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IntroDuctIon
High-throughput mRNA sequencing (RNA-seq) offers the abil-
ity to discover new genes and transcripts and measure transcript 
expression in a single assay1–3. However, even small RNA-seq experi-
ments involving only a single sample produce enormous volumes 
of raw sequencing reads—current instruments generate more 
than 500 gigabases in a single run. Moreover, sequencing costs are 
reducing exponentially, opening the door to affordable personal-
ized sequencing and inviting comparisons with commodity com-
puting and its impact on society4. Although the volume of data 
from RNA-seq experiments is often burdensome, it can provide 
enormous insight. Just as cDNA sequencing with Sanger sequencers 
drastically expanded our catalog of known human genes5, RNA-
seq reveals the full repertoire of alternative splice isoforms in our 
transcriptome and sheds light on the rarest and most cell- and 
context-specific transcripts6. Furthermore, because the number of 
reads produced from an RNA transcript is a function of that tran-
script’s abundance, read density can be used to measure transcript7,8 
and gene2,3,9,10 expression with comparable or superior accuracy to 
expression microarrays1,11.

RNA-seq experiments must be analyzed with robust, efficient and 
statistically principled algorithms. Fortunately, the bioinformat-
ics community has been hard at work developing mathematics, 
statistics and computer science for RNA-seq and building these 
ideas into software tools (for a recent review of analysis concepts 
and software packages see Garber et al.12). RNA-seq analysis tools 
generally fall into three categories: (i) those for read alignment; 
(ii) those for transcript assembly or genome annotation; and  
(iii) those for transcript and gene quantification. We have developed  

two popular tools that together serve all three roles, as well as a 
newer tool for visualizing analysis results. TopHat13 (http://tophat.
cbcb.umd.edu/) aligns reads to the genome and discovers transcript 
splice sites. These alignments are used during downstream analysis 
in several ways. Cufflinks8 (http://cufflinks.cbcb.umd.edu/) uses 
this map against the genome to assemble the reads into transcripts. 
Cuffdiff, a part of the Cufflinks package, takes the aligned reads 
from two or more conditions and reports genes and transcripts 
that are differentially expressed using a rigorous statistical ana-
lysis. These tools are gaining wide acceptance and have been used 
in a number of recent high-resolution transcriptome studies14–17. 
CummeRbund renders Cuffdiff output in publication-ready fig-
ures and plots. Figure 1 shows the software used in this protocol 
and highlights the main functions of each tool. All tools used in 
the protocol are fully documented on the web, actively maintained 
by a team of developers and adopt well-accepted data storage and 
transfer standards.

Limitations of the protocol and software
TopHat and Cufflinks do not address all applications of RNA-seq, 
nor are they the only tools for RNA-seq analysis. In particular, 
TopHat and Cufflinks require a sequenced genome (see below for 
references to tools that can be used without a reference genome). 
This protocol also assumes that RNA-seq was performed with either 
Illumina or SOLiD sequencing machines. Other sequencing tech-
nologies such as 454 or the classic capillary electrophoresis approach 
can be used for large-scale cDNA sequencing, but analysis of such 
data is substantially different from the approach used here.
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recent advances in high-throughput cDna sequencing (rna-seq) can reveal new genes and splice variants and quantify expression 
genome-wide in a single assay. the volume and complexity of data from rna-seq experiments necessitate scalable, fast and 
mathematically principled analysis software. topHat and cufflinks are free, open-source software tools for gene discovery and 
comprehensive expression analysis of high-throughput mrna sequencing (rna-seq) data. together, they allow biologists to 
identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more 
conditions. this protocol describes in detail how to use topHat and cufflinks to perform such analyses. It also covers several 
accessory tools and utilities that aid in managing data, including cummerbund, a tool for visualizing rna-seq analysis results. 
although the procedure assumes basic informatics skills, these tools assume little to no background with rna-seq analysis and  
are meant for novices and experts alike. the protocol begins with raw sequencing reads and produces a transcriptome assembly, 
lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results.  
the protocol’s execution time depends on the volume of transcriptome sequencing data and available computing resources but 
takes less than 1 d of computer time for typical experiments and ~1 h of hands-on time.
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TopHat and Cufflinks are both operated through the UNIX shell. 
No graphical user interface is included. However, there are now 
commercial products and open-source interfaces to these and other 
RNA-seq analysis tools. For example, the Galaxy Project18 uses a 
web interface to cloud computing resources to bring command-
line–driven tools such as TopHat and Cufflinks to users without 
UNIX skills through the web and the computing cloud.

Alternative analysis packages
TopHat and Cufflinks provide a complete RNA-seq workflow, but 
there are other RNA-seq analysis packages that may be used instead 
of or in combination with the tools in this protocol. Many alterna-
tive read-alignment programs19–21 now exist, and there are several 
alternative tools for transcriptome reconstruction22,23, quantifica-
tion10,24,25 and differential expression26–28 analysis. Because many of 
these tools operate on similarly formatted data files, they could be 
used instead of or in addition to the tools used here. For example, 
with straightforward postprocessing scripts, one could provide 
GSNAP19 read alignments to Cufflinks, or use a Scripture22 tran-
scriptome reconstruction instead of a Cufflinks one before differ-
ential expression analysis. However, such customization is beyond 
the scope of this protocol, and we discourage novice RNA-seq users 
from making changes to the protocol outlined here.

This protocol is appropriate for RNA-seq experiments on organ-
isms with sequenced reference genomes. Users working without a 
sequenced genome but who are interested in gene discovery should 
consider performing de novo transcriptome assembly using one 
of several tools such as Trinity29, Trans-Abyss30 or Oases (http://
www.ebi.ac.uk/~zerbino/oases/). Users performing expression ana-
lysis with a de novo transcriptome assembly may wish to consider 
RSEM10 or IsoEM25. For a survey of these tools (including TopHat 
and Cufflinks) readers may wish to see the study by Garber et al.12, 
which describes their comparative advantages and disadvantages 
and the theoretical considerations that inform their design.

Overview of the protocol
Although RNA-seq experiments can serve many purposes, we 
describe a workflow that aims to compare the transcriptome pro-
files of two or more biological conditions, such as a wild-type versus 
mutant or control versus knockdown experiments. For simplicity, 
we assume that the experiment compares only two biological con-
ditions, although the software is designed to support many more, 
including time-course experiments.

