Organic compounds

In the past, chemical compounds were divided into two large groups, inorganic and organic, based on their origin. Organic chemistry thus became the chemistry of carbon compounds.

Maintaining the distinction was and is justified:

All organic compounds contain carbon.

> carbon compounds are much more numerous than the compounds of all other elements put together

> carbon has a special reactivity thanks to its electronic configuration

Il carbonio: il "lego" atomico.

- 1. Carbon may form long covalent chains giving rise to many different compounds.
- 2. Carbon can form single, double, and triple bonds.
- 3. Carbon can form strong, stable bonds with
- H, O, S, P, N and with halogens.

Allotropic forms of Carbon

Carbon life vs silicon life

- Carbon forms C-C more stable than Si-Si ones (356 kJ/mol vs 230 kJ/mol)

- The oxidation product of silicon SiO₂ is a solid, Whereas CO_2 is a gas.

- Carbon forms chiral compounds, at difference with silicon.

Silicon life, "A Martian Odyssey" (S. Weisbaum)

Those bricks were its waste matter... We're carbon, and our waste is carbon dioxide, and this thing is silicon, and its waste is silicon dioxide-silica. But silica is a solid, hence the bricks. And it build itself in, and when it is covered, it moves over to a fresh place to start over.

ELECTRONIC STRUCTURE OF CARBON

Carbon has electronic configuration 1s² 2s² 2p²

With few exceptions (such as CO), carbon always forms 4 bonds.

Ibridization: with a modest energy cost (compensated by the formation of *4 bonds 4 rather than 2*) *C* can decouple the two electrons in the 2s orbital and promote one in the empty orbital $2p_z$ assuming a configuration: $1s^2 2s 2p^3$.

:c≡o:

4 energetically equivalent orbitals The 4 sp³ hybrid orbitals are arranged to be as far as possible from each other, and are therefore oriented pointing to the four vertexes of a tethahedron (109° 28').

Ibridazione sp³

Methane: CH₄

These are the bonds found in ALKANES where carbon forms 4 σ bonds with a tetrahedral geometry.

Tetrahedrical geometries compared: sp³ hybridization

In sp² hybridization, orbitals 2s, $2p_x e 2p_y$ are combined forming three equivalent orbitals

These orbitals lie on a plane with 120° angles. The geometry is trigonalplanar.

The $2p_z$ orbital which is not hybridized is orthogonal to the plane.

The 3 coplanar orbitals can from σ bonds, while the $2p_z$ one forms a π bond.

There can not be rotation around a π double bond, at difference with the $\sigma.$

This is a characteristic of ALKENES, which are defined by having at least one double bond.

In the **sp**, hybridization only 2s e $2p_x$ orbitals are combined, yielding 2 identical linear orbitals; the $2p_y$ e $2p_z$ orbitals are not modified. The hybrid sp orbitals form σ , bonds (*linear geometri*, 180°), while the remining nt hybridized ones can form π bonds.

The sp hybridization is found in compounds that from triple C-C bonds (ALKYNES).

Ethyne (acetylene): C_2H_2

Hydrocarbons

- 1 Aliphatic open chain
- 2 Cyclic contain rings
- 3 Aromatic containing at least one benzene ring
- 4 Heterocyclic rings with one or more atom different from carbon.

Hydrocarbon Classification

Compounds of carbon and hydrogen.

Hydrocarbons

They are the basic molecules of organic chemistry since, in addition to being very numerous, all other compounds can be considered as derivatives by replacing a hydrogen atom with a so-called functional group, i.e. chemical group, conferring to the compound characteristics different from those of the hydrocarbon of origin.

Name	Molecular Formula (C _n H _{2n+ 2})	Condensed Structural Formula	Number of Possible Isomers
methane	CH_4	CH ₄	—
ethane	C_2H_6	CH ₃ CH ₃	—
propane	C_3H_8	CH ₃ CH ₂ CH ₃	—
butane	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	2
pentane	C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	3
hexane	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	5
heptane	$C_{7}H_{16}$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	9
octane	$C_{8}H_{18}$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	18
nonane	C_9H_{20}	CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃	35
decane	$C_{10}H_{22}$	CH ₃ CH ₂	75

Alkanes physical properties

Alkanes are *apolar* and involve only covalent, symmetric bonds.

