Molecules, ions and their compounds.

Antoine Lavoisier (1743-1794)

TRAITÉ

É L É M E N T A I R E D E CHIMIE,

PRÉSENTÉ DANS UN ORDRE NOUVEAU

ET D'APRÈS LES DÉCOUVERTES MODERNES;

Avec Figures :

Par M. LAFOISIER, de l'Académie des Sciences, de la Société Royale de Médecine, des Sociétés d'Agriculture de Paris & d'Orléans, de la Société Royale de Landres, de l'Inflitut de Bologne, de la Société Helvétique de Bafle, de celles de Philadelphie, Harlem, Manchefler, Padoue, &c.

A PARIS, Chez CUCHET, Libraire, rue & hôtel Serpente.

M. DCC LXXXIX. Sous le Privilige de l'Académie des Sciences & de la Société Royale de Médecine.

Chemical formula

There are different ways of representing a chemical formula

Inorganic chemistry compounds

Oxide: compounds containing oxigen

- oxides
- peroxides
- superoxides
- hydroxides (OH-)
- Acids:
 - oxides + water (oxoacids)
 - elements + hydrogen (hydrides)

Salts: acid + hydroxide

Coordination compound:

Compound in which an element is bound with more atoms than its o.n. would allow.

Oxidation number

- 1. In free elements (that is, in uncombined state), each atom has an oxidation number of zero. Na, Fe, C, H₂, Cl₂, O₂, etc.
- 2. In a monoatomic ion, it corresponds to the charge. ioni Na⁺, Ba²⁺, Fe³⁺, Br⁻, S²⁻ n.o. +1, +2, +3, -1, -2
- 3. Hydrogen has always oxidation number +1, with the exception of metal hydrides -1
 o.n. H = +1, HCl, H₂O, HNO₃, NH₃, NH₄⁺, etc.
 o.n. H = -1 NaH, KH, CaH₂

4. Oxygen has oxidation number -2 in most compound, with the exception of peroxides, compounds with F and superoxides.

```
o.n. O = -2, H_2O, BaO, H_2SO_4, Cl_2O_5, etc.
o.n. O = -1, H_2O_2, Na_2O_2, etc.
o.n. O = +2, OF_2
o.n. = -0.5 NaO<sub>2</sub>,
```

5. The algebraic sum of o.n. in an uncharged compound must be 0 in NaCl, o.n. Na = +1 and o.n. Cl = -1

6. The algebraic sum of o.n. in a polyatomic ion must be the charge of the ion. (NH₄⁺, SO₄²⁻, PO₄³⁻) PO₄³⁻: o.n. O = -2 and o.n.. P = +5

Oxides of metals

Oxides of elements of Groups I and II are ionic compounds. The metal is a cation and oxygen is in the anionic form O^{2-} .

CaO

 $2~K^+$ and $1~O^{2-}$

1 Ca²⁺ and 1 O²⁻

2 Na⁺ and 1 O²⁻

Most oxides of metal are basic. They react with water yielding hydroxides.

$Na_2O + H_2O \rightarrow 2 NaOH$	Sodium hydroxide
$CaO + H_2O \rightarrow Ca(OH)_2$	Calcium dihydroxide
$FeO + H_2O \rightarrow Fe(OH)_2$	Iron dihydroxide
$Fe_2O_3 + 3 H_2O \rightarrow 2 Fe(OH)_3$	Iron trihydroxide
$Al_2O_3 + 3 H_2O \rightarrow 2 Al(OH)_3$	Aluminum trihydroxide

Hydroxides

Ternary complexes formed by H, O and a metal, ionic compounds. Formula for hydroxides: XOH (metal - hydroxide ions).

Hydroxides have basic properties. Hydroxides from alkali metals (IA group) are strong bases.

hydroxide	name
NaOH	Sodium Hydroxide
КОН	Potassium Hydroxide
Mg(OH) ₂	Magnesium dihydroxide
Ca(OH) ₂	Calcium dihydroxide
Zn(OH) ₂	zinc dihydroxide
Fe(OH) ₂	Iron dihydroxide (ferrous)
Al(OH) ₃	Aluminun trihydroxide
$Cr(OH)_3$	Chrome trihydroxide
Fe(OH) ₃	iron trihydroxide (ferric)

Oxides of nonmetals (anhydrides)

In oxides oxygen always has oxidation number = -2.

