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Nome: Cognome:

Avvertenze:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

Esercizio 1 (punti: 3+2+3).
Data la funzione f :�3 −→� definita come f (x1,x2,x3) = x21 +4x1 + x2x3 + x2 − x3
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si scriva l’equazione dell’iperpiano tangente al grafico della funzione nel punto (0,0,0),
iii. si trovino i punti critici di f e si determini la loro natura.

Soluzione. i. La funzione f è una funzione polinomiale definita in tutto lo spazio, in quanto poli-
nomio è continua e derivabile e le sue derivate parziali del primo ordine sono

�1f (x1,x2,x3) = 2x1 +4 �2f (x1,x2,x3) = x3 +1 �3f (x1,x2,x3) = x2 −1

che, in quanto polinomi, sono continue in tutto �
3, allora il teorema del differenziale totale ci

permette di affermare che la funzione è differenziabile in tutto lo spazio.
ii. Come visto a lezione, l’equazione del piano tangente al grafico nel punto (p, f (p)) è

x4 = f (p) +∇f (p) · (x − p)

nel nostro caso vale che p = (0,0,0), f (p) = 0 e ∇f (0,0,0) = (4,1,−1), da cui otteniamo

x4 = (4,1,−1) · (x1,x2,x3) = 4x1 + x2 − x3
iii. I punti critici di f sono i punti p ∈�3 tali che ∇f (p) = (0,0,0), nello specifico dobbiamo studiare
il sistema

�1f (x1,x2,x3) = 2x1 +4 = 0
�2f (x1,x2,x3) = x3 +1 = 0
�3f (x1,x2,x3) = x2 −1 = 0

la cui soluzione è pc = (−2,1,−1)

Poiché la matrice hessiana di f è

Hf (x1,x2,x3) = Hf (pc) =

 2 0 0
0 0 1
0 1 0

 e det[Hf ](x) = det[Hf ](pc) = −2

e det[Hf ] vale il prodotto degli autovalori, abbiamo la seguente alternativa: o tutti e tre gli autovalori
della matrice hessiana sono negativi o gli autovalori sono uno negativo e due positivi. D’altronde
è evidente che

Hf (pc)e1 =

 2 0 0
0 0 1
0 1 0


 1
0
0

 =
 2
0
0

 = 2e1

cioè 2 > 0 è un autovalore della matrice con autovettore e1, quindi non è possibile che tutti e tre
gli autovalori siano negativi, per cui possiamo affermare con certezza che un solo autovalore è
negativo e che gli altri due sono positivi, e questo significa che pc è un punto di sella. □

Esercizio 2 (punti: 3+3+3). Data la forma differenziale

é(x) =
x1

x21 + x22
dx1 +

x2
x21 + x22

dx2 +æ(x3)dx3 x = (x1,x2,x3) ∈ C =�
3 \ {x1 = x2 = 0}
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i. per quali funzioni æ ∈ C1(�) risulta é chiusa o esatta?
ii. Per quali æ ∈ C1(�) le primitive di é sono funzioni armoniche?

iii. Data æ(t) = t e la curva Õ : {(cos(t),sin(t), t), t ∈ [0,á]} si calcoli

∫
Õ
é.

Soluzione. i. Cerchiamo di capire quali funzioni æ rendono é chiusa, controllando che, detti ai (x)
i coefficienti della 1-forma differenziale, cioè é = a1(x)dx1 +a2(x)dx2 +a3(x)dx3, valga �iaj (x) =
�jai (x) per i , j . Nello specifico abbiamo

�1a2(x) = �1

[
x2

x21 + x22

]
= − 2x1x2

(x21 + x22)
2
= �2

[
x1

x21 + x22

]
= �2a1(x)

�2a3(x) = �2 [æ(x3)] = 0 = �3a2(x) = �3

[
x2

x21 + x22

]
�3a1(x) = �3

[
x1

x21 + x22

]
= 0 = �1 [æ(x3)] = �1a3(x)

quindi quanlunque æ ∈ C1(�) (e in realtà anche meno regolare) rende la forma chiusa!
Discutere l’esattezza di é richiede del lavoro in più, perché l’aperto C dove la forma è definita non
è semplicemente connesso (è tutto lo spazio a cui è stata tolta una retta), quindi la chiusura della
forma non implica l’esattezza. Per un corollaro del teorema del rotore (visto a lezione) è sufficiente
provare che l’integrale lungo una qualsiasi curva chiusa che circuita la retta {x1 = x2 = 0} è nullo,
per cui scegliamo la circonferenza Õ0 contenuta nel piano {x3 = 0} di centro O(0,0,0) e raggio 1
parametrizzata nel seguente modo x(t) = (cos(t),sin(t),0), con t ∈ [0,2á], e abbiamo che∮