Intermolecular interactions are due to weak Van der Waals forces, that become relevant in large molecules, since they sum up depending on the size .

n	Name	Bp, °C (760 mm)	Mp, °C	Density at 20°, d₄º, g ml⁻¹	
1	methane	-161.5	-183	0.424ª	
2	ethane	-88.6	-172	0.546ª	
3	propane	-42.1	-188	0.501*	
4	butane	-0.5	-135	0.579*	
5	pentane	36.1	-130	0.626	
6	hexane	68.7	-95	0.659	
7	heptane	98.4	-91	0.684	
8	octane	125.7	-57	0.703	
9	nonane	150.8	-54	0.718	
10	decane	174.1	-30	0.730	
11	undecane	195.9	-26	0.740	
12	dodecane	216.3	-10	0.749	
15	pentadecane	270.6	10	0.769	
20	eicosane	342.7	37	0.786°	
30	triacontane	446.4	66	0.810°	

Physical Properties of Alkanes, CH₃(CH₂)_{n-1}H

"At the boiling point. "Under pressure. "For the supercooled liquid.

IUPAC Alkanes nomenclture

- 1. Choose the longest chain.
- 2. Consider the compound as a derivative, vith H atoms substituted by alkyl groups. [alkyl groups: groups wih a H less than the corresponding alkane. CH₃-, methyl; CH₃-CH₂-, ethyl; CH₃-CH₂-CH₂-, propyl; ec.]
- 3. Number the main chain atom in order to use the smallest number to indicate the substituent position.
- 4. If the same group appears more than once use the prefix *di-*, *tri-*, *tetra-*, etc.
- 5. If there are different groups, name them in alphabetic order.

No. of C atoms	Name of alkane	Molecular formula	Name of alkyl group	Formula
1	Methane	CH ₄	Methyl	-CH ₃
2	Ethane	C2H6	Ethyl	-C2H5
3	Propane	C ₃ H ₈	Propyl	-C ₃ H ₇
4	Butane	C4H10	Butyl	-C4H9
5	Pentane	C ₅ H ₁₂	Pentyl	-C ₅ H ₁₁
6	Hexane	C ₆ H ₁₄	Hexyl	-C ₆ H ₁₃
7	Heptane	C7H16	Heptyl	-C ₇ H ₁₅
8	Octane	C ₈ H ₁₈	Octyl	-C ₈ H ₁₇
9	Nonane	C ₉ H ₂₀	Nonyl	-C ₉ H ₁₉
10	Decane	C10H22	Decyl	-C10H21

Names of alkyl groups

$$CH_3 CH_2-CH_3$$

 $CH_3-CH-CH_2-CH-CH_2-CH_3$
4-ethyl-2-methylhexane
7 6 5 4 3 2 1
 $CH_3-CH_2-CH-CH-CH-CH-CH$

$$\begin{array}{c} \operatorname{CH_3-CH_2} & \operatorname{CH_3} \\ \operatorname{CH_3-CH-CH_2-CH-CH-CH_2-CH_3} \\ \operatorname{CH_3-CH-CH_2-CH_2-CH_3} \\ \operatorname{CH_3} \end{array}$$

CH3

сн сн₂—сн₂

methylcyclopropane

2,3,5-trimethyl-4-propylheptane (NOT: 2,3-dimethyl-4-sec-butylheptane)

$$\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3}-CH-CH_{2}-CH_{2}-CH-CH_{2}-CH-CH_{2}-CH_{2}-CH_{3} \\ CH-CH_{3} \\ CH_{2}-CH_{3} \end{array}$$

 $\begin{array}{c} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\\ \mathrm{CH}_{3} \quad \begin{array}{c} \mathrm{CH}_{2} \\ \mathrm{CH}_{3} \end{array} \\ \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \end{array}$

5-sec-butyl-2,7-dimethylnonane

Carbon atom classification

A carbon atom can be: **primary**, **secondary**, **tertiary** o **quaternary**, according to the number of carbon atoms to which it is bound.

Alkanes rections

Alkanes are inert toward most reagents and they react in drastic conditions

Alogenation

$$CH_3 CH_3 \xrightarrow{Br_2} CH_3 CH_2 Br$$
Light, 127°

Oxidation

Alkanes are not easily oxidized, and when they do they achieve the most oxidized state (CO_2) :

$$CH_4 + 2 O_2 \longrightarrow H_2O + CO_2 + energy$$

BREAKING COVALENT BONDS

There are 3 ways to split the shared electron pair in an unsymmetrical covalent bond.

