Progressione del ciclo cellulare

Nella maggior parte dei tessuti adulti le cellule sono in uno stato di arresto del ciclo cellulare definito GO. Tale fase può essere transiente (quiescenza) o permanente (differenziamento terminale o senescenza). Le cellule quiescenti possono essere indotte a ri-entrare nel ciclo cellulare in seguito a stimolazione da parte di fattori mitogenici. La maggior parte di questi fattori attiva una cascata di segnalazione intracellulare che culmina con l'attivazione delle chinasi ciclina dipendenti CDK4/6 che in seguito ad attivazione favoriscono la progressione del ciclo cellulare dalla fase G0/G1 alla fase S. L'attivazione delle CDK4/6 è controllata

L'attivazione delle CDK4/6 è controllata positivamente dall'associazione con le cicline D (D1-D3).

Regolazione della fase G1/S del ciclo cellulare

I complessi CDK4/6 attivati fosforilano diversi substrati fra cui il più importante è la proteina oncosoppressore retinoblastoma (RB codificato da *RB1*).

Nelle cellule quiescenti e durante la fase G1 precoce la proteina Retinoblastoma (Rb) si trova in uno stato ipofosforilato che la rende capace di legare i fattori trascrizionali E2F bloccando la loro funzione.

La forma iperfosforilata di pRB non è in grado di legare i fattori E2F che sono così in grado di attivare la trascrizione di molti geni coinvolti nella progressione del ciclo cellulare dalla fase G1 alla fase S.

La fosforilazione di pRB è mediata inizialmente dai complessi CD4/6 cicline D e successivamente dai complessi CDK2/cicline E.

Regolazione della fase G1/S del ciclo cellulare

Le cicline E si associano alla CDK2 attivandola. Il complesso CDK2-ciclina E fosforila completamente Rb che rilascia il fattore E2F con conseguente trascrizione dei geni necessari alla sintesi del DNA e alla progressione della cellula nella fase S.

Mutazioni nei geni codificanti

Componenti dei complessi CDK cicline della fase G1 sono frequentemente mutati nei tumori umani. Il gene delle cicline D è spesso amplificato nei tumori umani. Il gene *CDK4* è amplificato nel 50% dei glioblastomi mentre presenta una mutazione puntiforme che impedisce l'interazione con gli inibitori della famiglia INK4 causando l'attivazione della chinasi nei melanomi.

Oncogeni

		Modalità di	
Categoria	Proto-oncogene	attivazione	Tumore umano associato
Fattori di crescita			
PDGFb	PDGFB	Iperespressione	Astrocitoma
Fattori di crescita fibroblastici	HST1 FGF3	Iperespressione Amplificazione	Osteosarcoma Tumore dello stomaco Tumore della vescica Tumore della mammella Melanoma
TGFa	TGFA	Iperespressione	Astrocitomi
HGF	HGF	Iperespressione	Carcinomi epatocellulari Tumore della tiroide
Recettori per fattori di crescita			
Famiglia dei recettori dell'EGF	ERBB1 (EGFR)	Mutazione	Adenocarcinoma polmonare
	ERRB2 (HER)	Amplificazione	Carcinoma della mammella
Tirosin-chinasi 3 FMS-simile	FLT3	Mutazione puntiforme o piccole duplicazioni	Leucemia
Recettore per i fattori neurotrofici	RET	Mutazione puntiforme	Neoplasie endocrine multiple di tipo 2A e B, carcinomi midollari familiari della tiroide
Recettore per il PDGF	PDGFRB	Amplificazione, traslocazione	Gliomi, leucemie
Recettore per il ligando KIT	KIT	Mutazione puntiforme	Tumori stromali gastrointestinali, seminomi, leucemie
Recettore per ALK	ALK	Traslocazione, mutazione puntiforme	Adenocarcinoma del polmone, alcuni linfomi Neuroblastoma
Proteine coinvolte nella trasdu	zione dei segnali		
Leganti GTP (G)	KRAS HRAS NRAS GNAQ GNAS	Mutazione puntiforme Mutazione puntiforme Mutazione puntiforme Mutazione puntiforme Mutazione puntiforme	Tumori del colon, del polmone e del pancreas Tumori della vescica e del rene Melanomi, neoplasie ematologiche Melanoma uveale Adenoma della ghiandola pituitaria, altri tumori endocrini
Tirosin-chinasi non recettoriale	ABL .	Traslocazione	Leucemia mieloide cronica Leucemia linfoblastica acuta
Trasduzione del segnale RAS	BRAF	Mutazione puntiforme	Melanomi, leucernie, carcinoma del colon, altro
Trasduzione del segnale Notch	NOTCH1	Mutazione puntiforme, traslocazione	Leucemie, linfomi, carcinomi della mammella
Trasduzione del segnale JAK/STAT	JAK2	Mutazione puntiforme, traslocazione	Malattie mieloproliferative Leucemia linfoblastica acuta
Proteine di regolazione nuclea	re		
Attivatori trascrizionali	MYC N-MYC	Traslocazione Amplificazione	Linfoma di Burkitt Neuroblastoma
Regolatori del ciclo cellulare			
Cicline	CCND1 (ciclina D1)	Traslocazione Amplificazione	Linfoma mantellare, mieloma multiplo Tumore della mammella e dell'esofago
Chinasi ciclina-dipendente	CDK4	Amplificazione o mutazione puntiforme	Glioblastoma, melanoma, sarcoma