Õ0

é =
∫ 2á

0

[
cos(t)

cos2(t) + sin2(t)
· (−sin(t)) + sin(t)

cos2(t) + sin2(t)
· (cos(t)) +æ(0) ·0

]
dt = 0

ricordando la definizione di integrale di una 1-forma differenziale lungo una curva, in conclusione
é è esatta, oer ogni æ ∈ C1(�). Naturalmente è possibile provare direttamente l’affermazione cal-
colando una primitiva della forma differenziale, infatti detta U(x) la generica primitiva, integrando
le componenti di é, troviamo che

�1U(x) = a1(x) =
x1

x21 + x22
da cui U(x1,x2,x3) =

1
2
ln(x21 + x22) + c1(x2,x3)

�2U(x) = a2(x) =
x2

x21 + x22
da cui U(x1,x2,x3) =

1
2
ln(x21 + x22) + c2(x1,x3)

�3U(x) = a2(x) = æ(x3) da cui U(x1,x2,x3) =
∫ x3

0
æ(s)ds + c3(x1,x2)

e confrontando le tre diverse rappresentazioni della primitiva U deduciamo che

U(x1,x2,x3) =
1
2
ln(x21 + x22) +Ð(x3) + c0 =

1
2
ln(x21 + x22) +

∫ x3

0
æ(s)ds + c0

per il teorema fondamentale del calcolo U è di classe C1(C), a patto che æ ∈ C0(�).
ii. Dalla discussione precedente sappiamo che é è sempre esatta, e abbiamo anche scritto un’e-
spressione della sua generica primitiva, per verificare quando tali primitive sono delle funzioni
armoniche è sufficiente calcolare l’operatore di Laplace di U

ÉU(x) = �11U(x1,x2,x3) +�22U(x1,x2,x3) +�33U(x1,x2,x3)

= �1a1(x1,x2,x3) +�2a2(x1,x2,x3) +�3a3(x1,x2,x3)

= �1

[
x1

x21 + x22

]
+�2

[
x2

x21 + x22

]
+�3æ(x3) =

x22 − x
2
1

(x21 + x22)
2
+

x21 − x
2
2

(x21 + x22)
2
+æ′(x3) = æ′(x3)
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Quindi U è una funzione armonica se e solo se ÉU(x) = 0, cioè se e solo se æ′(x3) = 0, se e solo se
æ(s) = c0, cioè se è una funzione costante, poiché le funzioni aventi derivata nulla su un intervallo
sono necessariamente le funzioni costanti, per il teorema del valor medio.
iii. Per calcolare l’integrale richiesto possiamo procedere in due differenti maniere. il primo consi-
ste nell’applicare la definizione di integrale di una forma differenziale é = a1(x)dx1 + a2(x)dx2 +
a3(x)dx3 lungo una curva regolare Õ avente parametrizzazione x(t), per t ∈ [a,b], come segue∫

Õ
é =

∫ b

a

[
a1(x(t))x

′
1(t) + a2(x(t))x

′
2(t) + a3(x(t))x

′
3(t)

]
dt

=
∫ á

0

[
cos(t)

cos2(t) + sin2(t)
· (−sin(t)) + sin(t)

cos2(t) + sin2(t)
· (cos(t)) + t ·1

]
dt

=
∫ á

0
tdt =

[1
2
t2

]á
0
=
á2

2

Il secondo metodo consiste nell’uso di una qualsiasi primitiva U , infatti vale∫
Õ
é = U(B )−U(A)

dove A = x(a) e B = x(b) sono (rispettivamente) il punto iniziale e di finale del supporto della curva,
nel nostro caso abbiamo∫

Õ
é = U(cos(á),sin(á),á)−U(cos(0),sin(0),0) = U(−1,0,á)−U(1,0,0) =

á2

2

visto che

U(x1,x2,x3) =
1
2
ln(x21 + x22) +

∫ x3

0
sds + c0 =

1
2
ln(x21 + x22) +

x3
2

+ c0

Concludiamo sottolineando un fatto ”ovvio”: i due metodi, se correttamente utilizzati, producvono
sempre lo stesso risultato! □

Esercizio 3 (punti: 4+5). Dato H ∈ (0,+∞), si consideri il solido E generato dalla rotazione intorno
all’asse x3 della regione piana

S =
{
0 ≤ x1 ≤

1
2
[ex3 + e−x3] ,0 ≤ x3 ≤ H

}
⊆ {x2 = 0} ≃�

2

i. si calcoli m3(E), cioè il volume del solido,
ii. si scriva una parametrizzazione che renda la superficie laterale del solido una superficie rego-
lare e se ne calcoli l’area.