This protocol begins with raw RNA-seq reads and concludes with 
publication-ready visualization of the analysis. Figure 2 highlights 
the main steps of the protocol. First, reads for each condition are 
mapped to the reference genome with TopHat. Many RNA-seq 
users are also interested in gene or splice variant discovery, and the 
failure to look for new transcripts can bias expression estimates 
and reduce accuracy8. Thus, we include transcript assembly with 

Cufflinks as a step in the workflow (see Box 1 for a workflow that 
skips gene and transcript discovery). After running TopHat, the 
resulting alignment files are provided to Cufflinks to generate a 
transcriptome assembly for each condition. These assemblies are 
then merged together using the Cuffmerge utility, which is included 
with the Cufflinks package. This merged assembly provides a uni-
form basis for calculating gene and transcript expression in each 
condition. The reads and the merged assembly are fed to Cuffdiff, 
which calculates expression levels and tests the statistical signifi-
cance of observed changes. Cuffdiff also performs an additional 
layer of differential analysis. By grouping transcripts into biologi-
cally meaningful groups (such as transcripts that share the same 
transcription start site (TSS)), Cuffdiff identifies genes that are dif-
ferentially regulated at the transcriptional or post-transcriptional 
level. These results are reported as a set of text files and can be 
displayed in the plotting environment of your choice.

We have recently developed a powerful plotting tool called 
CummeRbund (http://compbio.mit.edu/cummeRbund/), which 
provides functions for creating commonly used expression plots 
such as volcano, scatter and box plots. CummeRbund also han-
dles the details of parsing Cufflinks output file formats to con-
nect Cufflinks and the R statistical computing environment. 
CummeRbund transforms Cufflinks output files into R objects 
suitable for analysis with a wide variety of other packages available 
within the R environment and can also now be accessed through the 
Bioconductor website (http://www.bioconductor.org/).

This protocol does not require extensive bioinformatics exper-
tise (e.g., the ability to write complex scripts), but it does assume 
familiarity with the UNIX command-line interface. Users should 

Cufflinks package

Cuffcompare
  Compares transcript assemblies to annotation

Cuffmerge
  Merges two or more transcript assemblies

Cuffdiff
  Finds differentially expressed genes and transcripts 
  Detects differential splicing and promoter use

TopHat
Aligns RNA-Seq reads to the genome using Bowtie

Discovers splice sites

CummeRbund
Plots abundance and differential 
expression results from Cuffdiff

Bowtie
Extremely fast, general purpose short read aligner

Cufflinks
  Assembles transcripts

Figure 1 | Software components used in this protocol. Bowtie33 forms the 
algorithmic core of TopHat, which aligns millions of RNA-seq reads to the 
genome per CPU hour. TopHat’s read alignments are assembled by Cufflinks 
and its associated utility program to produce a transcriptome annotation of 
the genome. Cuffdiff quantifies this transcriptome across multiple conditions 
using the TopHat read alignments. CummeRbund helps users rapidly explore 
and visualize the gene expression data produced by Cuffdiff, including 
differentially expressed genes and transcripts.
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feel comfortable creating directories, moving files between them 
and editing text files in a UNIX environment. Installation of the 
tools may require additional expertise and permission from one’s 
computing system administrators.

Read alignment with TopHat
Alignment of sequencing reads to a reference genome is a core step 
in the analysis workflows for many high-throughput sequencing 
assays, including ChIP-Seq31, RNA-seq, ribosome profiling32 and 
others. Sequence alignment itself is a classic problem in computer 
science and appears frequently in bioinformatics. Hence, it is per-
haps not surprising that many read alignment programs have been 
developed within the last few years. One of the most popular and to 
date most efficient is Bowtie33 (http://bowtie-bio.sourceforge.net/
index.shtml), which uses an extremely economical data structure 
called the FM index34 to store the reference genome sequence and 
allows it to be searched rapidly. Bowtie uses the FM index to align 
reads at a rate of tens of millions per CPU hour. However, Bowtie 
is not suitable for all sequence alignment tasks. It does not allow 
alignments between a read and the genome to contain large gaps; 
hence, it cannot align reads that span introns. TopHat was created 
to address this limitation.

TopHat uses Bowtie as an alignment ‘engine’ and breaks up reads 
that Bowtie cannot align on its own into smaller pieces called seg-
ments. Often, these pieces, when processed independently, will 
align to the genome. When several of a read’s segments align to 
the genome far apart (e.g., between 100 bp and several hundred 
kilobases) from one another, TopHat infers that the read spans a 
splice junction and estimates where that junction’s splice sites are. 
By processing each ‘initially unmappable’ read, TopHat can build 
up an index of splice sites in the transcriptome on the fly without 
a priori gene or splice site annotations. This capability is crucial, 
because, as numerous RNA-seq studies have now shown, our cata-
logs of alternative splicing events remain woefully incomplete. Even 
in the transcriptomes of often-studied model organisms, new splic-
ing events are discovered with each additional RNA-seq study.

Aligned reads say much about the sample being sequenced. 
Mismatches, insertions and deletions in the alignments can iden-
tify polymorphisms between the sequenced sample and the ref-
erence genome, or even pinpoint gene fusion events in tumor 
samples. Reads that align outside annotated genes are often strong 
evidence of new protein-coding genes and noncoding RNAs. As 
mentioned above, RNA-seq read alignments can reveal new alter-
native splicing events and isoforms. Alignments can also be used 
to accurately quantify gene and transcript expression, because 
the number of reads produced by a transcript is proportional to 
its abundance (Box 2). Discussion of polymorphism and fusion 

detection is out of the scope of this protocol, and we address 
transcript assembly and gene discovery only as they relate to dif-
ferential expression analysis. For a further review of these topics,  
see Garber et al.12.

Transcript assembly with Cufflinks
Accurately quantifying the expression level of a gene from RNA-
seq reads requires accurately identifying which isoform of a given 
gene produced each read. This, of course, depends on knowing all 
of the splice variants (isoforms) of that gene. Attempting to quantify 
gene and transcript expression by using an incomplete or incorrect 
transcriptome annotation leads to inaccurate expression values8. 
Cufflinks assembles individual transcripts from RNA-seq reads that 
have been aligned to the genome. Because a sample may contain 
reads from multiple splice variants for a given gene, Cufflinks must 
be able to infer the splicing structure of each gene. However, genes 
sometimes have multiple alternative splicing events, and there may 
be many possible reconstructions of the gene model that explain 
the sequencing data. In fact, it is often not obvious how many splice 
 variants of the gene may be present. Thus, Cufflinks reports a parsi-
monious transcriptome assembly of the data. The algorithm reports 
as few full-length transcript fragments or ‘transfrags’ as are needed to 
‘explain’ all the splicing event outcomes in the input data.