Il danno genetico che attiva gli oncogeni

Il danno genetico che attiva gli oncogeni può essere minimo e quindi includere mutazioni puntiformi o può essere esteso. Tutti i tipi di riarrangiamento cromosomico (traslocazioni, inversioni, amplificazioni e delezioni) possono attivare proto-oncogeni. Le traslocazioni cromosomiche sono il meccanismo più comune. Un esempio è il linfoma di Burkitt in cui avviene la traslocazione fra il cromosoma 8q24 dove risiede il gene MYC sul cromosoma 14q32 dove si localizza il gene codificante la catena pesante delle Immunoglobuline.

Il danno genetico che attiva gli oncogeni

NMYC, normalmente prisente sul cromosoma 2p, è amplificazio e si presenta sotto forma di particelle duplicate extracromosomiche (double minutes) o di regioni uniformemente colorate (HSR, Homogeneous Staining Region) integrate nel cromosoma. L'integrazione può coinvolgere altri autosomi, quali i 4, il 9 o il 13. (Modificata da Brodeur GM: Molecular correlates of cytogenetic abnormalities in human canoer celli: implications for oncogene activation. In Brown EB (editor) Progress in Hematology, vol 14. Orlando, Fla, Grune & Stratton, pp. 229-256.) L'iperespressione di oncogeni può essere causata da duplicazioni e amplificazioni delle loro sequenze di DNA. I geni amplificati possono dare origine a strutture multiple extracromosomiche chiamate particelle duplicate o a regioni a colorazione omogenea che derivano dall'inserimento dei geni amplificati in nuove collocazioni cromosomiche che possono essere distanti dalla collocazione normale.

Insensibilità ai segnali di inibizione della crescita

Table 1. Representative Tumor Suppressor Genes					
Gene	Function	Familial Cancer Association	Other Major Tumor Types		
p53	Transcription factor	Li-Fraumeni syndrome	>50% of cancers		
RB	Transcriptional corepression	Retinoblastoma	Many		
INK4a (p16)	Cdk inhibitor (RB activation)	Melanoma	Many		
ARF	Mdm2 antagonist (p53 activation)	Melanoma	Many		
APC	Wnt/Wingless signaling	Familial adenomatous polyposis	Colorectal cancer		
PTCH	Hedgehog signaling (receptor)	Basal cell nevus (Gorlin) syndrome	Medulloblastoma, basal cell carcinoma, rhabdomyosarcoma		
SMAD4/DPC4	TGF-β signaling (Transcription factor)	Juvenile polyposis (hamartomas)	Pancreatic and colon cancer		
PTEN	Lipid phosphatase (phosphoinositide metabolism)	Cowden syndrome	Glioblastoma, endometrial, thyroid, and prostate cancers		
TSC1,2	GTPase activating protein complex (mTOR inhibition)	Tuberous sclerosis (hamartomas)	Renal cell carcinoma (rare), angiofibromas		
NF1	GTPase activating protein for Ras	Neurofibromatosis	Sarcomas, gliomas		
WT1	Transcription factor	Wilm's tumor			
MSH2 and MLH1	DNA mismatch repair	Hereditary nonpolyposis colorectal cancer (Lynch syndrome)	Endometrial, gastric, ovarian, bladder cancer		
ATM	DNA damage sensor (protein kinase)	Ataxia telangiectasia (T-cell lymphoma)	Lymphoreticular malignancies		
NBS1	DNA repair, S phase checkpoint control	Nijmegen breakage syndrome (T cell lymphoma)	Lymphoreticular malignancies		
CHK2	Protein kinase (G1 checkpoint control)	Li-Fraumeni syndrome			
BRCA1, BRCA2	DNA repair	Familial breast and ovarian cancer			
FA genes	DNA repair, S phase checkpoint	Fanconi Anemia	Acute myelogenous leukemia		
VHL	E3 ligase recognition factor for HIFα	Von Hippel-Lindau syndrome	Renal cell carcinoma, cerebellar hemangiosarcoma		

