaluation, a seedling nursery (SDN) usually involves 410K plants, but cassava does not produce storage roots when planted from
seed and no yield data is collected. After 12 months, seedlings are cloned (5–10 cuttings/plant) into their first single-row, unreplicated clonal eval-
uation trial (CET) followed by at least three stages of yield trials (preliminary [PYT], advanced [AYT], and uniform [UYT]). All lines entering CET
are genotyped genome-wide; sometimes this is done during the seedling nursery. As a result, genomic prediction enables selection of new parents
for crossing even as early as the SDN (dashed red arrow). B, GS has resulted in demonstrable acceleration in the rate of genetic improvement since
initiation in 2012. Results shown are from the IITA GS population. The genomically predicted performance of GS-era (purple) and historical (yel-
low) clones relative to a multi-trait selection index (y-axis) is plotted against the year when each clone was first generated (x-axis). C, Field trial
showing variability for one of the major future challenges to cassava: drought. The top image shows plants 3 months after planting, under irriga-
tion at Petrolina (Pernambuco, Brazil). The bottom image shows plants 3 months later under water deficit.
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soybean, elevated CO2 caused a decrease in seed Fe and Zn
concentrations (as previously observed), while elevated tem-
perature had the opposite effect; but the combined effect of
elevated temperature and CO2 restored seed Fe and Zn con-
centrations (Köhler et al., 2019). A similar compensating ef-
fect of elevated temperature on the carbon nutrient penalty
was also observed in rice and wheat (Guo et al., 2022).
Under uniform global temperature increases, the carbon nu-
trient penalty may therefore be expected to disappear.
However, rising global temperatures will not be uniform
across the globe, with different regions experiencing different
levels of warming. Predicting if elevated temperatures will
balance nutrient loss due to elevated CO2 may be more
complex and uncertain.

Improved access to diverse diets, comprising more
nutrient-dense foods, can play a role in alleviating hidden
hunger. However, access to micronutrient-adequate diets is
unlikely for many people in the coming decades, for socio-
economic reasons (Nelson et al., 2018). Geographical con-
straints to micronutrient availability in many food systems,
reported from recent GeoNutrition surveys, further com-
pound this challenge (Gashu et al., 2021). Interventions to
alleviate hidden hunger include supplements, food fortifica-
tion, and biofortification of staple crops through breeding
and agronomy. Zn-biofortified wheat varieties released in
India and Pakistan (Zia et al., 2020; Govindan et al., 2022),
and Zn-biofortified hybrid maize varieties in Guatemala and
Colombia (Maqbool and Beshir, 2019) can increase grain Zn
concentration by more than the anticipated decreases due
to elevated CO2. The continued development of crops that
can reliably accumulate sufficient quantities of mineral
nutrients against a backdrop of climate change is an impor-
tant part of this solution. The use of micronutrient fertilizers
(Joy et al., 2017) and “regenerative” agricultural interventions
(Manzeke-Kangara et al., 2021) can also play a role in reduc-
ing hidden hunger.

Our understanding of mineral nutrient homeostasis in
plants is extensive, with over 176 genes identified to date
(Whitt et al., 2020), but far from complete. Of these known
genes, over 80 are characterized as ion transporters, many of
which were investigated based on their predicted function
as transmembrane proteins. High-throughput elemental
analysis of plant material, also known as ionomics (Salt
et al., 2008), has proved to be a powerful forward genetic
screening tool that allows the discovery of genes involved in
mineral nutrient homeostasis and the study of natural ge-
netic variation in the system (Huang and Salt, 2016). This
approach highlights the critical importance of the Casparian
strip in the endodermal cell wall in controlling mineral nu-
trient homeostasis (Hosmani et al., 2013; Pfister et al., 2014;
Kamiya et al., 2015; Reyt et al., 2020, 2021; Alcock et al.,
2021). Ionomics has also revealed a global pattern of natural
variation in the leaf and seed ionome of Arabidopsis
(Campos et al., 2021), and in rice (Pinson et al., 2015), barley
(Houston et al., 2020), soybean (Ziegler et al., 2018), common
bean (Phaseolus vulgaris; Nazir et al., 2022), peanut (Zhang

et al., 2019), and wheat (Gardiner et al., 2018). The applica-
tion of genome-wide association mapping to this variation
has led to the identification of genes controlling variation in
numerous elements (Baxter et al., 2010; Chao et al., 2012,
2014; Forsberg et al., 2015; Yang et al., 2018). Ecological stud-
ies are starting to reveal the adaptive benefit of this variation
for coastal populations (Busoms et al., 2018, 2021).