TopHat

Cufflinks

Cuffmerge

Final
transcriptome

assembly

Condition A

Reads

Mapped
reads

Assembled
transcripts

Mapped
reads

Condition B

Differential
expression results

Cuffdiff

Expression 
plots

CummeRbund

Reads

Mapped
reads

Assembled
transcripts

Mapped
reads

Step 1

Step 2

Steps 3–4

Step 5

Steps 6–18

Figure 2 | An overview of the Tuxedo protocol. In an experiment involving 
two conditions, reads are first mapped to the genome with TopHat. The 
reads for each biological replicate are mapped independently. These 
mapped reads are provided as input to Cufflinks, which produces one file of 
assembled transfrags for each replicate. The assembly files are merged with 
the reference transcriptome annotation into a unified annotation for further 
analysis. This merged annotation is quantified in each condition by Cuffdiff, 
which produces expression data in a set of tabular files. These files are 
indexed and visualized with CummeRbund to facilitate exploration of genes 
identified by Cuffdiff as differentially expressed, spliced, or transcriptionally 
regulated genes. FPKM, fragments per kilobase of transcript per million 
fragments mapped. 
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 Box 1 | Alternate protocols 
a. strand-specific rna-seq
1. At Step 1, supply the option ‘--library-type’ to TopHat to enable strand-specific processing of the reads. TopHat will map 
the reads for each sample to the reference genome and will attach meta-data to each alignment that Cufflinks and Cuffdiff can use for 
more accurate assembly and quantification. The --library-type option requires an argument that specifies which strand-specific 
protocol was used to generate the reads. See table 1 for help in choosing a library type.
$ tophat -p 8 -G genes.gtf -o C1_R1_thout --library-type = fr-firststrand \

  genome C1_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R2_thout --library-type = fr-firststrand \

  genome C1_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R3_thout --library-type = fr-firststrand \

  genome C1_R3_1.fq C1_R3_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R1_thout --library-type = fr-firststrand \

  genome C2_R1_1.fq C2_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R2_thout --library-type = fr-firststrand \

  genome C2_R2_1.fq C2_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R3_thout --library-type = fr-firststrand \

  genome C2_R3_1.fq C1_R3_2.fq

B. Quantification of reference annotation only (no gene/transcript discovery)
1. At Step 1, supply the option ‘--no-novel-juncs’ to TopHat to map the reads for each sample to the reference genome, with 
novel splice discovery disabled:
$ tophat -p 8 -G genes.gtf -o C1_R1_thout -–no-novel-juncs genome C1_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R2_thout -–no-novel-juncs genome C1_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R3_thout -–no-novel-juncs genome C1_R3_1.fq C1_R3_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R1_thout -–no-novel-juncs genome C2_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R2_thout -–no-novel-juncs genome C2_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R3_thout -–no-novel-juncs genome C2_R3_1.fq C1_R3_2.fq

2. Skip PROCEDURE Steps 2–4.
3. Run Cuffdiff using the reference transcriptome along with the BAM files from TopHat for each replicate:
$ cuffdiff -o diff_out -b genome.fa -p 8 -u genes.gtf \

./C1_R1_thout/accepted_hits.bam,./C1_R2_thout/accepted_hits.bam,./C1_R3_thout/accepted_hits.

bam \

./C2_R1_thout/accepted_hits.bam,./C2_R3_thout/accepted_hits.bam,./C2_R2_thout/accepted_hits.

bam

c. Quantification without a reference annotation
1. Map the reads for each sample to the reference genome:
$ tophat -p 8 -o C1_R1_thout genome C1_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -o C1_R2_thout genome C1_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -o C1_R3_thout genome C1_R3_1.fq C1_R3_2.fq

$ tophat -p 8 -o C2_R1_thout genome C2_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -o C2_R2_thout genome C2_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -o C2_R3_thout genome C2_R3_1.fq C1_R3_2.fq

2. Perform PROCEDURE Steps 2 and 3.
3. Run Cuffmerge on all your assemblies to create a single merged transcriptome annotation:
cuffmerge -s genome.fa -p 8 assemblies.txt

D. analysis of single-ended sequencing experiments
1. At Step 1, simply supply the single FASTQ file for each replicate to TopHat to map the reads for each sample to the reference  
genome:
$ tophat -p 8 -G genes.gtf -o C1_R1_thout genome C1_R1.fq

$ tophat -p 8 -G genes.gtf -o C1_R2_thout genome C1_R2.fq

$ tophat -p 8 -G genes.gtf -o C1_R3_thout genome C1_R3.fq

$ tophat -p 8 -G genes.gtf -o C2_R1_thout genome C2_R1.fq

$ tophat -p 8 -G genes.gtf -o C2_R2_thout genome C2_R2.fq

$ tophat -p 8 -G genes.gtf -o C2_R3_thout genome C2_R3.fq

2. Perform PROCEDURE Steps 2–18.
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After the assembly phase, Cufflinks quantifies the expression level 
of each transfrag in the sample. This calculation is made using a 
rigorous statistical model of RNA-seq and is used to filter out back-
ground or artifactual transfrags8. For example, with current library 
preparation protocols, most genes generate a small fraction of reads 
from immature primary transcripts that are generally not interest-
ing to most users. As these transfrags are typically far less abundant 
in the library than the mature, spliced transcripts, Cufflinks can use 
its abundance estimates to automatically exclude them. Given a 
sample, Cufflinks can also quantify transcript abundances by using 
a reference annotation rather than assembling the reads. However, 
for multiple samples, we recommend that the user quantify genes 
and transcripts using Cuffdiff, as described below.

When you are working with several RNA-seq samples, it becomes 
necessary to pool the data and assemble it into a comprehensive set 
of transcripts before proceeding to differential analysis. A natural 

approach to this problem would be to simply pool aligned reads 
from all samples and run Cufflinks once on this combined set of 
alignments. However, we do not usually recommend this tactic for 
two reasons. First, because assembly becomes more computationally 
expensive as read depth increases, assembling the pooled alignments 
may not be feasible with the machines available in your labora-
tory. Second, with a pooled set of reads, Cufflinks will be faced with 
a more complex mixture of splice isoforms for many genes than 
would be seen when assembling the samples individually, and this 
increases the probability that it will assemble the transcripts incor-
rectly (associating the wrong outcomes of different splicing events in 
some transcripts). A better strategy is to assemble the samples indi-
vidually and then merge the resulting assemblies together. We have 
recently developed a utility program, Cuffmerge, which handles this 
task using many of the same concepts and algorithms as Cufflinks 
does when assembling transcripts from individual reads.

 Box 2 | Calculating expression levels from read counts 
The number of RNA-seq reads generated from a transcript is directly proportional to that transcript’s relative abundance in the sample. 
However, because cDNA fragments are generally size-selected as part of library construction (to optimize output from the sequencer), 
longer transcripts produce more sequencing fragments than shorter transcripts. For example, suppose a sample has two transcripts,  
A and B, both of which are present at the same abundance. If B is twice as long as A, an RNA-seq library will contain (on average) 
twice as many reads from B as from A. To calculate the correct expression level of each transcript, Cufflinks must count the reads that 
map to each transcript and then normalize this count by each transcript’s length. Similarly, two sequencing runs of the same library 
may produce different volumes of sequencing reads. To compare the expression level of a transcript across runs, the counts must be 
normalized for the total yield of the machine. The commonly used fragments per kilobase of transcript per million mapped fragments 
(or FPKM8, also known as RPKM1 in single-ended sequencing experiments) incorporates these two normalization steps to ensure that 
expression levels for different genes and transcripts can be compared across runs.