Oxides with non metals are also called anhydrides: CO_2 (carbon dioxide) SO_2 (sulpur dioxide) SO_3 (sulphur trioxide)

IUPAC has suffixes mono-, di-, tri-, tetra-, penta- to indicate the number of O atoms.

NO: nitrogen monoxide (nitric oxide) NO₂: nitrogen dioxide N₂O₃: dinitrogen trioxide

$$\dot{O}$$
 = C = \dot{O} = \dot{O}

Carbon dioxide (carbon anhydride) Sulfur dioxide (sulfurous anhydride o.n.=-4)

Sulfur trioxide (sulfuric anhydride o.n.=-6)

NB: suffix -ous = lower oxidation number suffix -ic = higher oxidation number

Dichlorine heptoxide

Although it is the most stable chlorine oxide, Cl2O7 is a strong oxidizer as well as an explosive that can be set off with flame or mechanical shock, or by contact with iodine. Nevertheless, it is less strongly oxidising than the other chlorine oxides, and does not attack sulfur, phosphorus, or paper when cold. It has the same effects on the human body as elemental chlorine, and requires the same precautions.

Most oxides of nonmetals have acid properties. They react with water yielding oxoacids (or oxyacids).

$N_2O_3 + H_2O -> 2 HNO_2$	Nitrous acid
$N_2O_5 + H_2O -> 2 HNO_3$	Nitric acid
$SO_2 + H_2O \rightarrow H_2SO_3$	Sulphurous acid
$SO_3 + H_2O \rightarrow H_2SO_4$	Sulphuric acid
$Cl_2O + H_2O \rightarrow 2 HClO$	Hypochlorous acid
$Cl_2O_3 + H_2O \rightarrow 2 HClO_2$	Chlorous acid
$Cl_2O_5 + H_2O \rightarrow 2 HClO_3$	Chloric acid
$Cl_2O_7 + H_2O \rightarrow 2 HClO_4$	Perchloric acid
$\rm CO_2 + H_2O \rightarrow H_2CO_3$	Carbonic acid
$P_2O_3 + 3 H_2O \rightarrow 2 H_3PO_3$	Phosphorous acid
$P_2O_5 + 3 H_2O \rightarrow 2 H_3PO_4$	Phosphoric acid

NB: suffix -ous = lower oxidation number suffix -ic = higher oxidation number

Some common oxides (O_2 Oxidation mumber= -2)

compound	IUPAC name	Common name (obsolete)	Oxidation number
NaoO	Disodium oxide	_	+1
K ₂ O	Dipotassium oxide		+1
MgO	Magnesium oxide	-	+2
CaO	Calcium oxide	-	+2
Al ₂ O ₂	Dialuminum trioxide	-	+3
FeO	Iron (II) oxide	Ferrous oxide	+2
Fe ₂ O ₃	Iron (III) oxide	Ferric oxide	+3
CO	Carbon monoxide		+2
CO ₂	Carbon dioxide	Carbonic ahydride	+4
N ₂ O	Dinitrogen oxide	Nitrogen protoxide	+1
NO	Nitrogen monoxide	-	+2
N_2O_3	Trinatrogen dioxide		+3
NO ₂	Nitrogen dioxide	-	+4
N_2O_5	dintrogen pentoxide	Nitric anhydride	+5
SO ₂	Sulphur dioxide	Sulphurous anhydride	+4
SO ₃	Sulphur trioxide	Sulphuric anhydride	+6
Cl ₂ O	Dichlorine oxide	Hypochlorous anhydride	+1
Cl ₂ O ₃	Dichlorine trioxide	Chlorous anhydride	+3
Cl ₂ O ₅	Dichlorine pentoxide	Chloric anhydride	+5
Cl_2O_7	Dichlorine heptoxide	Perchloric anhydride	+7

non metals

12

Peroxides

Compounds containing the group: -O - O - O - OOxygen has oxidation number = -1

They can be covalent (hydrogen peroxide, H_2O_2) or ionic (sodium peroxide, Na_2O_2 , calcium peroxide, CaO_2) peroxidic group: O_2^{2-}

Superoxides

Ionic compounds containing the ion: O_2^- In superoxide, it has oxidation number -1/2

Combination of the metal ion with the superoxid anion (O_2^-), es. Na O_2 , K O_2

SUPEROXIDE ION

The six outer electrons of each atom of oxygen are highlighted in black; an electron pair is shared; The unpaired electron is shown in the upper left and the extra electron which gives the negative charge is shown in red.

