Chemistry of acids and basis

Svante Arrhenius (1859-1927)

Johannes N. Brønsted (1879-1947)

Thomas Martin Lowry (1874-1936)

Gilbert Newton Lewis (1875-1946)

Acids and bases can be roughly divided into: strong electrolytes (HCl , HNO_{3} e NaOH) and weak electrolytes $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$ e $\left.\mathrm{NH}_{3}\right)$

Acids

- produce hydrogen ions in H 2 O
- taste sour
- tornasole dye turns red
- are electrolytes in aqueous solution
- neutralize solutions containing hydroxide ions
- react with many metals generating H_{2} (g)
- react with carbonates generating CO_{2} (g)
- damage tissues
- $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$

Bases

- produce hydroxil ions $\mathrm{H}_{2} \mathrm{O}$
- bitter taste
- tornasole dye turns blue
- are electrolytes in aqueous solution
- neutralize solutions containing hydrogen ions
- have a soapy texture
- damage tissues (hydrolize lipids)
- $\mathrm{NaOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{NH}_{3}$
citric acid A weak acid

caffein
a weak base

Acids react easily with coral (essenzialmente CaCO_{3}) and develop gaseous CO_{2} yiealding a salt: $\left(\mathrm{CaCO}_{3}\right)$ and in general with metal carbonates developing gaseous CO_{2} and yielding a salt:

Acids react with many metals developing gaseous H_{2} and a salt:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})=\mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})=\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Strong acids ($K \ggg 1$): are fully dissociated $\quad(K \cong \infty)$

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Weak acids ($\mathrm{K}<1$): do not fully dissociate

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$\mathrm{K}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.8 \cdot 10^{-5} \mathrm{M}$

K allows evaluating the strength of an acid

Acids \& bases, definition

Arrhenius Theory (1883)

ACID: Produces H_{+}in Water
BASE: Produces OH- in Water

Bronsted/Lowry Theory (1923)
 ACID: proton, H^{+}DONOR
 BASE: proton, $\mathrm{H}+\mathrm{ACCEPTOR}$

Lewis Theory (1938)

a more general acid base theory.
ACID: accepts pair of electrons for sharing
BASE: donates pair of electrons for sharing

$$
\underset{\text { acid }}{\mathrm{X}+: Y} \rightarrow \mathrm{X}: \mathrm{Y}
$$

Bronsted acids

$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Bronsted bases

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Polyprotic acids

Acids such as $\mathrm{HCl}, \mathrm{HNO}_{3}$ e $\mathrm{CH}_{3} \mathrm{COOH}$ dissociate only one proton and are called "monoprotic". Polyprotic acids can dissocate two or more protons.

Sulphuric Acid

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
\text { s. }
\end{gathered}
$$

$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Phosphoric acid

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \neq \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Conjugate acid-base couples

Two compounds that differ for the presence/absence of a proton. All reactions between Bronsted acid and bases implies the tranfer of a H^{+}ion and it involves two conjugate acid-base couples.

Conjugate couple 1

Conjugate acid-base couples

Conjugate couple 2

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Conjugate couple 1
The nitrite anion $\mathrm{NO}_{2}{ }^{-}$is the conjugate base of nitrous acid and the hydronium ion is tha conjugate acid of water

Conjugate couple 2

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Conjugate couple 1
The $\mathrm{NH}_{4}{ }^{+}$ion is the conjugate acid of ammonia and the hydroxyl ion is the coniugate base of water

All reactions between Brønsted acid and bases implies the tranfer of a H^{+}ion and it involves two conjugate acid-base couples.

Conjugate acid-base couples

name	acid 1		base 2		base 1		acid 2
Hydrochloric acid	HCl	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	Cl^{-}		$\mathrm{H}_{3} \mathrm{O}^{+}$
Nitric acid	HNO_{3}	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{NO}_{3}{ }^{-}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
Hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{CO}_{3}{ }^{2-}$		$\mathrm{H}_{3} \mathrm{O}^{+}$
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
Cianidric acid	HCN	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	CN^{-}		$\mathrm{H}_{3} \mathrm{O}^{+}$
Sulphidric acid	$\mathrm{H}_{2} \mathrm{~S}$	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	HS^{-}		$\mathrm{H}_{3} \mathrm{O}^{+}$
ammonia	$\mathrm{H}_{2} \mathrm{O}$	$+$	NH_{3}	\rightleftarrows	OH^{-}		NH_{4}^{+}
Carbonate ion	$\mathrm{H}_{2} \mathrm{O}$	+	$\mathrm{CO}_{3}{ }^{2-}$	\rightleftarrows	OH^{-}		$\mathrm{HCO}_{3}{ }^{-}$
water	$\mathrm{H}_{2} \mathrm{O}$	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	OH^{-}		$\mathrm{H}_{3} \mathrm{O}^{+}$