When a gene is alternatively spliced and produces multiple isoforms in the same sample, many of the reads that map to it will map 
to constitutive or shared exons, complicating the process of counting reads for each transcript. A read from a shared exon could have 
come from one of several isoforms. To accurately compute each transcript’s expression level, a simple counting procedure will not 
suffice; more sophisticated statistical inference is required. Cufflinks and Cuffdiff implement a linear statistical model to estimate an 
assignment of abundance to each transcript that explains the observed reads with maximum likelihood.

Because Cufflinks and Cuffdiff calculate the expression level of each alternative splice transcript of a gene, calculating the  
expression level of a gene is simple—the software simply adds up the expression level of each splice variant. This is possible because 
FPKM is directly proportional to abundance. In fact, the expression level of any group of transcripts (e.g., a group of transcripts that 
share the same promoter) can be safely computed by adding the expression levels of the members of that group.

 Box 3 | File formats and data storage 
Storing RNA-seq data and analysis results in standardized, well-documented file formats is crucial for data sharing between laborato-
ries and for reuse or reproduction of past experimental data. The next-generation sequencing informatics community has worked hard 
to adopt open file standards. Although some of these formats are still evolving, data storage conventions have matured substantially. 
Raw, unmapped sequencing reads may be one of several formats specific to the vendor or instrument, but the most commonly encoun-
tered format is FASTQ, a version of FASTA that has been extended with Phred base quality scores. TopHat accepts FASTQ and FASTA files 
of sequencing reads as input. Alignments are reported in BAM files. BAM is the compressed, binary version of SAM43, a flexible and gen-
eral purpose read alignment format. SAM and BAM files are produced by most next-generation sequence alignment tools as output, and 
many downstream analysis tools accept SAM and BAM as input. There are also numerous utilities for viewing and manipulating SAM and 
BAM files. Perhaps most popular among these are the SAM tools (http://samtools.sourceforge.net/) and the Picard tools (http://picard.
sourceforge.net/). Both Cufflinks and Cuffdiff accept SAM and BAM files as input. Although FASTQ, SAM and BAM files are all compact, 
efficient formats, typical experiments can still generate very large files. It is not uncommon for a single lane of Illumina HiSeq sequen-
cing to produce FASTQ and BAM files with a combined size of 20 GB or larger. Laboratories planning to perform more than a small 
number of RNA-seq experiments should consider investing in robust storage infrastructure, either by purchasing their own hardware or 
through cloud storage services44.



©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.3 | 2012 | 567

Cuffmerge is essentially a ‘meta-assembler’—it treats the assem-
bled transfrags the way Cufflinks treats reads, merging them together 
parsimoniously. Furthermore, when a reference genome annota-
tion is available, Cuffmerge can integrate reference transcripts into 
the merged assembly. It performs a reference annotation-based 
transcript (RABT) assembly35 to merge reference transcripts with 
sample transfrags and produces a single annotation file for use in 
downstream differential analysis. Figure 3 shows an example of the 
benefits of merging sample assemblies with Cuffmerge.

Once each sample has been assembled and all samples have been 
merged, the final assembly can be screened for genes and tran-
scripts that are differentially expressed or regulated between sam-
ples. This protocol recommends that you assemble your samples 
with Cufflinks before performing differential expression to improve 
accuracy, but this step is optional. Assembly can be computationally 
demanding, and interpreting assemblies is often difficult, especially 
when sequencing depth is low, because distinguishing full-length 
isoforms from partially reconstructed fragments is not always possi-
ble without further experimental evidence. Furthermore, although 
Cufflinks assemblies are quite accurate when they are provided 
with sufficiently high-quality data, assembly errors do occur and 
can accumulate when merging many assemblies. When you are 
working with RNA-seq data from well-annotated organisms such 
as human, mouse or fruit fly, you may wish to run the alternate 
protocol ‘Quantification of reference annotation only’ (Box 1; see 
also Table 1).

Even for well-studied organisms, most RNA-seq experiments 
should reveal new genes and transcripts. A recent analysis of deep 
RNA-seq samples from 24 human tissues and cell lines revealed 
over 8,000 new long, noncoding RNAs along with numerous poten-
tial protein-coding genes6. Many users of RNA-seq are interested 
in discovering new genes and transcripts in addition to perform-
ing differential analysis. However, it can be difficult to distinguish 
full-length novel transcripts from partial fragments using RNA-seq 
data alone. Gaps in sequencing coverage will cause breaks in tran-
script reconstructions, just as they do during genome assembly. 
High-quality reconstructions of eukaryotic transcriptomes will 
contain thousands of full-length transcripts. Low-quality recon-
structions, especially those produced from shallow sequencing 
runs (e.g., fewer than 10 million reads), may contain tens or even 
hundreds of thousands of partial transcript fragments. Cufflinks 
includes a utility program called ‘Cuffcompare’ that can compare 

Cufflinks assemblies to reference annotation files and help sort out 
new genes from known ones. Because of the difficulty in construct-
ing transcriptome assemblies, we encourage users to validate novel 
genes and transcripts by traditional cloning and PCR-based tech-
niques. We also encourage validation of transcript ends by rapid 
amplification of cDNA ends (RACE) to rule out incomplete recon-
struction due to gaps in sequencing coverage. Although a complete 
discussion of transcript and gene discovery is beyond the scope of 
this protocol, readers interested in such analysis should consult the 
Cufflinks manual to help identify new transcripts6.

Differential analysis with Cuffdiff
Cufflinks includes a separate program, Cuffdiff, which calculates 
expression in two or more samples and tests the statistical signifi-
cance of each observed change in expression between them. The 
statistical model used to evaluate changes assumes that the number 
of reads produced by each transcript is proportional to its abun-
dance but fluctuates because of technical variability during library 
preparation and sequencing and because of biological variability 
between replicates of the same experiment. Despite its exceptional 
overall accuracy, RNA-seq, like all other assays for gene expres-
sion, has sources of bias. These biases have been shown to depend 
greatly on library preparation protocol36–39. Cufflinks and Cuffdiff 

taBle 1 | Library type options for TopHat and Cufflinks.

library type rna-seq protocol Description

fr-unstranded (default) Illumina TruSeq Reads from the leftmost end of the fragment (in transcript coordinates) map to 
the transcript strand, and the rightmost end maps to the opposite strand

fr-firststrand dUTP, NSR, NNSR39 Same as above except we enforce the rule that the rightmost end of the frag-
ment (in transcript coordinates) is the first sequenced (or only sequenced for 
single-end reads). Equivalently, it is assumed that only the strand generated 
during first strand synthesis is sequenced

fr-secondstrand Directional Illumina 
(Ligation), Standard SOLiD

Same as above except TopHat/Cufflinks enforce the rule that the leftmost 
end of the fragment (in transcript coordinates) is the first sequenced (or only 
sequenced for single-end reads). Equivalently, it is assumed that only the strand 
generated during second strand synthesis is sequenced

Cufflinks assemblies
for condition A

Merged assembly
from Cuffmerge

FlyBase reference 
annotation

Replicate 1

Replicate 2

Replicate 3

Cufflinks assemblies
for condition B

Replicate 1

Replicate 2

Replicate 3

Figure 3 | Merging sample assemblies with a reference transcriptome 
annotation. Genes with low expression may receive insufficient sequencing 
depth to permit full reconstruction in each replicate. However, merging 
the replicate assemblies with Cuffmerge often recovers the complete gene. 
Newly discovered isoforms are also integrated with known ones at this stage 
into more complete gene models.
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can automatically model and subtract a large fraction of the bias in 
RNA-seq read distribution across each transcript, thereby improv-
ing abundance estimates38.