Superoxide is toxic and is used by the immune system as defense against pathogenic microorganisms.

Peroxides are compounds containing this consisting of two oxygen atoms joined by a single bond (O-O).

H H 0-0¹¹

Hydrogen peroxide

Hydrogen peroxide and superoxide ion are oxidizing agents, toxic for the cell. Two enzymes can transform these compounds into less harmful products.

catalase: $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Superoxide dismutase: $2 O_2^- + 2 H^+ \rightarrow H_2 O_2 + O_2$

Bovine superoxide dismutase.

The peroxisomal disorder acatalasia is due to a deficiency in the function of catalase. Genetic polymorphisms in catalase and its altered expression and activity are associated with oxidative DNA damage and subsequently the individual's risk of cancer susceptibility

> Mice lacking SOD2 die several days after birth, amid massive oxidative stress. Mice lacking SOD1 develop a wide range of pathologies, including hepatocellular carcinoma, an acceleration of age-related muscle mass loss, an earlier incidence of cataracts and a reduced lifespan. Mice lacking SOD3 do not show any obvious defects and exhibit a normal lifespan, though they are more sensitive to hyperoxic injury.

Electronegativity determines the polarization of the chemical bond

- Metals donate electrons yielding cations
- Nonmetals acquire electrons yielding anions.

metals

Transition metals

metalloids

Elements of group III: B vs Al

 H_3BO_3 Boric acid. Reacts with water:

Al(OH)₃ Aluminum oxide Reacts with water:

 $AI(OH)_3 \xrightarrow{H_2O} AI^{3+} + 3 OH^{-}$

The difference in behaviour depends on difference in polarization of the bonds B-O e Al-O

Most oxides of nonmetals have acid properties. They react with water yielding oxoacids (or oxyacids).

$N_2O_3 + H_2O -> 2 HNO_2$	Nitrous acid
$N_2O_5 + H_2O -> 2 HNO_3$	Nitric acid
$SO_2 + H_2O \rightarrow H_2SO_3$	Sulphurous acid
$SO_3 + H_2O \rightarrow H_2SO_4$	Sulphuric acid
$Cl_2O + H_2O \rightarrow 2 HClO$	Hypochlorous acid
$Cl_2O_3 + H_2O \rightarrow 2 HClO_2$	Chlorous acid
$Cl_2O_5 + H_2O \rightarrow 2 HClO_3$	Chloric acid
$Cl_2O_7 + H_2O \rightarrow 2 HClO_4$	Perchloric acid
$\rm CO_2 + H_2O \rightarrow H_2CO_3$	Carbonic acid
$P_2O_3 + 3 H_2O \rightarrow 2 H_3PO_3$	Phosphorous acid
$P_2O_5 + 3 H_2O \rightarrow 2 H_3PO_4$	Phosphoric acid

NB: suffix -ous = lower oxidation number suffix -ic = higher oxidation number

Oxyacids

Ternary complexes formed by H, O and a nonmetal, or a metal whose oxide has acidic properties (i.e.: Cr, Mn, V). Oxoacids have a formula HXO, whereas hydroxides are indicated as XOH.

This convention allows to assign the properties of ternary compounds.

Nomenclature highlights the degree of oxidation:

suffix -ous = smaller oxidation number suffix -ic = larger oxidation number e.g.: sulphorous acid $(H_2SO_3, o.n. S = +4)$ sulphuric acid $(H_2SO_4, n.o. S = +6)$ Nitrous acid (HNO_2 , n.o. N = +3) Nitric acid (HNO_3 , n.o. N = +5) Sulphurous acid (H_2SO_3 , n.o. S = +4) Sulphuric acid (H_2SO_4 , n.o. S = +6)

If suffixes do not allow to name all oxoacids prefixes are used: hypo- and per-

hypochlorous acid (HClO, n.o. +1) chlorous acid (HClO₂, n.o. +3) chloric acid (HClO₃, n.o. +5) perchloric acid (HClO₄, n.o. +7)

Oxygen atoms are added by means of coordination bond. The maximum number of oxygen atoms depends the number of pairs available and the radius of the atom.