Soil microbiota contributes to the biogeochemical cycling
of elements, soil regeneration, and plant and animal growth
and productivity (Custódio et al., 2022). In experiments with
Arabidopsis, the root microbiome was shown to control dif-
ferentiation of the endodermis, a diffusion barrier that
affects mineral nutrient homeostasis, through the repression
of responses to the phytohormone abscisic acid in the root
(Salas-González et al., 2021). However, these mechanisms
have not been evaluated under future elevated CO2 scenar-
ios. Elevated CO2 in the short term increases metabolic ac-
tivity and microbial biomass in the soil, with a concomitant
promotion of plant growth and root exudation, conditions
that reduce soil N content (Chen et al., 2014; Xiong et al.,
2015; Yu et al., 2018a). Thus, in the long-term, elevated CO2

is predicted to have a negative impact on the soil carbon cy-
cle, promoting the depletion of easily decomposed carbon
and increasing the degradation of mineralized SOC with a
net increase in atmospheric CO2 (Yang et al., 2019a).
Elevated CO2 influences microbial enzymatic activities for
phosphorus and N cycling but this effect changes depending
on the ecosystem (Naylor et al., 2020). We need to under-
stand microbiome stability in diverse ecological contexts,
considering spatial resolution, microbial connectivity, and
multi-kingdom composition. This will allow us to feed cur-
rent models with realistic experimental data to predict the
impact of climate changes on soil microbial populations and
their interactions with plants, helping us to develop
microbial-based strategies to alleviate climate change
impacts on soil and food production.

Can we achieve a biomass-based
bioeconomy?

(By Maureen C. McCann and Nicholas C. Carpita)

Gross domestic product, a measure of economic prosperity,
is tightly correlated with energy consumption. Fossil fuels
accounted for 80% of global energy resources in 2020. Coal
and gas can eventually be displaced by renewable energy
from wind and solar, geothermal and hydroelectric, and nu-
clear energy (U.S. Department of Energy, 2015). Oil, however,
provides both liquid transportation fuels and raw materials
for the petrochemical industry. As addressing climate change
becomes increasingly urgent, we now need to shift from oil
derived from long-dead organisms to living organisms that
can provide chemicals, fuels, and materials (Carpita and
McCann, 2020). In this section, we imagine a biomass-based,
circular bioeconomy, enabled by recombinant DNA technol-
ogies, with the potential to decouple our prosperity from
fossil fuel consumption (National Academies of Science,
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Engineering, and Medicine, 2020). To succeed, this bioecon-
omy must be fully rooted in plant biology.

Natural and engineered oil-accumulating plants and
microalgae, such as cyanobacteria, are an important source
of liquid hydrocarbons for use as fuel components. To ad-
dress how plants can displace a significant proportion of oil
consumption also requires use of the sugars and aromatics
derived from plant cell walls (McCann and Carpita, 2015).
Electric and hybrid vehicles powered by renewable energy
sources are becoming viable long-term options for light
ground transportation (U.S. Department of Energy, 2015).
However, air, marine, and heavy-duty modes of transporta-
tion, which contribute one-third of US transportation GHG
emissions, will remain dependent upon energy-dense, liquid-
hydrocarbon fuels for decades because of slow fleet turn-
over: aircraft, for example, have a service lifetime of 25–30
years. Advanced biofuels, fully compatible with existing
engines and transportation infrastructure, can include liquid
hydrocarbons produced by chemical or enzymatic catalytic
conversion of biomass-derived sugars and aromatics (Huber
et al., 2003; Wang et al., 2014).

Plant-based biofuels also offer the potential for the pro-
duction of valuable chemical co-products. Decades of re-
search have overcome the technological barriers to the
production of cellulose-derived glucose and, more recently,
lignin-derived aromatics. As a result of new deconstruction
technologies that preserve aromatic ring structures (Bozell
et al., 2011; Labbé et al., 2012; Parsell et al., 2013; Socha
et al., 2014), lignin is no longer a major source of biomass
recalcitrance. Catalytic depolymerization of lignin has been
achieved without decomposition of cellulose or xylan, en-
abling the concept of the “lignin-first” biorefinery, where aro-
matic fuel substrates are removed before cellulose and other
carbohydrates are processed (Ragauskas et al., 2014;
Schutyser et al., 2015; Key and Bozell, 2016; Yang et al.,
2019b). To produce hydrocarbon fuels, deoxygenation reac-
tions must proceed to full chemical reduction, but for
chemical products, reactions must necessarily be highly se-
lective to preserve desirable functional chemical groups. The
petroleum industry produces a handful of platform chemi-
cals from oil, including ethylene, propylene, C4-olefins, ben-
zene, toluene, and xylene, that are oxygenated to make tens
of thousands of chemicals (Wang et al., 2014; Parsell et al.,
2015). Plants synthesize highly oxygenated polymers, and
the chemical moieties in these structures hold tremendous
value as useful building blocks for chemical co-products.
Pathways that employ lignin-derived aromatics as substrates
to replace commodity chemicals have been envisioned using
either enzymatic or chemical catalysis (Wellisch et al., 2010;
Zakzeski et al., 2010). Controlled fractionation of biomass
with downstream catalytic upgrading provides several value-
added streams for the major biomass components: xylans to
furfural (Vinueza et al., 2015), lignin to aromatics and dicar-
boxylic acids (Zeng et al., 2015), and cellulose to hydroxyme-
thylfurfural (Hewetson et al., 2016).