Although RNA-seq is often noted to have substantially less 
technical variability than other gene expression assays (e.g., micro-
arrays), biological variability will persist40. Cuffdiff allows you to 
supply multiple technical or biological replicate sequencing libraries 
per condition. With multiple replicates, Cuffdiff learns how read 
counts vary for each gene across the replicates and uses these vari-
ance estimates to calculate the significance of observed changes in 
expression. We strongly recommend that RNA-seq experiments 
be designed in replicate to control for batch effects such as vari-
ation in culture conditions. Advances in multiplexing techniques 
 during sequencing now make it possible to divide sequencing out-
put among replicates without increasing total sequencing depth 
(and thus cost of sequencing).

Cuffdiff reports numerous output files containing the results of 
its differential analysis of the samples. Gene and transcript expres-
sion level changes are reported in simple tabular output files that 
can be viewed with any spreadsheet application (such as Microsoft 
Excel). These files contain familiar statistics such as fold change (in 
log

2
 scale), P values (both raw and corrected for multiple testing) 

and gene- and transcript-related attributes such as common name 
and location in the genome.

Cuffdiff also reports additional differential analysis results 
beyond simple changes in gene expression. The program can iden-
tify genes that are differentially spliced or differentially regulated 
via promoter switching. The software groups together isoforms of a 
gene that have the same TSS. These TSS groups represent isoforms 
that are all derived from the same pre-mRNA; accordingly, changes 
in abundance relative to one another reflect differential splicing of 
their common pre-mRNA. Cuffdiff also calculates the total expres-
sion level of a TSS group by adding up the expression levels of the 
isoforms within it. When a gene has multiple TSSs, Cuffdiff looks 
for changes in relative abundance between them, which reflect 
changes in TSS (and thus promoter) preference between condi-
tions. The statistics used to evaluate significance of changes within 
and between TSS groupings are somewhat different from those 
used to assess simple expression level changes of a given transcript 
or gene. Readers interested in further statistical detail should see 
the supplemental material of Trapnell et al.8. Figure 4 illustrates 
how Cuffdiff constructs TSS groupings and uses them to infer dif-
ferential gene regulation.

Visualization with CummeRbund
Cuffdiff provides analyses of differential expression and regula-
tion at the gene and transcript level. These results are reported in a 
set of tab-delimited text files that can be opened with spreadsheet 
and charting programs such as Microsoft Excel. The Cuffdiff file 
formats are designed to simplify use by other downstream pro-
grams. However, browsing these files by eye is not especially easy, 
and working with data across multiple files can be quite difficult. 
For example, extracting the list of differentially expressed genes is 
fairly straightforward, but plotting the expression levels for each 
isoform of those genes requires a nontrivial script.

We have recently created a user-friendly tool, called 
CummeRbund, to help manage, visualize and integrate all of the 
data produced by a Cuffdiff analysis. CummeRbund drastically 
simplifies common data exploration tasks, such as plotting and 

cluster analysis of expression data (Fig. 5). Furthermore, you can 
create publication-ready plots with a single command. Scripted 
plotting also lets you automate plot generation, allowing you to 
reuse analyses from previous experiments. Finally, CummeRbund 
handles the transformation of Cuffdiff data into the R statistical 
computing environment, making RNA-seq expression analysis 
with Cuffdiff more compatible with many other advanced statisti-
cal analysis and plotting packages.

This protocol concludes with a brief exploration of the example 
data set using CummeRbund, but the plots illustrated here are 
only the beginning of what is possible with this tool. Furthermore, 
CummeRbund is new and under active development—future ver-
sions will contain powerful new views of RNA-seq data. Users 
familiar with ggplot41, the popular plotting packaging around 
which CummeRbund is designed, may wish to design their 
own plots and analysis functions. We strongly encourage such 
users to contribute their plotting scripts to the open-source 
CummeRbund project.

Processing time and memory requirements
RNA-seq analysis is generally more computationally demanding 
than many other bioinformatics tasks. Analyzing large data sets 
requires a powerful workstation or server with ample disk space 
(see Box 3) and with at least 16 GB of RAM. Bowtie, TopHat and 
the Cufflinks tools are all designed to take advantage of multicore 
processors, and running the programs with multiple threads is 

Condition A Condition B

Differential 
promoter use

Differential 
splicing

Condition BCondition A

Splicing preference 
within TSS group

Relative TSS use/
promoter preference

Condition A Condition B

Differential protein 
output

Relative CDS output
from gene

B + C
A

B + C

A
ABAB

A + B

C

A + B
C

A + B

CB
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B + C

A

a

b

c

d

e

f

g

TSS I

TSS II
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B

C
CDS II

CDS I
A C

B

Relative abundance
of isoforms

Splicing structure of gene “X”

Figure 4 | Analyzing groups of transcripts identifies differentially regulated 
genes. (a) Genes may produce multiple splice variants (labeled A–C) at 
different abundances through alternative transcription start sites (TSS), 
alternative cleavage and polyadenylation of 3′ ends, or by alternative 
splicing of primary transcripts. (b) Grouping isoforms by TSS and looking 
for changes in relative abundance between and within these groups yield 
mechanistic clues into how genes are differentially regulated. (c) For 
example, in the above hypothetical gene, changes in the relative abundance 
between isoforms A and B within TSS I group across conditions may be 
attributable to differential splicing of the primary transcript from which 
they are both produced. (d) Adding their expression levels yields a proxy 
expression value for this primary transcript. (e) Changes in this level relative 
to the gene’s other primary transcript (i.e., isoform C) indicate possible 
differential promoter preference across conditions. (f,g) Similarly, genes 
with multiple annotated coding sequences (CDS) (f) can be analyzed for 
differential output of protein-coding sequences (g).
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highly recommended. Of the tasks in this protocol, read mapping 
with TopHat is usually the least demanding task in terms of mem-
ory, but mapping a full lane of HiSeq 100 bp paired-end reads can 
still take a day or two on a typical workstation or compute cluster 
node. If possible, you should align the reads from each sample on 
a separate machine to parallelize the total alignment workload. 
Assembling transcripts can also be very demanding in terms of both 
processing time and memory. You may want to consider using the 
--mask/-M option during your Cufflinks runs to exclude genes 
that are extremely abundant in your samples (e.g., actin), because 
Cufflinks may spend a long time assembling these genes. When 
a reference transcriptome annotation is available, Cuffmerge will 
add these genes back into the final transcriptome file used during 
differential analysis. Thus, Cuffdiff will still quantify expression 
for these genes—excluding them during sample assembly simply 
amounts to forgoing discovery of novel splice variants.