L'acqua è amphiprotic (or amphoteric) since it cas accept a proton to yield the hydronium ion:

```
H2O(I)+HCl (aq)\rightleftarrows \rightleftarrows}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{}{+}(\textrm{aq})+\mp@subsup{\textrm{Cl}}{}{-}(\textrm{aq}
base acid
```


or it can donate a proton to yield the hydroxyl ion:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

acid base

Water autoprotolysis and it constant K_{W}
There is no need for an acid in water to form the hydron ionH $\mathrm{H}_{3} \mathrm{O}^{+}$. Two water molecule react to produce one hydronium and one hydroxil.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(1) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Friedrich W. G. Kohlrausch (1840-1910)

This self-ionization reaction (water ionic productwas discovered by Kohlrausch measuring the electrical conductivity of ultra pure water. When water ionizes at $25^{\circ} \mathrm{C}$ only 2 in 10^{9} are ionized.

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}} \begin{aligned}
& \text { since water } \\
& \begin{array}{l}
\text { concentration } \\
\text { variation is neglible } \\
(55.5 \mathrm{M})
\end{array}
\end{aligned} \mathrm{K} \cdot\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{W}}
$$

K_{w} is known as water ionization constant.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]
$$

In pure water $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$.

compound	Electrical conductivity(S/ $\mathrm{m})$
Ag	$6.30 \cdot 10^{7}$
Cu	$5.96 \cdot 10^{7}$
Au	$4.52 \cdot 10^{7}$
Al	$3.78 \cdot 10^{7}$
Sea water $(35 \mathrm{~g} / \mathrm{kg}$ $\mathrm{Na} \mathrm{Cl})$	5
tap water	$0.0005-0.05$
deionized and degassed $\mathrm{H}_{2} \mathrm{O}$	$5.50 \cdot 10^{-6}$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]=1.0 \cdot 10^{-14} \mathrm{M}^{2} \text { a } 25^{\circ} \mathrm{C}
$$

When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$a solution is called a Neutral Solution

If an acid or a base are added the equilibrium is perturbed

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

By adding an acid $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases and the solution becomes acidic.
Le Châtelier's principle predicts that a small amount of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will react with OH^{-}(from water self-protolysis). This lowers [OH^{-}] until
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$

- neutral solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \cdot 10^{-7} \mathrm{M}$
- acidic solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$e $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7} \mathrm{M}$
- basica solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$e $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$

In conclusion:

Exercise 1. What are the concentrations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {and }}\left[\mathrm{OH}^{-}\right]$of 0.01 M di HCl at $25^{\circ} \mathrm{C}$.

Exercise 1. What are the concentrations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {and }}\left[\mathrm{OH}^{-}\right]$of 0.01 Mdi HCl at $25^{\circ} \mathrm{C}$.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$0.01 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$and $0.01 \mathrm{~mol} / \mathrm{L}$ of Cl^{-}are formed

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{HCl}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{H}_{2 \mathrm{O}}}=0.01+10^{-7} \approx 0.01 \mathrm{M}} \\
& Q=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }} \times\left[\mathrm{OH}^{-}\right]=0.01 \times 10^{-7}=10^{-9} \gg \mathrm{~K}_{\mathrm{W}}=10^{-14} \mathrm{M}^{2}
\end{aligned}
$$

Exercise 1. What are the concentrations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {and }}\left[\mathrm{OH}^{-}\right]$of 0.01 M di HCl at $25^{\circ} \mathrm{C}$.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$0.01 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$and $0.01 \mathrm{~mol} / \mathrm{L}$ of Cl^{-}are formed

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{HCl}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}}=0.01+10^{-7} \approx 0.01 \mathrm{M}} \\
& \mathrm{Q}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }} \times\left[\mathrm{OH}^{-}\right]=0.01 \times 10^{-7}=10^{-9}>\mathrm{K}_{\mathrm{W}}=10^{-14} \mathrm{M}^{2}
\end{aligned}
$$

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {total }}=10^{-14} / 0.01=10^{-12} \mathrm{M}
$$

Logarithm

The logarithm function in base $=\mathrm{b}$ is the inverse function with respect to the eponential funcion in base b. The logarithm in base b of a number x is th number to whic b must be raised to obtain x.
therefore:

$$
x=b^{y}
$$

$$
y=\log _{b} x
$$

Example, $\log _{3} 81=4$, since $3^{4}=81$. Logarithm transforms products into sums, divisions into subtractions and exponentiations into products.