La scoperta delle mutazioni in geni codificanti proteine che regolano la proliferazione e il differenziamento cellulare ha fornito le basi molecolari per spiegare l'alterato comportamento delle cellule tumorali.

La scoperta degli oncogeni attivati, geneticamente dominanti aveva fatto ipotizzare l'esistenza di anti-oncogeni in grado di bloccare lo sviluppo del tumore.

Ad oggi sono stati identificati diversi geni oncosoppressori.

Le caratteristiche degli onco-soppressori classici sono:

- essere recessivi e inattivati in entrambi gli alleli nei tumori
- l'ereditarietà di un singolo allele mutato accelera lo sviluppo dei tumori
- lo stesso gene è inattivato nei tumori sporadici

Figure 1. Acquired Capabilities of Cancer

We suggest that most if not all cancers have acquired the same set of functional capabilities during their development, albeit through various mechanistic strategies.

Retinoblastoma

Figura 5.21 Patogenesi del retinoblastoma. Due mutazioni a livello del locus RB sul cromosomico 13q14 determinano la proliferazione neoplastica delle cellule della retina. Nella forma familiare, tutte le cellule somatiche ereditano un gene RB mutato da un genitore portatore. La seconda mutazione avviene a livello del locus RB in una cellula della retina dopo la nascita. Nella forma sporadica, entrambe le mutazioni del locus RB sono acquisite dalle cellule retiniche dopo la nascita.

Il gene del retinoblastoma *RB* è stato il primo gene oncosoppressore ad essere identificato.

Il retinoblastoma è un tumore maligno dell'occhio che si sviluppa a partire dalla cellule della retina. Il retinoblastoma si manifesta quasi esclusivamente nei bambini di età inferiore ai 4-5 anni. Nella maggior parte dei casi compare nel corso del primo anno di vita.

Questo tumore è causato da mutazioni del gene RB ed esistono forme ereditarie e sporadiche di questo tumore. Knudson, un pediatra e oncologo americano studiando le forme ereditarie di retinoblastoma notò che queste forme che avevano un esordio precoce erano caratterizzate dallo sviluppo di tumori in entrambi gli occhi mentre le forme sporadiche colpivano un solo occhio e apparivamo più tardi. L'oncologo ipotizzò per primo che nelle forme ereditarie di retinoblastoma una copia del gene è mutata nelle cellule sessuali mentre l'altra copia acquisisce mutazioni nelle cellule somatiche nei primi anni di vita.

Nelle forme sporadiche gli individui nascono con gli alleli normali e acquisiscono successivamente le mutazioni nelle cellule somatiche per questo l'esordio è molto più tardivo.

Retinoblastoma

Il 40% dei retinoblastomi è familiare. Il restante 60% è sporadico. Il retinoblastoma è causato dalla inattivazione di entrambi gli alleli del gene codificante Rb. L'incidenza di Retinoblastoma è di 1/17000 nati vivi.