Soluzione. i. Il metodo (quasi sempre) più semplice per calcolare il volume di un solido di ro-
tazione è quello di integrare per sezioni o, se si preferisce pensare in termini di integrale di Lebe-
sgue, di usare la seguente formula di riduzione legata al teorema di Fubini (anche detto principio
di Cavalieri)

m3(E) =
∫ H

0
m2(Es)ds dove ES = E ∩ {x3 = s}

Per un solido di rotazione la sezione Es è sempre un cerchio per cui vale

m3(E) =
∫ H

0
m2(Es)ds =

∫ H

0
á|w(s)|2ds

dove (x1(s),x3(s)) = (w(s),s) è la parametrizzazione regolare, nel piano {x2 = 0}, della curva che è
parte del bordo della regione S che ruotando genera il solido, precisamente il tratto che genera la
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superficie laterale. Nel nostro caso vale

w(s) =
1
2
[es + e−s] = cosh(s) con s ∈ [0,H]

e quindi possiamo scrivere che

m3(E) =
∫ H

0
ácosh2(s)ds =

á
4

∫ H

0

[
e2s +2+ e−2s

]
ds =

á
4

[1
2
e2s +2s − 1

2
e−2s

]H
0

=
1
8
á
[
e2H +4H − e−2H

]
ii. Abbiamo già osservato che (x1(s),x3(s)) = (w(s),s) è una parametrizzazione regolare, da tale
applicazione possiamo ricavare una parametrizzazione per la superficie laterale nel seguente modo

x(Ú,s) = (w(s)cos(Ú),w(s)sin(Ú),s) con (Ú,s) ∈ K = [0,2á]× [0,H]

adesso verifichiamo che la coppia (x,K) è una superficie regolare. Cominciamo osservando che
le componenti dela paramatrizzazione sono funzioni regolari (cioè almeno di classe C1) inoltre è
possibile verificare che la parametrizzazione è iniettiva sull’interno di K, perché è iniettiva la terza
componente e la coppia (cos(Ú),sin(Ú)), sempre ricordando che w(s) > 0 per ogni s ∈ [0,H]. A
questo punto possiamo calcolare le espressioni dei vettori tangenti e del vettore normale come
segue

�1x(Ú,s) = (−w(s)sin(Ú),w(s)cos(Ú),0)
�2x(Ú,s) = (w′(s)cos(Ú),w′(s)sin(Ú),1)

[�1x ∧�2x] (Ú,s) = (w(s)cos(Ú),w(s)sin(Ú),−w(s)w′(s))

∥(�1x ∧�2x)(Ú,s)∥2 = |w(s)|
[
1+ |w′(s)|2

]1/2
e notiamo che, nei calcoli fatti, è cruciale la positività della funzione w per avere l’esistenza del
vettore normale e, in ultima analisi, la regolarità della superficie Î = x(K).
Procediamo con il calcolo del valore dell’area

A(Î) =
"

Î

dã =
"

K
∥�1x ∧�2x∥2 dÚds =

∫ 2á

0

[∫ H

0
w2(s)

[
1+ |w′(s)|2

]1/2
ds

]
dÚ

= 2á
∫ H

0
w2(s)

[
1+ |w′(s)|2

]1/2
ds = 2á

∫ H

0

(es + e−s)2

4

[
1+

(es − e−s)2

4

]1/2
ds

=
á
4

∫ H

0
[es + e−s]3 ds =

á
4

∫ H

0

[
e3s +3es +3e−s + e−3s

]
ds

=
á
4

[
e3s

3
+3es −3e−s − e−3s

3

]H
0
=

á
12

[
e3H +9eH −9e−H − e−3H

]
Si noti che nella prima parte dei calcoli di i e di ii abbiamo evitato di usare l’espressione esplicita
della funzione w, in modo da avere delle formule per il calcolo del volume e della superficie laterale
per solidi di rotazione. □

Esercizio 4 (punti: 3+3+3).
Dato il problema di Cauchy u′(s) =

s
(2− u(s))

u(0) = 1

si risponda ai seguenti quesiti esattamente nell’ordine in cui sono proposti
i. si spieghi perché il sistema possiede un’unica soluzione locale,



5

ii. si calcoli il polinomio di Taylor, di grado 2 con centro s0 = 0, della soluzione,
iii. si ricavi l’espressione esplicita della soluzione.