Polarization of the O-H bond depends on the attraction of electron exerted by the O atom.

```
hypochlorous acid (HClO, n.o. +1) Very weak
chlorous acid (HClO<sub>2</sub>, n.o. +3) weak
chloric acid (HClO<sub>3</sub>, n.o. +5) strong
percloric acid (HClO<sub>4</sub>, n.o. +7) very strong
```


PHOSPHORIC ACID H₃PO₄

Nitric acid HNO₃

Carbonic anhydrase plays a role in CO₂ transport in blood.

Venous blood: $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow HCO_3^- + H^+$

Arterial blood: $HCO_3^- + H^+ \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$

Common oxoacids (oxygen o.n. -2)

Oxoacid	Formula	Anion	Anion Formula
acetic acid	сн _з соон	acetate	CH3COO-
carbonic acid	H ₂ CO ₃	carbonate	CO32-
chloric acid	HCIO ₃	chlorate	CIO3=
chlorous acid	HCIO ₂	chlorite	CIO2-
hypochlorous acid	HCIO	hypochlorite	CIO-
iodic acid	HIO3	iodate	10 ₃ -
nitric acid	HNO ₃	nitrate	NO3
nitrous acid	HNO ₂	nitrite	NO2
perchloric acid	HCIO ₄	perchlorate	CIO4-
phosphoric acid	H ₃ PO ₄	phosphate	P043-
phosphorous acid	H3no	phosphite	PO33-
sulfuric acid	H ₂ SO ₄	sulfate	504 ²⁻
sulfurous acid	H ₂ SO ₃	sulfite	5032-

Hydrides

Binary compounds of hydrogen. The ratio with elements from I to VII group are fixed: 1, 2, 3, 4, 3, 2, 1 (LiH, CaH₂, AlH₃, CH₄, NH₃, H₂O, HF)

Metal hydrides: with elements from groups IA and IIA. Hydrogen has o.n. -1. With the exception of LiH e BeH₂, they are ionic compounds. Hydrogen taks the form of hydride ion (H⁻). H⁻ + H⁺ \rightarrow H₂; $\Delta H = -1676$ kJ/mol

Covalent hydrides: with elements of groups from IV on (CH_4 , methane; SiH_4 , silane; NH_3 , ammonia; PH_3 , phosphane (phosphine).

Hydracids : binary compounds of H with elements from groups VI and VII. Nomenclature IUPAC Hydrogen + name of the elemnt +suffix -ide) (prefix hydro- + name of the element + acid): Es. HF, hydrophluoric acid; HCl, hydrochloric acid; HBr, hydrobromic acid; HI, hydroiodic acid. Hydrogen sulphide H₂S

Cations from hydrides take the suffix -onium. E.g.: PH_4^+ , phosphonium; NH_4^+ , ammonium; H_3O^+ , oxonium (or hydronium). 28

compound	formula	structure	model	d(H–X) / pm (gas phase)	μ/D	hy
hydrogen fluoride	HF	HF 91.7 pm	\bigcirc	91.7	1.86	
hydrogen chloride	HCI	HCl 127.4 pm		127.4	1.11	
hydrogen bromide	HBr	H-Br 141.4 pm		141.4	0.788	
hydrogen iodide	н	H		160.9	0.382	

hydrogen halides

Hydrogen oxide (H₂O): water.

29

Salts

Ionic compounds arising from the reaction of a base with an acid (neutralization of acids with bases).