Retinoblastoma è una proteina di 928 aa che presenta tre domini: i domini N- e C-terminali e il dominio pocket (RBP). Questa famiglia include pRb, p130, p107. Queste molecole presentano una tasca «pocket region» in cui è stata identificata una regione in grado di interagire con la proteina virale E7 di HPV. La «large pocket» che include la pocket region e la porzione Cterminale rappresenta la regione di interazione con i fattori E2F.

La proteina Rb legandosi ai fattori E2F ne inibisce l'attività trascrizionale.

La famiglia di fattori E2F include 9 proteine di cui alcune attivatorie e altre inibitorie. E2F1, E2F2 e E2F3a attivano la trascrizione.

Retinoblastoma

■ From 7.17 Fattore di trascrizione E2F e progressione $G_1 \rightarrow S$. In assenza di segnali che promuovono la proliferazione cellulare, quali ad esempio fattori di crescita, pRb non è fosforilata dai complessi Cdk-ciclina e può legare il fattore di trascrizione E2F-DP1. (a) In questo modo pRb posiziona sui promotori legati da E2F-DP1 enzimi modificatori della cromatina quali le HDAC che causano la repressione della trascrizione a causa del compattamento locale della cromatina. Questa condizione appena descritta è quella di una cellula nella fase G_0 del ciclo cellulare. (b) Segnali che portano all'attivazione del complesso Cdk-ciclina innescano la fosforilazione di pRb ed il suo distacco da E2F-DP1. In questo modo la cromatina è meno compatta e l'RNA polimerasi può iniziare a trascrivere i geni sotto il controllo di E2F.

Funzione di retinoblastoma

Nelle cellule quiescenti pRB è associato ai complessi E2F-DP sui promotori di geni necessari per l'entrata della cellula in fase S.

RB recluta enzimi modificatori della cromatina come HDAC causando un compattamento della cromatina ed una inibizione della trascrizione da parte di E2F. In seguito a fosforilazione RB si distacca da E2F-DP

permettendo la trascrizione dei geni bersaglio di E2F.

I complessi pRb/E2F sono repressori trascrizionali

Una funzione importante di pRb è di inibire la sintesi del DNA. Nelle cellule a riposo pRb non è fosforilata ed è complessata con i fattori trascrizionali E2F che consistono di un membro della famiglia E2F (E2F 1-6) e una molecola partner DP (DP-1 o DP-2). I complessi E2FpRb sono dei repressori che bloccano l'espressione di geni necessari per la replicazione del DNA e per la progressione della cellula nel ciclo cellulare.

pRB e la progressione del ciclo cellulare

la fase G1 i fattori di crescita Durante l'assemblaggio dei complessi promuovono CDK4/6 ciclina D che fosforilano la famiglia della proteine RB. La fosforilazione di RB in diversi siti porta alla dissociazione di pRB da E2F attivando la trascrizione di geni bersaglio fra cui le cicline E. L'associazione delle cicline E con la CDK2 contribuisce alla ulteriore fosforilazione di pRB promuovendo il rilascio dei fattori E2F e la trascrizione dei geni bersaglio. In questo modo viene assicurato un livello di complessi ciclinaE/CDK2 sufficiente a mantenere RB fosforilata indipendentemente dallo stimolo da parte dei fattori mitogenici.

Cambiamento conformazionale indotto dalla fosforilazione di pRB

RbN= dominio N-terminale RbIDL= regione linker fra i domini RbPL= regione linker fra le pocket RbC= dominio C terminale

Cambi conformazionali indotti dalla fosforilazione di pRB che impediscono la formazione del complesso Rb–E2F^{TD}. La fosforilazione della serina S608 media il legame del RbPL con il dominio pocket impedendo il legame fra pRb e E2F^{TD}. La fosforilazione della treonina T373 induce una associazione fra i domini di pRb che inibisce il legame con E2F^{TD}.

Ruolo di Rb

La proteina Rb è soggetta a fosforilazione durante la divisione cellulare.

Rb è defosforilata alla fine della mitosi e resta ipofosforilata fino alla successiva metà della fase G1 e nella fase tardiva quando viene fosforilata dai complessi CDK4/6-CycD e successivamente dai complessi CDK2-CycE..