Soluzione. i. Il problema di Cauchy da studiare riguarda un’equazione differenziale del primo
ordine nella seguente forma normale

u′(s) = f (s,u(s)) dove f (s,z) =
s

2− z

la funzione f è una funzione razionale (rapporto di polinomi) in due variabili ed è di classe C∞ ⊆
C1 ⊆ C0 nel suo dominio massimale che è l’aperto A = � × (� \ {2}): per quanto visto a lezione
sappiamo che la derivabilità nella seconda entrata di f garantisce la locale lipschitzianità della
funzione rispetto alla variabile z, e quindi la validità del teorema di Picard e Lindelöff visto che il
dato iniziale (s0,u0) = (0,1) ∈ A. E senza alcun timore possiamo affermare l’esistenza di un’unica
soluzione (locale) del problema di Cauchy.
ii. Sappiamo che il polinomio di Taylor (di grado 2, centrato in s0) di una funzione u ha la seguente
espressione

T2,u(s,s0) = u(s0) + u′(s0)(s − s0) +
1
2
u′′(s0)(s − s0)2

nel nostro caso specifico abbiamo che

s0 = 0 u(0) = u0 = 1 u′(0) = f (0,u0) = 0

e, per calcolare la derivata seconda, dobbiamo osservare che la soluzione è sufficientemente re-
golare (perché la sua derivata prima è di classe C1, in quanto rapporto di funzioni C1) e, per il
teorema di derivazione delle funzioni composte, vale

u′′(s) =
d
ds

u′(s) =
d
ds

f (s,u(s)) = ∇f (s,u(s)) · d
ds

(s,u(s))

=

(
1

(2− u(s))
,

s
(2− u(s))2

)
· (1,u′(s)) = 1

(2− u(s))
+

su′(s)
(2− u(s))2

=
1

(2− u(s))
+

s2

(2− u(s))3
=
(2− u(s))2 + s2

(2− u(s))3

ricordando l’espressione della derivata prima fornitaci dall’equazione differenziale. Per s = 0 otte-
niamo u′′(0) = 1 da cui

T2,u(s,0) = 1+
1
2
s2

Facciamo, per completezza, alcune osservazioni non richieste dal testo delll’esercizio. Innanzitutto
notiamo che il punto iniziale da cui ”parte” il grafico della soluzione (0,1) appartiene all’aperto
A∗ =�× (−∞,2) (il dominio massimale di f è A che è composto dall’unione di due aperti disgiunti)
e il grafico della soluzione del problema di Cauchy sarà interamente contenuta in A∗, cioè nella
componente a cui appartiene il punto iniziale. Questa osservazione implica che la quantità (2−u(s))
è positiva per ogni s ∈ dom(u), quindi la derivata seconda, la cui espressione abbiamo ottenuto
poco sopra, è sempre positiva, cioè u è una funzione convessa. Possiamo inoltre dimostrare che
u è una funzione pari, infatti se poniamo w(s) = u(−s) abbiamo che

w′(s) =
d
ds

u(−s) = −u′(−s) = − −s
2− u(−s)

=
s

2−w(s)
e w(0) = u(−0) = 1

quindi w risolve lo stesso problema di Cauchy di u e l’unicità della soluzione si traduce nel fatto
che u(s) = w(s) = u(−s), cioè nella prova che la funzione u è pari.
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iii. Per ricavare l’espressione esplicita della soluzione procediamo per separazione di variabili, visto
che l’equazione differenziale ce lo permette. Quindi possiamo scrivere

(2− u(s))u′(s) = s∫ t

0
(2− u(s))u′(s)ds =

∫ t

0
sds =

∫ t

0
sds =

1
2
t2∫ t

0
(2− u(s))u′(s)ds =

∫ u(t)

u(0)
(2− u)du =

[
2u(s)− 1

2
u2(s)

]u(t)
u(0)

=
[
2u(t)− 1

2
u2(t)−2+ 1

2

]

e confrontando le primitive ottenute ricaviamo la relazione

u2(s)−4u(s) + (3 + s2) = 0

da cui possiamo esplicitare la legge della funzione u ottenendo

u(s) = 2±
[
4− (3− s2)

]1/2
Sappiamo che la soluzione è unica, questo significa che solo una delle due precedenti espressioni
è quella che ci interessa, controllando che valga u(0) = 1 possiamo identificare l’espressione della
soluzione

u(s) = 2−
[
1− s2

]1/2
Si noti che è una funzione pari e convessa (come dimostrato poco sopra), inoltre è immediato
verificare che dom(u) = (−1,1) e che la soluzione non può essere prolungata ulteriormente. □