RNA-seq experimental design
RNA-seq has been hailed as a whole-transcriptome expression assay 
of unprecedented sensitivity, but no amount of technical consist-
ency or sensitivity can eliminate biological variability40. We strongly 
recommend that experimenters designing an RNA-seq study heed 
lessons learned from microarray analysis. In particular, biological 
replication of each condition is crucial. How deeply each condition 
must be replicated is an open research question, and more replicates 
are almost always preferable to fewer. Multiplexed RNA-seq is mak-
ing replication possible without increasing total sequencing costs by 
reducing the total sequencing depth in each replicate and making 

experimental designs more robust. With currently available kits, 
sequencing each condition in triplicate is quite feasible. Thus, the 
protocol here is illustrated through an example experiment with 
three replicates of each condition.

When considering an RNA-seq experiment, two other design 
choices have a major effect on accuracy. Library fragments may be 
sequenced from one or both ends, and although paired-end reads 
are up to two times the cost of single-end reads, we and others24 
strongly recommend paired-end sequencing whenever possible. 
The marginal information provided by paired-end sequencing runs 
over single-end runs at the same depth is considerable. Cufflinks’ 
algorithms for transcript assembly and expression quantitation are 
much more accurate with paired-end reads. Sequencing read length 
is also a major consideration, and longer reads are generally prefer-
able to short ones. TopHat is more accurate when discovering splice 
junctions with longer reads, and reads of 75 bp and longer are sub-
stantially more powerful than shorter reads. However, as generating 
longer reads can add substantially to the cost of an RNA-seq experi-
ment, many experimenters may wish to sequence more samples (or 
more replicates of the same samples) with shorter reads.
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          clustering="row", 
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Figure 5 | CummeRbund helps users rapidly explore their expression data 
and create publication-ready plots of differentially expressed and regulated 
genes. With just a few lines of plotting code, CummeRbund can visualize 
differential expression at the isoform level, as well as broad patterns 
among large sets of genes. (a) A myoblast differentiation time-course 
experiment reveals the emergence of a skeletal muscle-specific isoform 
of tropomyosin I. (b) This same time-course data capture the dynamics 
of hundreds of other genes in the mouse transcriptome during muscle 
development8. FPKM, fragments per kilobase of transcript per million 
fragments mapped.

MaterIals
EQUIPMENT

Data (requirements vary according to your experimental goals;  
see EQUIPMENT SETUP)
Bowtie software (http://bowtie-bio.sourceforge.net/index.shtml/)
SAM tools (http://samtools.sourceforge.net/)
TopHat software (http://tophat.cbcb.umd.edu/)
Cufflinks software (http://cufflinks.cbcb.umd.edu/)
CummeRbund software (http://compbio.mit.edu/cummeRbund/)
Fruit fly iGenome packages (Ensembl build; download via the TopHat and 
Cufflinks websites, along with packages for many other organisms;  
see EQUIPMENT SETUP)
Hardware (64-bit computer running either Linux or Mac OS X (10.4 Tiger 
or later); 4 GB of RAM (16 GB preferred); see EQUIPMENT SETUP)

EQUIPMENT SETUP
 crItIcal Most of the commands given in the protocol are runnable at the 
UNIX shell prompt, and all such commands are meant to be run from the 
example working directory. The protocol also includes small sections of code 
runnable in the R statistical computing environment. Commands meant to 

•

•
•
•
•
•
•

•

be executed from the UNIX shell (e.g., bash or csh) are prefixed with a ‘$’ 
character. Commands meant to be run from either an R script or at the R 
interactive shell are prefixed with a ‘ > ’ character.
Required data This protocol is illustrated through an example experiment  
in Drosophila melanogaster that you can analyze to familiarize yourself  
with the Tuxedo tools. We recommend that you create a single directory  
(e.g., ‘my_rnaseq_exp’) in which to store all example data and generated 
analysis files. All protocol steps are given assuming you are working from 
within this directory at the UNIX shell prompt.

To use TopHat and Cuffdiff for differential gene expression, you must be 
working with an organism with a sequenced genome. Both programs can also 
make use of an annotation file of genes and transcripts, although this is op-
tional. TopHat maps reads to the genome using Bowtie (see EQUIPMENT), 
which requires a set of genomic index files. Indexes for many organisms can 
be downloaded from the Bowtie website.

If this is your first time running the protocol, download the fruit fly 
iGenome (see EQUIPMENT) to your working directory. Later, you may wish 
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to move the package’s files along with the iGenomes for other organisms to 
a common location on your file system. The packages are ‘read-only’ and 
do not need to be redownloaded with each run of the protocol. They are 
resources that are reused each time the protocol is run.
Hardware setup The software used in this protocol is intended for operation 
on a 64-bit machine, running a 64-bit version of the operating system. This 
may exclude some Linux users running 32-bit kernels, but the tools used in the 
protocol can be compiled for 32-bit machines. See the Bowtie, TopHat, sequence 
alignment/map (SAM) tools and Cufflinks websites for more details. To process 
RNA-seq experiments, the machine used for the analysis will need at least 4 GB 
of RAM. We recommend a machine with at least 16 GB for analysis of deep 
sequencing data sets such as those produced by Illumina’s HiSeq 2000 sequencer.
Downloading and organizing required data Unpack the fruit fly iGenome 
and inspect the contents. Assuming we stored the package at my_rnaseq_exp/, 
the package expands to contain a folder Drosophila_melanogaster/Ensembl/
BDGP5.25/, which has the following structure: Annotation/GenomeStudio/
Sequence/ (i.e., three separate directories).

The Annotation directory contains another directory called ‘Genes’, which 
contains a file called ‘genes.gtf ’. For the time being, create a link to this file in 
your example working directory (to simplify the commands needed during 
the protocol). From your working directory, type:
$ ln –s ./Drosophila_melanogaster/Ensembl/

BDGP5.25/Annotation/Genes/genes.gtf .

Similarly, create links to the Bowtie index included with the iGenome package:
$ ln –s ./Drosophila_melanogaster/Ensembl/

BDGP5.25/Sequence/BowtieIndex/genome.*.