Il ruolo di pRb ipofosforilata nel limitare la proliferazione agendo da oncosoppressore è stato ulteriormente dimostrato dall'evidenza che la funzione di soppressione della proliferazione viene inattivata in seguito al legame con oncoproteine virali come la proteina E7 del virus HPV.

Disregolazione di Rb nei tumori umani

Rb 13 q 14 Nucleus Transcriptional regulator Retinoblastoma, osteosarcoma, osteosarcoma Retinoblastoma, osteosarcoma K Nucleus Transcriptional regulator Retinoblastoma, osteosarcoma, osteosarcoma osteosarcoma, osteosarcoma K Nucleus Nucleus Transcriptional regulator Retinoblastoma, osteosarcoma osteosarcoma K Nucleus Nucleus Nucleus Nucleus Nucleus osteosarcoma, osteosarcoma K Nucleus Nucleus Nucleus Nucleus Nucleus Nucleus K Nucleus Nucleus Nucleus Nucleus Nucleus Nucleus	Gene	Chromosomal location	Cellular location	Mode of action	Neoplasm associated with somatic mutation	Neoplasm associated with inherited mutation
	Rb	13 q 14	Nucleus	Transcriptional regulator	Retinoblastoma, osteosarcoma, carcinomas of breast, prostate, bladder and lung	Retinoblastoma, osteosarcoma

Mutazioni di Rb impediscono il controllo del ciclo cellulare e contribuiscono alla trasformazione neoplastica.

I componenti della via CDK4/6-pRB sono comunemente mutati nei tumori umani

Componente del ciclo cellulare	Funzione principale				
Cicline e chinasi ciclina-dipendenti					
CDK4; D cicline	Forma un complesso che fosforila RB, permettendo alla cellula di progredire attraverso il punto di restrizione di G ₁				
Inibitori del ciclo cellular	re				
Famiglia CIP/KIP: p21, p27 (CDKN1A-D)	 Bloccano il ciclo cellulare legando i complessi ciclina-CDK p21 è indotta dall'oncosoppressore p53 p27 risponde ai soppressori della crescita come il TGFβ 				
Famiglia INK4/ARF (CDKN2A-C)	p16/INK4a si lega al complesso ciclina D-CDK4 e promuove gli effetti inibitori di RB p14/ARF aumenta i livelli di p53 inibendo l'attività di MDM2				
Oncosoppressori					
RB	Proteina oncosoppressiva "pocket" che si lega ai fattori di trascrizione E2F in stato di ipofosforilazione, evitando così la transizione G ₁ /S;				
	Interagisce con fattori di trascrizione che regolano il differenziamento				
p53	Oncosoppressore alterato nella maggior parte dei tumori Indotta da danno del DNA Causa l'arresto del ciclo cellulare tramite upregulation dell'inibitore p21 della CDK Induce l'apoptosi tramite upregulation di BAX e di altri geni pro-apoptotici				

Nella maggior parte delle neoplasie almeno uno dei 4 regolatori chiave del ciclo cellulare (p16/INK4a, ciclinaD, CDK4, RB) è deregolato.

La perdita di controllo sul ciclo cellulare normale è fondamentale per la trasformazione tumorale.

Anche le proteine trasformanti di diversi virus oncogeni come l'E7 dell'HPV umano si legano a RB attraverso la tasca utilizzata per legare i fattori E2F. Il legame di E7 a RB lo inattiva rilasciando i fattori E2F determinando la progressione del ciclo cellulare.

Altri meccanismi di azione di Rb

Nella forma più semplice pRb funziona nel nucleo dove lega E2F reprimendo i promotori di diversi geni. In seguito ad inattivazione mediante fosforilazione libera i fattori E2F permettendo la trascrizione di un insieme di geni necessari per iniziare la fase S (es: DNA polimerasi, ciclina E, ciclina A)

Diversi altri meccanismi di azione sono stati descritti per Rb fra cui la capacità di reclutare diversi tipi di corepressori e di associarsi ad altri fattori di trascrizione.

Inoltre pRb ha funzioni indipendenti dalla trascrizione come la capacità di stabilizzare p27.