$$
\begin{gathered}
\log _{b}(x \cdot y)=\log _{b} x+\log _{b} y \\
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \\
\log _{b} x^{y}=y \cdot \log _{b} x
\end{gathered}
$$

pH scale
pH is defined as the decimal logarithm of the reciprocal of the hydronium concentration:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

pOH isdefined as the decimal logarithm of the reciprocal of the oxydril concentration:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]
$$

In water $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$ and $\mathrm{pH}=\mathrm{pOH}=7$ $\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10} 10^{-7}=7$

For constants: $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\mathrm{K}=\frac{\left[\mathrm{NH}_{3}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \cdot 10^{-10} \mathrm{M} \quad \mathrm{pK}=-\log _{10}\left(5.6 \times 10^{-10}\right)=9.25
$$

$\begin{array}{r} 14 \\ 12- \end{array}$	pH scale		solution	pH
			1 M HCl	0.0
	-	ammonia pH 11.9	gastric juice	1.0
			Lemon juice	2.3
$\mathrm{pH}^{8}-7-$	movila		vinegar	2.8
			wine	3.5
	blood pH 7.		Tomato juice	4.1
			coffee	5.0
			Acidic rain	5.6
			urine	6.0
			rain	6.5
$4-$,	Orange juice	milk	6.6
		pH 3.8	pure water	7.0
2			blood	7.4
			Bicarbonate solution	8.4
		pH 2.8	Tooth paste	9.9
0			NH_{3}	11.9

The sum of pH e del pOH at $25^{\circ} \mathrm{C}$ is 14:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]=1.0 \cdot 10^{-14} \mathrm{M}^{2} \text { a } 25^{\circ} \mathrm{C} \\
& -\log _{10} \mathrm{~K}_{\mathrm{W}}=-\log _{10}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]\right)=-\log _{10} 1.0 \cdot 10^{-14} \\
& \mathrm{pK}_{\mathrm{W}}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log _{10}\left[\mathrm{OH}^{-}\right]=14 \\
& \mathrm{pK}_{\mathrm{W}}=\mathrm{pH}+\mathrm{pOH}=14
\end{aligned}
$$

Water self-ionization is endothermic

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\text { heat } \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$\mathrm{T}^{\circ} \mathrm{C}$	$\mathrm{K}_{\mathrm{W}}\left(\mathrm{M}^{2}\right)$	$\mathrm{pH}=\mathrm{pOH}$
0	$0.114 \cdot 10^{-14}$	7.47
10	$0.293 \cdot 10^{-14}$	7.27
15	$0.450 \cdot 10^{-14}$	7.17
20	$0.681 \cdot 10^{-14}$	7.08
25	$1.008 \cdot 10^{-14}$	7.00
30	$1.471 \cdot 10^{-14}$	6.92
40	$2.916 \cdot 10^{-14}$	6.77
50	$5.476 \cdot 10^{-14}$	6.63
100	$51.3 \cdot 10^{-14}$	6.14

$\Delta H=52 \mathrm{~kJ} / \mathrm{mol}$

At all temperatures $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

Calculate the pH at $25^{\circ} \mathrm{C}$ of:
a) 0.01 M di HCl ; b) 0.1 M NaOH e c) $0.2 \mathrm{M} \mathrm{HClO}_{4}$.

Calculate the pH at $25^{\circ} \mathrm{C}$ of:
a) 0.01 M di HCl ; b) $0.1 \mathrm{M} \mathrm{NaOH} \mathrm{e} \mathrm{c)} 0.2 \mathrm{M} \mathrm{HClO}_{4}$.
a) $\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]=0.01 \mathrm{M} \rightarrow \mathrm{pH}=-\log _{10}(0.01)=-\log _{10}\left(10^{-2}\right)=2
$$

b) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})$

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=0.1 \mathrm{M} \rightarrow \mathrm{pOH}=-\log _{10}(0.1)=-\log _{10}\left(10^{-1}\right)=1
$$

$$
\mathrm{pH}=14-\mathrm{pOH}=13
$$

c) $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{ClO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HClO}_{4}\right]=0.2 \mathrm{M} \rightarrow \mathrm{pH}=-\log _{10}(0.2)=-\log _{10}\left(2 \times 10^{-1}\right)=0.698
$$

If $\mathrm{pH}=8.5$ what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

If $\mathrm{pOH}=8.5$, what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

If $\mathrm{pH}=8.5$ what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-8.5}=3.16 \cdot 10^{-9} \mathrm{M}
$$

If $\mathrm{pOH}=8.5$, what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

$$
\begin{aligned}
& \mathrm{pH}=14-\mathrm{pOH}=5.5 \\
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5.5}=3.16 \cdot 10^{-6} \mathrm{M}}
\end{aligned}
$$

Measuring pH : indirect and direct methods

Tornasole is a dye extracted from lichens of the Rocella genus.