$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$

Nomenclature of salts

The metallic component (positive) is written first, the nonmetallic component (acidic radical, negative) follows. The name of the salt is formed with: cation name + acidic radical.

type	Acid suffix	Salt suffix	acid	salt
oxoacid	-ous	-ite	HNO ₂ Nitrous acid	NaNO ₂ Sodium nitrite
oxoacid	-ic	-ate	H ₂ SO ₄ Sulphuric acid	CaSO ₄ Calcium sulphate
hydracid	-ide	-ide	HCl Hydrogen chloride	KCl Potassium chloride

common salts

acid	base	salt	IUPAC name	Traditional name
HC1	NaOH	NaCl	Sodium chloride	Sodium chloride
HF	Ca(OH) ₂	CaF ₂	Calcium difluoride	Calcium fluoride
HBr	Al(OH) ₃	AlBr ₃	Aluminum tribromide	Aluminum bromide
H_2S	Fe(OH) ₂	FeS	Iron (II) sulphide	Ferrous sulphide
H_2S	Fe(OH) ₃	Fe_2S_3	Iron (III) trisulphide	Ferric sulphide
H_2S	КОН	K ₂ S	Dipotassium sulphide	Potassium sulphide
H ₂ CO ₃	NaOH	Na ₂ CO ₃	Disodium carbonate	Sodium carbonate
H_2SO_4	КОН	K_2SO_4	Dipotassium sulphate	Potassium sulphate
H_2SO_4	Fe(OH) ₂	FeSO ₄	Iron (II) sulphate	Ferrous sulphate
H_2SO_4	Fe(OH) ₃	$Fe_2(SO_4)_3$	Iron (III) trisulphate	Ferric sulphate
H ₃ PO ₄	Ca(OH) ₂	$Ca_2(PO_4)_3$	Dicalcium triphosphate	Calcium phosphate
HMnO ₄	КОН	KMnO ₄	Potassium manganate(IV)	Potassium permanganate

Ionic compounds

Ionic compounds consist of ions, atoms or groups of atoms that have positive or negative charges.

Common name	name	formula	Ions
salt	Sodium chloride	NaCl	Na ⁺ , Cl ⁻
lime	Calcium oxide	CaO	Ca ²⁺ , O ²⁻
limestone	Calcium carbonate	CaCO ₃	Ca^{2+}, CO_3^{2-}
fluorite	Calcium fluoride	CaF ₂	Ca ²⁺ , F ⁻
gypsum	Calcium sulphate dihydrate	CaSO ₄ ·2 H ₂ O	Ca ²⁺ , SO ₄ ^{2–}
hematite	Iron oxide (III)	Fe ₂ O ₃	Fe^{3+}, O^{2-}
orpiment	Arsenic sulfide	As_2S_3	As ³⁺ , S ^{2–}

The atoms of many elements can give away or acquire electrons during a chemical reaction. To be able to predict the outcome of a chemical reaction, one needs to know if an element acquires or gives up electrons, and if so, how many.

When an atom gives away one or more electrons (transferred to another atom in a reaction), a positively charged ion called cation is formed. When an atom acquires an electron, a negatively charged ion called anion is formed.

Can we predict if an atom of an element will preferentially form a cation or an anion?

•Metals generally give up their electrons giving rise to cations.

•Non-metals frequently acquire electrons giving rise to anions.

1A																	8 A
1 H	2A	_										3 A	4 A	5A	6A	7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		

metals

Transition metals

metalloids

Mono-atomic ions

From elements which have lost or acquired electrons. 1A-3A form positive ions with charge equal to the number of the group. There are no rules for transition metals.

Non-metals often form ions with negative charge equal to: 8- group number.

group	element	electrons	cation
metals			
1A	Na (11 protons, 11 electrons)	-1	Na ⁺ (11 protons, 10 electrons)
2A	Ca (20 protons, 20 electrons)	-2	Ca ²⁺ (20 protons, 18 electrons)
3A	Al (13 protons, 13 electrons)	-3	Al ³⁺ (13 protons, 10 electrons)
Transition m	etals		
7B	Mn (25 protons, 25 electrons)	-2	Mn ²⁺ (25 protons, 23 electrons)
8B	Fe (26 protons, 26 electrons)	-2	Fe ²⁺ (26 protons, 24 electrons)
8B	Fe (26 protons, 26 electrons)	-3	Fe ³⁺ (26 protons, 23 electrons)
Non-metals			
5A	N (7 protons, 7 electrons)	+3	N ³⁻ (7 protons, 10 electrons)
6A	S (16 protons, 16 electrons)	+2	S ²⁻ (16 protons, 18 electrons)
7A	Br (35 protons, 35 electrons)	+1	Br ⁻ (35 protons, 36 electrons)

Notation for positive ions (cations).