Figure 2. pRB has multiple mechanisms of action. (A) Shortly after the discovery of the interaction between RB and E2F, the model for pRB's mechanism action was relatively simple: pRB acts in the nucleus, where it associates with E2F complexes and represses promoters. Initially, the mechanism of repression was not known, and E2F targets were thought to be regulated in much the same way. (B) An updated model illustrating several of the layers of complexity that have been added to pRB's mechanism of action over the past two decades. Note that pRB recruits several different types of corepressors to E2F targets (depicted in red and pink), and, under certain conditions, E2F/RB complexes associate with coactivator complexes (green) and increase transcription of some targets. pRB does not act solely at E2F-binding sites but also associates with several transcription factors in addition to E2F. pRB has transcription-independent activities in the nucleus (illustrated here by its association with Skp2) and in the cytosol, where it associates with mitochondria.

L'oncosoppressore p53 il guardiano del genoma

La proteina p53 è un importante oncosoppressore che è attivato nelle cellule in risposta a segnali di stress come il danno al DNA.

- l'inattivazione di p53 è presente in più del 50% dei tumori umani. Il restante 100% mostra alterazioni nei pathway che portano all'attivazione di p53 (amplificazioni di MDM2, perdita dell'attività chinasica di Chk2).
- gli individui affetti dalla Sindrome di Li-Frumeni che ereditano una mutazione nel gene TP53 in un allele sviluppano diversi tumori
- I tumori deficienti in p53 sono meno differenziati e sono più invasivi e metastatici
- La forma wildtype di p53 agisce da oncosoppressore. Per esempio la sua trasfezione in cellule di osteosarcoma deficienti nella p53 ne abroga le caratteristiche neoplastiche.

Sindrome di LiFraumeni

La sindrome di Li-Fraumeni (LFS) è una malattia rara a trasmissione autosomica dominante che colpisce il soggetto giovane e consiste in una predisposizione a sviluppare tumori diversi. I tumori più caratteristici sono gli osteosarcomi, i sarcomi dei tessuti molli, i tumori del seno nei soggetti giovani, le leucemie/linfomi, i tumori cerebrali e i tumori della corteccia surrenale; nulla impedisce, però, che si possano riscontrare tutti i tipi di tumore. In circa il 70% delle famiglie LFS è stata identificata una mutazione germinale del gene TP53. Come per il gene RB la trasmissione ereditaria di un allele mutato predispone le persone affette alla comparsa di tumori maligni.

La proteina p53 lega specifiche sequenze di DNA e funziona da fattore trascrizionale aumentando la trascrizione di specifici geni.

p53 è costituita da 393 aa e presenta 4 domini funzionali. All'NH terminale presenta un dominio di attivazione trascrizionale, seguito da un dominio ricco di proline; nella regione centrale un dominio di legame al DNA e nella regione C-terminale un dominio di oligomerizzazione e uno regolatorio.

p53 forma dei tetrameri e si lega in maniera sequenza specifica al DNA in siti che presentano motivi RRRCWWGYYY (R = A, G; W = A, T; Y = C, T) separati da 0–13 basi.

I geni regolati da p53 includono i geni codificanti per la proteina CIP/KIP p21, per le proteine appartenenti alla famiglia BCL2 come bax, noxa, puma e altri geni coinvolti nella apoptosi.

Il dominio di attivazione della trascrizione permette il legame di p53 con diversi cofattori ed è anche la regione che lega il regolatore negativo di p53, MDM2.

Il dominio ricco in proline è importante per la stabilizzazione di p53 e l'assenza di questo dominio causa l'esporto di p53 dal nucleo e la degradazione ubiquitina proteasoma mediata da MDM2.

Segnali attivanti p53

Diversi stress sono in grado di attivare p53 nel contesto dell'inizio o della progressione tumorale.

Gli stress includono: stress ossidativo, segnali iperproliferativi, danno al DNA.

Il ruolo più studiato di p53 riguarda l'arresto del ciclo cellulare e l'induzione di apoptosi in risposta al danno del DNA.