Downloading sequencing data In addition to the fruit fly iGenome package, 
to run the protocol through the examples given here you will need to download 
the sequencing data. Raw sequencing reads, aligned reads, assembled transfrags 
and differential analysis are all available through the Gene Expression Omnibus 
at accession GSE32038. Download these files and store them in a directory 
separate from your working directory so that you can compare them later with 
the files generated while running the protocol. Store the sequencing read files 
(those with extension ‘.fq’) in your example working directory.
Downloading and installing software Create a directory to store all of the 
executable programs used in this protocol (if none already exists):
$ mkdir $HOME/bin

Add the above directory to your PATH environment variable:
$ export PATH = $HOME/bin:$PATH

To install the SAM tools, download the SAM tools (http://samtools.
sourceforge.net/) and unpack the SAM tools tarball and cd to the SAM tools 
source directory:
$ tar jxvf samtools-0.1.17.tar.bz2

$ cd samtools-0.1.17

Copy the samtools binary to some directory in your PATH:
$ cp samtools $HOME/bin

To install Bowtie, download the latest binary package for Bowtie (http://
bowtie-bio.sourceforge.net/index.shtml) and unpack the Bowtie zip archive 
and cd to the unpacked directory:

$ unzip bowtie-0.12.7-macos-10.5-x86_64.zip

$ cd bowtie-0.12.7

Copy the Bowtie executables to a directory in your PATH:
$ cp bowtie $HOME/bin

$ cp bowtie-build $HOME/bin

$ cp bowtie-inspect $HOME/bin

To install TopHat, download the binary package for version 1.3.2 of 
TopHat (http://tophat.cbcb.umd.edu/) and unpack the TopHat tarball and cd 
to the unpacked directory:
$ tar zxvf tophat-1.3.2.OSX_x86_64.tar.gz

$ cd tophat-1.3.2.OSX_x86_64

Copy the TopHat package executable files to some directory in your PATH:
cp * $HOME/bin

To install Cufflinks, download the binary package of version 1.2.1 for Cuf-
flinks (http://cufflinks.cbcb.umd.edu/) and unpack the Cufflinks tarball and 
cd to the unpacked directory:
$ tar zxvf cufflinks-1.2.1.OSX_x86_64.tar.gz

$ cd cufflinks-1.2.1.OSX_x86_64

Copy the Cufflinks package executuble files to some directory in your PATH:
$ cp * $HOME/bin

To Install CummeRbund, start an R session:
$ R

R version 2.13.0 (2011-04-13)

Copyright (C) 2011 The R Foundation for Statisti-

cal Computing

ISBN 3-900051-07-0

Platform: x86_64-apple-darwin10.6.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO 

WARRANTY.

You are welcome to redistribute it under certain 

conditions.

Type 'license()' or 'licence()' for distribution 
details.

R is a collaborative project with many  

contributors.

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in 

publications.

Type 'demo()' for some demos, 'help()' for on-
line help, or

'help.start()' for an HTML browser interface to 
help.

Type 'q()' to quit R.
Install the CummeRbund package:
 > source('http://www.bioconductor.org/biocLite.R')
 > biocLite('cummeRbund')

proceDure
align the rna-seq reads to the genome ● tIMInG ~6 h
1| Map the reads for each sample to the reference genome:

$ tophat -p 8 -G genes.gtf -o C1_R1_thout genome C1_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R2_thout genome C1_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C1_R3_thout genome C1_R3_1.fq C1_R3_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R1_thout genome C2_R1_1.fq C1_R1_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R2_thout genome C2_R2_1.fq C1_R2_2.fq

$ tophat -p 8 -G genes.gtf -o C2_R3_thout genome C2_R3_1.fq C1_R3_2.fq

? trouBlesHootInG
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assemble expressed genes and transcripts ● tIMInG ~6 h
2| Assemble transcripts for each sample:

$ cufflinks -p 8 -o C1_R1_clout C1_R1_thout/accepted_hits.bam

$ cufflinks -p 8 -o C1_R2_clout C1_R2_thout/accepted_hits.bam

$ cufflinks -p 8 -o C1_R3_clout C1_R3_thout/accepted_hits.bam

$ cufflinks -p 8 -o C2_R1_clout C2_R1_thout/accepted_hits.bam

$ cufflinks -p 8 -o C2_R2_clout C2_R2_thout/accepted_hits.bam

$ cufflinks -p 8 -o C2_R3_clout C2_R3_thout/accepted_hits.bam

? trouBlesHootInG

3| Create a file called assemblies.txt that lists the assembly file for each sample. The file should contain the following lines:

./C1_R1_clout/transcripts.gtf

./C2_R2_clout/transcripts.gtf

./C1_R2_clout/transcripts.gtf

./C2_R1_clout/transcripts.gtf

./C1_R3_clout/transcripts.gtf

./C2_R3_clout/transcripts.gtf

4| Run Cuffmerge on all your assemblies to create a single merged transcriptome annotation:

cuffmerge -g genes.gtf -s genome.fa -p 8 assemblies.txt

Identify differentially expressed genes and transcripts ● tIMInG ~6 h
5| Run Cuffdiff by using the merged transcriptome assembly along with the BAM files from TopHat for each replicate:

$ cuffdiff -o diff_out -b genome.fa -p 8 –L C1,C2 -u merged_asm/merged.gtf \

./C1_R1_thout/accepted_hits.bam,./C1_R2_thout/accepted_hits.bam,./C1_R3_thout/
accepted_hits.bam \

./C2_R1_thout/accepted_hits.bam,./C2_R3_thout/accepted_hits.bam,./C2_R2_thout/
accepted_hits.bam

? trouBlesHootInG

explore differential analysis results with cummerbund ● tIMInG variable
6| Open a new plotting script file in the editor of your choice, or use the R interactive shell:

$ R

R version 2.13.0 (2011-04-13)

Copyright (C) 2011 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: x86_64-apple-darwin10.6.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
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Type 'demo()' for some demos, 'help()' 
for on-line help, or

'help.start()' for an HTML browser  
interface to help.

Type 'q()' to quit R.