A pHmeter measures pH directly using a potentiometric method

Red cabbage has contains natural dyes. These can be easily extracted by boiling red cabbage in water: the concentrated extract is red-purple. There are many different types of colored substances in plants, such as chlorophylls, carotenoids and anthocyanins.

The colour dpends on the protonation state

Equilibrium constants for acids and bases

They allow to evaluate the tendency of a compound to react with water. The relative strength of acids can be inferred from the pH of their solution at the same concentration: the lower the pH the stronger the acid.

The relative strength of an acid or base can be expressed quantitatively using the equilibrium constant.

For a generic weak acid

$$
\begin{aligned}
& \text { For a generic weak acid } \\
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned} \mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

For a generic weak acid
$\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{B}}=\frac{\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}
$$

The stregth increases as K_{A} or K_{B} increase.

Which of these acids is the strongest?

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4.5 \cdot 10^{-4} \mathrm{M} \text { a } 25^{\circ} \mathrm{C}
$$

$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=7.2 \cdot 10^{-4} \mathrm{M} \text { a } 25^{\circ} \mathrm{C}
$$

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4.2 \cdot 10^{-7} \mathrm{M} \text { a } 25^{\circ} \mathrm{C}
$$

Whic of these bases is the strongest?

$$
\begin{aligned}
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{B}}=\frac{\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \cdot 10^{-5} \mathrm{M} \text { a } 25^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad$ metilammina $\mathrm{K}_{\mathrm{B}}=\frac{\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}=5.0 \cdot 10^{-4} \mathrm{M}$ a $25^{\circ} \mathrm{C}$
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{B}}=\frac{\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{3}^{2-}\right]}=2.1 \cdot 10^{-4} \mathrm{M}$ a $25^{\circ} \mathrm{C}$

Polyprotic acids

Phosphoric acid

$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{K}_{1}=7.1 \cdot 10^{-3}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{K}_{2}=6.2 \cdot 10^{-8}$
$\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{K}_{3}=4.4 \cdot 10^{-13}$

Carbonic acid

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{K}_{1}=4.7 \cdot 10^{-7}$
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{K}_{2}=4.7 \cdot 10^{-11}$

Sulphuric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad \mathrm{K}_{1}=\sim 10^{2}$
$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad \mathrm{K}_{2}=1.2 \cdot 10^{-2}$

Ionization constants of some acids and their conjugate bases at $25^{\circ} \mathrm{C}$

acid	acido	$\mathrm{K}_{\text {A }}$	base	K_{B}	base
hydrochloric	HCl	>>1	Cl^{-}	$\ll 1$	chloride
nitric	HNO_{3}	>>1	$\mathrm{NO}_{3}{ }^{-}$	$\ll 1$	nitrate
hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$	1	$\mathrm{H}_{2} \mathrm{O}$	$1.0 \cdot 10^{-14}$	water
phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$7.5 \cdot 10^{-3}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$1.3 \cdot 10^{-12}$	Di-hydrogen phosphate
fluoridric	HF	$7.2 \cdot 10^{-4}$	F^{-}	$1.4 \cdot 10^{-11}$	flluorure
acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$1.8 \cdot 10^{-5}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$5.6 \cdot 10^{-10}$	acetate
carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$4.2 \cdot 10^{-7}$	$\mathrm{HCO}_{3}{ }^{-}$	$2.4 \cdot 10^{-8}$	Hydrogen carbonate
sulphidric	$\mathrm{H}_{2} \mathrm{~S}$	$1.0 \cdot 10^{-7}$	HS^{-}	$1.0 \cdot 10^{-7}$	Hydrogen sulphite
Di-hydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$6.2 \cdot 10^{-8}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}$	$1.6 \cdot 10^{-7}$	Hydrogen phosphate
ammonium	NH_{4}^{+}	$5.6 \cdot 10^{-10}$	NH_{3}	$1.8 \cdot 10^{-5}$	ammonia
cianidric	HCN	$4.0 \cdot 10^{-10}$	CN^{-}	$2.5 \cdot 10^{-5}$	cianate
Hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	$4.8 \cdot 10^{-11}$	$\mathrm{CO}_{3}{ }^{2-}$	$2.1 \cdot 10^{-4}$	carbonate
Hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	$3.6 \cdot 10^{-13}$	$\mathrm{PO}_{4}{ }^{3-}$	$2.8 \cdot 10^{-2}$	phosphate
wa	$\mathrm{H}_{2} \mathrm{O}$	$1.0 \cdot 10^{-14}$	OH^{-}	1	hydroxil