I livelli di P53 sono bassi nelle cellule in assenza di stress

Nelle cellule in assenza di segnali di stress p53 è presente a bassi livelli. P53 è legata alla proteina MDM2 nel dominio di attivazione della trascrizione e inoltre MDM2 agisce da ubiquitina ligasi mediando la degradazione di p53. In risposta a diversi stress p53 dissociata dal è suo regolatore MDM2 permettendo la sua stabilizzazione e attivazione.

I livelli cellulari di p53 aumentano in risposta a stress

In risposta a diversi stimoli di stress i livelli cellulari di p53 aumentano. Le vie che portano all'aumento di p53 includono oltre alla inibizione di MDM2, anche modificazioni posttraduzionali di p53 come la fosforilazione o l'acetilazione.

Le modificazioni posttraduzionali favoriscono il passaggio di p53 dalla forma inattiva a quella attiva che permette al dominio che lega il DNA di legare le regioni di DNA specifiche.

Processi e geni regolati da p53

P53 regola la trascrizione di circa 500 geni e in questo modo controlla diversi processi biologici. I geni regolati da p53 sono coinvolti nella apoptosi, l'arresto del ciclo cellulare, il riparo del DNA, la senescenza.

Attivazione di p53 in risposta al danno al DNA

Figure 1 General scheme of responses to DNA damage or replication-fork arrest and the impact on cell fate, genomic instability and cancer development. Replication-fork arrest stimulates the initiation of cellular ATR activity, whereas DNA damage can directly activate ATM and can lead to replication-fork arrest, thereby also activating cellular ATR kinase. Once active, both the ATM and ATR kinases, functioning in combination with other proteins and substrates, help determine the outcome of the cell. If genomic instability ensues, this can contribute to cellular transformation. Il ruolo più studiato e compreso di p53 riguarda l'arresto del ciclo cellulare e l'induzione di apoptosi in risposta al danno del DNA.

In risposta ad un danno al DNA è avviata una cascata di segnalazione che determina l'arresto del ciclo cellulare favorendo il riparo del danno al DNA. p53 viene indotta in risposta al danno al DNA quando le rotture del doppio o del singolo filamento di DNA reclutano rispettivamente le chinasi ATM, ATR, CHK2 e CHK1.

Queste chinasi fosforilano p53 promuovendone la stabilizzazione.

p53 è un substrato per ATM, ATR, CHK1 e CHK2 che fosforilando p53 abrogano la sua interazione con MDM2.

Checkpoint del ciclo cellulare in risposta al danno del DNA

In risposta alle rotture del doppio filamento del DNA viene reclutata la chinasi ATM che fosforila la chinasi CHK2. L'attivazione di CHK2 media l'arresto del ciclo cellulare attraverso l'inattivazione della fosfatasi CDC25 e la stabilizzazione di p53. p53 agisce principalmente attivando la trascrizione del gene codificante p21^{CIP/WAF1}.

Figure 3 A simplified scheme of cell-cycle checkpoint pathways induced in response to DNA damage (here DSBs), with highlighted tumour suppressors shown in red and proto-oncogenes shown in green. The proximal checkpoint kinases ATM and ATR phosphorylate diverse components of the network, either directly (red 'P') or through the transducing kinases CHK2 and CHK1 (black 'P'). (For simplicity, some candidate damage sensors and several ATM/ATR and CHK1/CHK2 substrates have been omitted.) The BRCA1 protein also contributes to cell-cycle arrest and DNA repair by homologous recombination, whereas p53 controls genes involved in cell death and DNA-repair mechanisms. The cell-cycle phase and the duration of the blockade affected by the effector pathways are indicated, including the potential permanent arrest (senescence), as mediated by p53. The global checkpoint network regulated by ATM/ATR and CHK2/CHK1 also affects cellular responses other than cell cycle progression, including DNA repair, transcription, chromatin assembly and cell death.

Arresto del ciclo cellulare mediato dal checkpoint di fase G1

B. G1 DNA damage checkpoint mediated cell cycle arrest

Induzione di apoptosi mediata da p53 in risposta a stress

Esperimenti *in vitro* avevano dimostrato che l'espressione di p53 in seguito a trasfezione in cellule tumorali induceva la morte per apoptosi.