With few exceptions (such as NH_4^+ , ammonium) positive ions arise from metals. They are named according to these rules.

1) For a positive mono-atomic ion, use the name of the metal followed by the word "cation". E.g.. Ag⁺ is called "Silver cation".

2) Cations that can have on more than one positive charge are labeled with Roman numerals in parentheses. E.g.: Co¹⁺ is Copper (I) and Cu²⁺ is Copper(II) ("copper one cation" and "copper two cation").

1) An older, notation is to append *-ous* or *-ic* to the root of the Latin name to name ions with a lesser or greater charge: $Cu^{2+} = Cupric$ and $Cu^{1+} = Cuprous$.

Notation for negative ions (anions).

Two types of anions: monoatomic and polyatomic The name of a monoatomic negative ione is formed by adding the **-ide** ending to the name of the non-metal element. E.g. Cl⁻ is called chloride anion.

Molecular ions (polyatomic)

Made up by more than one atom, electrically charged.

E.g.: the carbonate ion, CO_3^{2-} , is formed by 1 atom of C and 3 atoms of O. It has 2 negative charges since it contains two extra e^{-} .

Ionic compounds have net charge=0 Ruby is made up by ions Al^{3+} and oxide ions O^{2-} . To achieve null charge 2 Al^{3+} ions [total charge = 2 x (3+) = 6+] are combined with 3 O^{2-} ions [total charge = 3 x (2-) = 6+] to yield Al_2O_3 .

Polyatomic ions that contain oxygen are called oxyanions.

• Oxyanions are named with -ite or -ate, for a lesser or greater quantity of oxygen.

 NO_3^- is called nitrate and NO_2^- is called nitrite SO_4^{2-} is called sulphate e SO_3^{2-} is called sulphite

•If four oxyanions are possible, the prefixes *hypo*- and *per*- are used:

 ClO_4^- is called perchlorate e ClO_3^- is called chlorate ClO_2^- is called chlorite e ClO^- is called hypochlorite

• The modern systematic specifically names the hydrogen atom.

 HPO_4^{2-} is hydrogen phosphate e $H_2PO_4^{1-}$ is dihydrogen phosphate HCO_3^{-} is called hydrogen carbonate (bicarbonate) e HSO_4^{2-} is hydrogen sulphate.

Formula	Name	Formula	Name
Group 4A		Group 7A	L
CN^{-}	Cyanide ion	ClO-	Hypochlorite ion
CH ₃ CO ₂ ⁻	Acetate ion	ClO_2^-	Chlorite ion
CO ₃ ^{2–}	Carbonate ion	ClO ₃ ⁻	Chlorate ion
HCO ₃ ⁻	Hydrogen carbonate (bicarbonate)	ClO ₄ ⁻	Perchlorate ion
Group 5A		Transition metals	
NO_2^-	Nitrite ion	$\mathrm{CrO_4}^-$	Chromate ion
NO ₃ ⁻	Nitrate ion	$Cr_2O_7^{2-}$	Dichromate ion
PO ₄ ^{3–}	Phosphate ion	MnO_4^-	Permanganate ion
HPO_4^{2-}	Hydrogen phosphate ion		
$H_2PO_4^-$	Di-hydrogen phosphate		
Group 6A			
OH-	Hydroxide ion		
SO ₃ ^{2–}	Sulphite ion		
SO_4^{2-}	Sulphate ion		
HSO_{4}^{-}	Hydrogen sulphate ion		

Inorganic compounds

caustic

caustic caustic

digestive fluid

strong

strong strong

strong

<u>ACIDS</u>

1. Hydrogen halides

HF	hydrogen fluoride (hydrofluoric acid)
HCI	hydrogen chloride (hydrochloric acid)
HBr	hydrogen bromide (hydrobromic acid)
HI	hydrogen iodide (hydroiodic acid)