The diversity of plant metabolism, natural and engineered,
also provides a foundation for engineering biology to create
economic value. Living plant cells synthesize between
100,000 and 1 million kinds of molecules (Fang et al., 2019).
Making natural or synthetic products directly in plants can
take advantage of orders-of-magnitude greater metabolic
complexity and potential product yields than can be
achieved in microbial chassis organisms. Efficient production
of target compounds in plants will require a systems-level
understanding of metabolism and constraints, including
tradeoffs between carbon fluxes and cellular energy
balances.

The structural complexity of plant cell wall components
can provide oligomeric and polymeric substrates for materi-
als such as thermosets, thermoplastics, composites, cellulose
nanocrystals, and nanofibers. Thermoset materials include
epoxy, silicone, and polyurethane. Lignin- and carbohydrate-
derived monomers have been incorporated into polymers to
create new bio-based materials with improved performance
characteristics compared to fossil fuel-derived thermoset
materials (Zhao and Abu-Omar, 2015; Jiang et al., 2018;
Chen et al., 2019). Poplar fibers have also been directly in-
corporated into composites with polylactic acid as a replace-
ment for conventional carbon nanofibers that reinforce
polymers for large-scale 3D printing applications (Zhao
et al., 2019). In contrast to thermosets, thermoplastics can
be melted, and some of their monomers may be recycled.
The entire pathway to polyhydroxybutyrate was engineered
in cotton over 25 years ago (John and Keller, 1996), and
more recently in the bioenergy crop switchgrass (Panicum
virgatum) (Somleva et al., 2008). Routes for the biological
synthesis of polyhydroxyurethane have been envisioned
(Nohra et al., 2013). When pulped wood particles are
treated with acids, cellulose nanocrystals, and cellulose nano-
fibers are recovered, derivatives of which are used for several
kinds of synthetic materials as replacements for plastics
(Moon et al., 2011; Zhu et al., 2016).

Maximizing the recovery of biomass carbon into fuels and
co-products requires flexible design capabilities to produce
cell wall architectures that can be easily and completely
deconstructed for current and future conversion processes
(McCann and Carpita, 2015). As robust cell wall architec-
tures are integral to plant growth and development, genetic
variants that are tailored with regard to biomass quality for
conversion processes must not be compromised for yield or
sustainability traits in field performance. Major knowledge
gaps include how biosynthetic products are integrated into
composite structures, how their individual structural com-
plexities contribute to molecular- to macro-scale architec-
tures, and how cell wall architectures might be redesigned
for production of high-value products (Carpita and
McCann, 2020).

Material use is tightly coupled to energy use, GHG emis-
sions, land and water use, and waste flows. About one-third
of global GHG emissions comes from industrial manufactur-
ing. To decarbonize this economic sector will require
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changing the means of manufacture as well as the nature of
material inputs (Chui et al., 2020). We might imagine how
to build simplified production systems with the components
of plant cells or make biohybrid materials outside an intact
organism. We might imagine designing plants to synthesize
homopolymers, heteropolymers and composite materials,
displacing structural concrete and steel with new materials
like superwood (Chen et al., 2020), or developing new-to-
nature materials with advantageous properties.

Food security is a paramount concern and there are land
use issues to consider in raising crops for nonfood versus
food production. Nonfood cash crops, such as—tradition-
ally—cotton (Gossypium hirsutum), tobacco, hemp, hops
(Humulus lupulus), and biofuel feedstocks, to name just a
few, can be of considerable value to growers and mitigate fi-
nancial risk. The diversification of food and nonfood plant
products within a single cropping system, or a single crop,
coupled with principles of sustainability and climate change
resilience, could thus be an advantage toward achieving
both food and energy security. The decarbonization of agri-
culture could include the use of bioenergy crops to displace
fossil fuels as a source of hydrogen for ammonia production
(Gencer et al., 2020) as well as displacement of fossil fuels
for harvesting and drying.

In the USA, an annual sustainable resource of over 1.6 bil-
lion tons of lignocellulosic biomass could be considered a
strategic carbon reserve (U.S. Department of Energy, 2016).
This quantity of biomass represents double the entire an-
nual output of the US agricultural system—grains, fruits,
vegetables, hay, and pasture grasses. To double or triple the
capacity of the current agricultural system for a biomass-
based bioeconomy, additional acres must be brought into
production, all crops must be high-yielding, and growers
must benefit from diversification of plant products.