Studi effettuati su topi *Trp53* knockout avevano dimostrato che i timociti e le cellule T di questi animali erano resistenti alla morte cellulare in seguito a danno al DNA indotto dal trattamento con radiazioni ionizzanti o chemioterapici (ciclofosfamide, cisplatino) confermato la capacità di p53 di indurre la morte cellulare.

Induzione delle via intrinseca della apoptosi

La ricerca dei geni coinvolti nella apoptosi mediata da p53 ha portato alla identificazione di *Noxa* e *Puma*.

Attraverso l'induzione dei geni codificanti per le proteine BH3 only PUMA e NOXA p53 media l'apoptosi indotta dalle radiazioni γ in diversi tipi cellulari.

Le proteine BH3 inducono l'apoptosi in seguito al legame e alla inibizione delle molecole antiapoptotiche della famiglia BCL-2 che permette l'azione dei membri pro-apoptotici BAX e BAK o attraverso l'interazione diretta con BAX e BAK.

L'attivazione di BAX e BAK determina la loro oligomerizzazione che causa la permeabilizzazione della membrana mitocondriale esterna (MOMP) con rilascio del citocromo c nel citoplasma. Il citocromo si lega alla proteina APAF (Apoptosis activating factor 1) formando l'apoptosoma che lega la caspasi 9 avviando la morte della cellula.

P53 regola l'espressione di componenti della via estrinseca dell'apoptosi

P53 regola anche l'espressione di molecole coinvolte nella via estrinseca dell'apoptosi. p53 induce i geni Fas/APO1 e KILLER/DR5 che portano all'espressione di due recettori di membrana, attivando la cascata delle caspasi e la morte cellulare.

P53 regola l'espressione di componenti dei processi di riparo del DNA

P53 regola l'espressione di geni coinvolti in diverse vie di riparo del DNA. Il nucleotide excision repair (NER) rimuove le lesioni che distorcono l'elica causate per esempio dai raggi UV. Il base excision repair (BER) rimuove le basi ossidate o alchilate che sono modificate dalle specie reattive dell'ossigeno (ROS) o da altri agenti. Le rotture del doppio filamento di DNA che sono causate dalle radiazioni ionizzanti sono riparate attraverso i

meccanismi di ricombinazione omologa o non-omologa. Il meccanismo di mismatch repair corregge l'eventuale inserzione errata di nucleotidi durante la duplicazione del DNA.

Oltre a favorire il riparo del DNA attraverso il blocco della progressione del ciclo cellulare p53 attiva trascrizionalmente i geni coinvolti in diversi pathway di riparazione del DNA.

Mutazioni hot spot nella p53

Più dell'80% delle mutazioni di p53 nei tumori umani sono localizzate nel dominio di legame il DNA con suggerendo che l'attività di fattore di trascrizione di p53 fondamentale è per la funzione di oncosoppressore. state identificate Sono posizioni aa in cui sono spesso presenti mutazioni che inattivano la proteina nei tumori umani.

Queste mutazioni alterano l'interazione proteina DNA. Le mutazioni che interferiscono con il legame DNA al sono definite «contact mutations» mentre quelle che alterano la struttura «structural mutations»

Ruolo di p53 nel mantenimento dell'integrità del genoma

La perdita o mutazioni di p53 DNA impediscono alla cellula che ha subito un danno al DNA di arrestare il ciclo cellulare e di riparare il DNA. La proliferazione delle cellule geneticamente danneggiate favorisce la trasformazione neoplastica.

Ruolo di p53 nel mantenimento dell'integrità del genoma. L'attivazione di p53 normale da parte di agenti che danneggiano il DNA o per possia determina l'arresto del ciclo cellulare in G_1 e l'induzione della riparazione del DNA, tramite regolazione trascrizionale positiva dei geni inibitore della chinasi ciclina-dipendente *CDKN1A* (p21). La riparazione efficace del DNA consente alle cellule di procedere con il ciclo riparazione fallisce, p53 induce l'apoptosi o la senescenza. Nelle cellule con perdita o mutazione di *TP53*, il danno al DNA non induce del ciclo cellulare o la riparazione del DNA e le cellule geneticamente danneggiate proliferano, dando origine, alla fine, a una neoplasia maligna.

Meccanismi di inattivazione di p53