2 Owneride

Z. Uxyaci	us		
HCIO	hypochlorous acid	weak	oxidant
HCIO ₂	chlorous acid	weak	oxidant
HCIO ₃	chloric acid	strong	oxidant
HClO ₄	perchloric acid	strong	oxidant/caustic
HNO ₂	Nitrous acid	weak	atmosphere/ozone depletion
HNO ₃	nitric acid	strong	caustic
H_2SO_4	sulfuric acid	strong	caustic
H_2SO_3	sulphorous acid	strong	caustic
H_3PO_4	phosphoric acid	weak	buffer in blood
H_3BO_3	boric acid	weak	antiseptic
H_2CO_3	carbonic acid	weak	buffer in blood
$HMnO_4$	Permanganic acid		oxidizing salts
HCN	hydrogen cyanide (cyanidric acid)weak	poison	

BASES (hydroxides)

NaOH	sodium hydroxide	strong	caustic
КОН	potassium hydroxide	strong	caustic
Ca(OH) ₂	calcium hydroxide	strong	caustic
Mg(OH) ₂	magnesium (di)hydroxide	strong	caustic
AI(OH) ₃	aluminun (tri hydroxide	strong	caustic
$NH_3.H_2O$	ammonia	weak	surface cleaning
NH ₄ OH	ammonium hydrodide		

OXIDES

CO carbon monoxide	ļ
Na ₂ O (di)sodium oxide	
K ₂ O (di)sodium oxide	
CaO calcium oxide	
MgO magnesium oxide	9
Al ₂ O ₃ (di)aluminum (tri)	oxide

lethal gas

yields hydroxide in water yields hydroxide in water yields hydroxide in water yields hydroxide in water yields hydroxide in water

	OXIDES (anhydrides that in	n water yield oxyacids)
CO ₂ NO	carbon dioxide nitrogen oxide	present in air, cell resp. product messenger, vasodilation, toxic
NO ₂	nitrogen dioxide	$2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$
SO ₂	sulfur dioxide	Exhaustion gas (+ H ₂ O acid rain) SO ₂ + H ₂ O \rightarrow H ₂ SO ₃
SO ₃	sulfur trioxide	$SO_3 + H_2O \rightarrow H_2SO_4$

Inorganic compounds

<u>SALT</u>		
Non-hydrolizin	g salts (neutral)	
NaCl	sodium chloride	body fluids, cells
КСІ	potassium chloride	ubiquitario
KBr	potassium bromide	sedative
КІ	potassium iodide	supply for tyroid
CaCl ₂	calcium chloride	ion supply
MgSO ₄	magnesium sulfate	low solubility/ laxative
KNO ₃	potassium nitrate	fertilizer/agriculture
NaNO ₃	sodium nitrate	fertilizer/agriculture
CuSO ₄	copper sulfate	antimicrobial/agriculture
AgNO ₃	silver nitrate	local antiseptic
KMnO ₄	potassium permanganate	antiseptic/oxidizing
HgCl ₂	mercury choride	toxic
BaSO ₄	barium sulfate	low solubility/ x-ray diagnistics
SALT (Acidic hv	drolysis)	
	, ,	

NH ₄ Cl	ammonium chloride	urine
$CH_3COO(NH_4)$	ammonium acetate	lab reagent
(NH ₄) ₂ SO ₄	ammonium sulphate	lab reagent

<u>SALT</u> (basic hydrolysis)		
CH ₃ COONa	sodium acetate	in buffers
CH₃COOK	potassium acetate	in buffers
CaCO ₃	calcium carbonate	antiacid
$Ca_3(PO_4)_2$	calcium phosphate	bone matrix
Na ₃ PO ₄	sodium phosphate	industry
Na ₂ HPO ₄	disodium hydrogen phosphate	buffer in plasma
NaH ₂ PO ₄	mono-sodium hydrogen phospha	ate "
NaHCO ₃	sodium hydrogencarbonate	(bicarbonate) blood

Coordination complex

Compound in which an atom or ion is bound to other chemical species with a number larger than its oxidation number.

Typically the central atom is a transition metal cation, the ion or molecules that surround it are called ligands.

The set of ligand forms the coordination sphere of the complex and the number of ligands is called the coordination number (ranging from 1 to 16.