UNEQUAL SPLITTING produces IONS known as HETEROLYSIS or HETEROLYTIC FISSION

$$X : Y \longrightarrow X^{-} + Y^{+}$$
$$X : Y \longrightarrow X^{+} + Y^{-}$$

EQUAL SPLITTING produces RADICALS known as HOMOLYSIS or HOMOLYTIC FISSION

$$X \stackrel{*}{\cdot} Y \longrightarrow X \cdot + Y$$

- If several bonds are present the weakest bond is usually broken first
- Energy to break bonds can come from a variety of energy sources heat / light
- In the reaction between methane and chlorine either can be used, however...
- In the laboratory a source of UV light (or sunlight) is favoured.

Mechanism of radicalic halogenation (substitution)

The product halogenated on tertiary C is more abundant, due to the relative stability of the radicals

ISOMERISM

Isomerism indicates the fact that substances that have the same formula and molecular mass, differ for physical properties and often also for chemical behaviour due to differences in the structure.

ALKANES

Frome butane on we find **isomerism**, when *two molecules hav same* formula but different structure.

Butane has two isomers: *normal*butane (*n*-butane) and *iso*butane (or methylpropane).

The larger the number of C atoms the larger the number of isomers: $C_4H_{10} \rightarrow 2$ isomers $C_8H_{18} \rightarrow 18$ isomers $C_5H_{12} \rightarrow 3$ isomers $C_9H_{20} \rightarrow 35$ isomers $C_6H_{14} \rightarrow 5$ isomers.... $C_7H_{16} \rightarrow 9$ isomers $C_{40}H_{82} \rightarrow 62.491.178.805.831$ isomers

Name	Molecular Formula (C _n H _{2n+ 2})	Condensed Structural Formula	Number of Possible Isomers
methane	CH_4	CH ₄	—
ethane	C_2H_6	CH ₃ CH ₃	—
propane	C_3H_8	CH ₃ CH ₂ CH ₃	—
butane	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	2
pentane	$C_{5}H_{12}$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	3
hexane	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	5
heptane	$C_{7}H_{16}$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	9
octane	C_8H_{18}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	18
nonane	C_9H_{20}	CH ₃ CH ₂ CH ₃	35
decane	$C_{10}H_{22}$	CH ₃ CH ₂	75

Simplified structure

How many isomers for C_5H_{12} ?

Identical structures

Butane, bond rotation

Butane, bond rotation

Rotation around single bonds is fast.

Butane, bond rotation

Stereoisomerism

Conformational isomerism: the different structures are converted without breaking bonds. Interconversion, same compound.

The σ bond can rotate \rightarrow the structure of ethane can assume al conformations from eclipsed to staggered.

The staggered conformation is more stable by 2.9 kcal/mole

For molecules such as butane or 1,2 dichloroethane one finds relative and absolute minima.

1,2-dichloroethane

CICLOALKANES

These are saturated hdrocarbons that have a closed chain.

They can have *addition reactions* that break the ring inducing the formation of linear alkanes.

This is due to the ring tension (angular tension) that destabilizes them.

 for a sp³carbon, the deviation from a tetrahedral geometry causes an angular tension.

• A couple of sp³ carbons is more stable if their conformation is staggered.

Insaturated hydrocarbons: ALKENES

Alkenes have at least a double π bond Their name has the suffix -ENE

The double-bond involves a σ bond (83 kcal/mole), derived dalla from the overlap of sp^2 orbital and a π bond (62 kcal/mole), from the partial overlap of **p** orbitals.

The double bond is stonger than a single one (145 vs 83 kcal/mole) and shorter (1,34 vs 1,53 Å).

The molecule is planar

Geometric isomerism

Depending on the position of the bond we can have 1-butene o 2butene; 2-butene can have two structures:

These are stereoisomers. Their difference is in the spatial arrangement and not in the bond order. More precisely they are **diastereoisomers** since they are not mirror images.

Geomeric isomerism (cis-trans) is present whenever a bond can not rotate, including cyclic compounds.