Conclusions
We presented examples of some plant biology-based solu-
tions that we believe show promise toward enhancing ter-
restrial carbon sequestration and engineering climate
resilient crops. Although we addressed several disparate
topics, a few overarching conclusions emerge.

Innovation
Some of the ideas described here may seem far-fetched to
today’s readers, but we believe that for our planet to remain
inhabitable and sustainable, many of the ideas proposed
here—or others like them—will need to be realized, and we
will need plant scientists to help achieve them.

Collaboration
By definition, efforts to mitigate global climate change must
be large scale. Plant scientists contributing meaningfully in
this arena most likely will be those who seek out effective
collaboration—not only with other plant scientists but also
with those in other disciplines, including for example agron-
omy, bioinformatics, data science, engineering, forestry, and

soil science. Improved communication and collaboration
across disciplines and between academia and industry can
also be viewed as a low-tech effort that can have a strong
impact. Identifying and seeking out potential collaborators
who can link the research to impactful pathways should be
a primary goal early in the planning stages of research proj-
ects for maximum benefit. Socio-economic and political per-
spectives will also be crucial in determining which
approaches will be adopted and how quickly they will be
implemented. Networking, discussion, and collaboration in
the socio-political arena and with industry, governmental,
and nongovernmental organizations may also be crucial.

Implementation
Many current practices have substantial potential for miti-
gating CO2 emissions, including reducing food and agricul-
tural waste, shifting to plant-based diets, reducing
deforestation coupled with afforestation/reforestation, and
restoring coastal wetlands. Some technological solutions also
have potential in the shorter term, including direct air cap-
ture, biochar, enhanced rock weathering, and bioenergy
combined with carbon capture and storage. To date, none
of these options has been implemented globally due to cost,
timeline, inefficiency, lack of scalability, or an uncertain and
evolving carbon price and market. Estimates for the poten-
tial of available technologies vary widely and will depend on
the ability of nations to realize effective measures (Roe et al.,
2019). We have explored ways that plant science can help
to tip the balance toward enhanced climate change mitiga-
tion and crop resilience. The section on enhancing carbon
capture and sequestration in annual cropping systems
speaks to our immediate needs for carbon capture on a
massive scale and the possibility that plant scientists can
achieve a meaningful impact in this arena.

Some of the goals of examples discussed may require years
to realize fully, such as engineering C4 photosynthesis into
rice, symbiotic N fixation into cereals, and crops that pro-
duce a variety of synthetic products. Although time is press-
ing, this does not make them unworthy of attention. First,
aspects of these longer-term goals may provide significant
benefits in the short term, and second, the need for carbon
capture and enhancing crop resilience and food security will
continue in the future. The need is urgent for every plant bi-
ologist to consider today how their research can contribute
to addressing climate change, ensuring food security, and
achieving a sustainable biomass-based bioeconomy.
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Prohens J, Plazas M (2020) Physiological and biochemical
responses to salt stress in cultivated eggplant (Solanum melongena
L.) and in S. insanum L., a close wild relative. Agronomy 10: 651
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Manderscheid R, Bender J, Jäger H-J, Weigel HJ (1995) Effects of
season long CO2 enrichment on cereals. II. Nutrient concentra-
tions and grain quality. Agric Ecosyst Environ 54: 175–185

Mano YO, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005)
Identification of QTL controlling adventitious root formation dur-
ing flooding conditions in teosinte (Zea mays ssp. huehuetenan-
gensis) seedlings. Euphytica 142: 33–42

Mano YO, Omori FU, Takamizo TA, Kindiger B, Bird RM, Loaisiga
CH (2006) Variation for root aerenchyma formation in flooded
and non-flooded maize and teosinte seedlings. Plant Soil 281:
269–279

Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM,
Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A, et
al. (2017) Rice SNP-seek database update: new SNPs, indels, and
queries. Nucleic Acids Res 45: D1075–D1081

Manzeke-Kangara MG, Joy EJM, Mtambanengwe F, Chopera P,
Watts MJ, Broadley MR, Mapfumo P (2021) Good soil manage-
ment can reduce dietary zinc deficiency in Zimbabwe. CAB Agric
Biosci 2: 36

Maqbool AM, Beshir A (2019) Zinc biofortification of maize (Zea
mays L.): status and challenges. Plant Breed 138: 1–28
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Kendrick GA, Althuizen IH, Balestri E, Bernard G, Cambridge
ML, et al. (2016) Global analysis of seagrass restoration: the impor-
tance of large-scale planting. J Appl Ecol 53: 567–578.

Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y,
Crews TE, Gansberger M, Gerstberger P, González-Paleo L,
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