The bond in the coordination complexes arises from empty d orbital of the central atoms and lone pairs from s and p orbitals of the ligands.

The resulting bonds have transition energies that fall in the visibile region of the spectrum, therfore they have characteristic colours (heme and chlorophyll).

E.g. a metal in aqueous solution (coordinated by water or other ligands).

Heme in hemoglobin and myoglobin

Complexes show a variety of possible reactivities:

- Electron transfers

50

Meta-, ortho- e pyro- acids

This (obsolete) nomenclature is still used to distinguish the degree of hydration of an oxoacid.

Ortho- the acid containing the largest number of water molecules. Pyro- the acid containing one less water molecule Metha- the acid containing the fewer number of water molecules

Phosporic acid

metaphosphoric acid (HPO₃)

Pyrophosphoric acid $(H_4P_2O_7)$

Orthophosphoric acid (H_3PO_4)

Inorganic compounds nomenclature

Currently known inorganic compounds are about 6 million and their number increases by about 6000 a week. Such a number of substances need to be organized according to clear, simple and universally shared rules.

The purpose of nomenclature is to provide rules for identifying a compound, giving it a unique name and a formula, using as few words as possible

Rules for nomenclature are published by IUPAC (International Union of Pure and Applied Chemistry). <u>http://www.iupac.org/</u> "Traditional" nomenclature is sometimes still in use.

Oxidation number

O.N. is the charge that would be acquired by an element in a compound if bonding electrons were on the more electronegative atom. The O.N. is deduced from its external electronic configuration in its fundamental state.

$$\dot{O} = C = \dot{O} = \dot{O$$

The oxidation number is not an actual charge, but it is only formally attributed to the atom.

The oxidation numbers allow to distribute electrons between the atoms of a molecule. Since the distribution of electrons changes during a redox reaction, this method is used to identify a redox reaction, the reducing and oxidizing agents and to balance the chemical equation.

Aluminum and boron react to form aluminum bromide.

 $2 \text{ Al } (s) + 3 \text{ Br}_2 (l) \rightarrow \text{Al}_2 \text{Br}_6 (s)$ n.o. = 0 n.o. = 0 n.o. Al = +3 e n.o. Br = -1 54 To calculate the oxidation number in a compound:

- •1. Identify the most electronegative atom
- •2. Assign the electrons involved in bonds
- •3. Evaluate the gain and loss of electrons

H ₂ O	Ζ	electronegativity	Electron configuration	Oxidation number
Н	1	2.2	$1s^1$	+1 (1s ⁰)
0	8	3.5	$1s^22s^22p^4$	$-2(1s^22s^22p^6)$

NH ₃	Ζ	electronegativity	Electron configuration	Electron configuration
Н	1	2.2	$1s^1$	+1 (1s ⁰)
Ν	7	3.0	$1s^{2}2s^{2}2p^{3}$	$-3 (1s^22s^22p^6)$

CO ₂	Ζ	electronegativity	Electron configuration	Electron configuration
С	6	2.5	$1s^22s^22p^2$	$+4 (1s^2)$
Ο	8	3.5	$1s^{2}2s^{2}2p^{4}$	$-2(1s^22s^22p^6)$

1. What is the o.n. of sulphur in sulphuric acid?

2. What is the o.n. in the anion carbonate?

56

Determine the oxidation number of:

- a) Aluminum in aluminum oxide, Al_2O_3
- b) Phosphorus in phosphoric acid H₃PO₄
- c) Sulphur in sulphate SO_4^{2-}

a) Al_2O_3 bears no charge, O=-2, Al=+3(gruppo 3A): Net charge $Al_2O_3 = 0$ 2 (+3) + 3 (-2) = 0

b) H₃PO₄ bears no charge. If O has o.n.=-2, and each H atom has o.n.=+1, il P must have o.n.=+5 Net charge H₃PO₄ = 0 3(+1) + (+5) + 4(-2) = 0

c) Sulphate ion has a 2- charge $SO_4^{2-}O = -2$, therefore S = +6.

Net charge $SO_4^{2-} = 2$ o.n. S + n.o. O = -2 (+6) + 4 (-2) = -2