7| Load the CummeRbund package into the R environment:

 >  library(cummeRbund)

8| Create a CummeRbund database from the Cuffdiff output:

 >  cuff_data  < - readCufflinks('diff_out')

9| Plot the distribution of expression levels for each sample (Fig. 6):

 >  csDensity(genes(cuff_data))

10| Compare the expression of each gene in two conditions with a scatter plot (Fig. 7):

 >  csScatter(genes(cuff_data), 'C1', 'C2')

11| Create a volcano plot to inspect differentially expressed genes (Fig. 8):

 >  csVolcano(genes(cuff_data), 'C1', 'C2')

12| Plot expression levels for genes of interest with bar plots (Fig. 9a):

 >  mygene < - getGene(cuff_data,'regucalcin')

 >  expressionBarplot(mygene)

13| Plot individual isoform expression levels of selected 
genes of interest with bar plots (Fig. 9b):

 >  expressionBarplot(isoforms(mygene))

14| Inspect the map files to count the number of reads that 
map to each chromosome (optional). From your working 
directory, enter the following at the command line:

$ for i in *thout/accepted_hits.bam; do 
echo $i; samtools index $i ; done;

$ for i in *thout/accepted_hits.bam; do 
echo $i; samtools idxstats $i ; done;

The first command creates a searchable index for  
each map file so that you can quickly extract the align-
ments for a particular region of the genome or collect 
statistics on the entire alignment file. The second  
command reports the number of fragments that map to 
each chromosome.
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Figure 6 | CummeRbund plots of the expression level distribution for all 
genes in simulated experimental conditions C1 and C2. FPKM, fragments per 
kilobase of transcript per million fragments mapped.
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from expression data for genes, splice isoforms, TSS groups or CDS groups.
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compare transcriptome assembly to the reference 
transcriptome (optional) ● tIMInG <5 min
15| You can use a utility program included in the Cufflinks 
suite called Cuffcompare to compare assemblies against a 
reference transcriptome. Cuffcompare makes it possible to 
separate new genes from known ones, and new isoforms of 
known genes from known splice variants. Run Cuffcompare 
on each of the replicate assemblies as well as the merged 
transcriptome file:

$ find . -name transcripts.gtf  >  gtf_out_
list.txt

$ cuffcompare -i gtf_out_list.txt -r 
genes.gtf

$ for i in 'find . -name *.tmap'; do echo 
$i; awk 'NR  >  1 { s[$3] +  +  } END { \

  for (j in s) { print j, s[j] }} ' $i; done;

The first command creates a file called gtf_out_list.txt that lists all of the GTF files in the working directory (or its sub-
directories). The second command runs Cuffcompare, which compares each assembly GTF in the list to the reference annota-
tion file genes.gtf. Cuffcompare produces a number of output files and statistics, and a full description of its behavior and 
functionality is out of the scope of this protocol. Please see the Cufflinks manual (http://cufflinks.cbcb.umd.edu/manual.
html) for more details on Cuffcompare’s output files and their formats. The third command prints a simple table for each 
assembly that lists how many transcripts in each assembly are complete matches to known transcripts, how many are partial 
matches and so on.

record differentially expressed genes and transcripts to files for use in downstream analysis (optional) ● tIMInG <5 min
16| You can use CummeRbund to quickly inspect the number of genes and transcripts that are differentially expressed  
between two samples. The R code below loads the results of Cuffdiff’s analysis and reports the number of differentially  
expressed genes:

 >  library(cummeRbund)

 >  cuff_data  < - readCufflinks('diff_out')

 >  

 >  cuff_data

CuffSet instance with:

  2 samples

  14353 genes

  26464 isoforms

  17442 TSS

  13727 CDS

  14353 promoters

  17442 splicing

  11372 relCDS

 >  gene_diff_data  < - diffData(genes(cuff_data))

 >  sig_gene_data  < - subset(gene_diff_data, (significant  =  =  'yes'))

 >  nrow(sig_gene_data)

[1] 308

Genes: C2/C1

14

Significant

–l
og

10
(P

 v
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ue
)

log2 (fold change)
–5 0 5 10

12

10
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Figure 8 | CummeRbund volcano plots reveal genes, transcripts, TSS groups or 
CDS groups that differ significantly between the pairs of conditions C1 and C2.
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17| Similar snippets can be used 
to extract differentially expressed 
transcripts or differentially spliced and 
regulated genes:

 >  isoform_diff_data  < - 
diffData(isoforms(cuff_
data), 'C1', 'C2')

 >  sig_isoform_data  < - 
subset(isoform_diff_data, 
(significant  =  =  'yes'))

 >  nrow(sig_isoform_data)

 >  tss_diff_data  < - 
diffData(TSS(cuff_data), 'C1', 'C2')

 >  sig_tss_data  < - subset(tss_diff_data, (significant  =  =  'yes'))

 >  nrow(sig_tss_data)

 >  cds_diff_data  < - diffData(CDS(cuff_data), 'C1', 'C2')

 >  sig_cds_data  < - subset(cds_diff_data, (significant =  = 'yes'))

 >  nrow(sig_cds_data)

 >  promoter_diff_data  < - distValues(promoters(cuff_data))

 >  sig_promoter_data  < - subset(promoter_diff_data, (significant  =  =  'yes'))

 >  nrow(sig_promoter_data)

 >  splicing_diff_data  < - distValues(splicing(cuff_data))

 >  sig_splicing_data  < - subset(splicing_diff_data, (significant  =  =  'yes'))

 >  nrow(sig_splicing_data)

 >  relCDS_diff_data  < - distValues(relCDS(cuff_data))

 >  sig_relCDS_data  < - subset(relCDS_diff_data, (significant  =  =  'yes'))

 >  nrow(sig_relCDS_data)

18| The code above can also be modified to write out small files containing only the differentially expressed genes. These 
files may be more manageable for some spreadsheet software than the full output files produced by Cuffdiff. The R snippet 
below writes a table of differentially expressed genes into a file named diff_genes.txt.

regucalcin

regucalcin

regucalcin

regucalcin

Gene

[0 - 6000]
C2_R1.bam Coverage

[0 - 6000]
C1_R1.bam Coverage

11,907,000 bp 11,908,000 bp 11,909,000 bp 11,910,000 bp 11,911,000 bp

4,836 bp

chrX

N
A

M
E

D
AT

A
 F

IL
E

D
AT

A
 T

Y
P

E

a b

c

regucalcin

sample_name
C1 C2 C2 C2C1 C1

F
P

K
M

0

500

1,000

1,500

2,000

XLOC_012662

regucalcin

sample_name

F
P

K
M 0

500

1,000

1,500

0

500

1,000

1,500

TCONS_00023455

TCONS_00023457

TCONS_00023456

TCONS_00023458

Figure 9 | Differential analysis results for 
regucalcin. (a) Expression plot shows clear 
differences in the expression of regucalcin across 
conditions C1 and C2, measured in FPKM (Box 2).  
Expression of a transcript is proportional to the 
number of reads sequenced from that transcript 
after normalizing for that transcript’s length. 
Each gene and transcript expression value is 
annotated with error bars that capture both 
cross-replicate variability and measurement 
uncertainty as estimated by Cuffdiff’s statistical 
model of RNA-seq. (b) Changes in regucalcin 
expression are attributable to a large increase 
in the expression of one of four alternative 
isoforms. (c) The read coverage, viewed through 
the genome browsing application IGV42, shows an 
increase in sequencing reads originating from the 
gene in condition C2.
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 >  gene_diff_data  < - diffData(genes(cuff_data))

 >  sig_gene_data  < - subset(gene_diff_data, (significant  =  =  'yes'))

 >  write.table(sig_gene_data, 'diff_genes.txt', sep = '\t', 

row.names  =  F, col.names  =  T, quote  =  F)

? trouBlesHootInG
Troubleshooting advice can be found in table 2.

● tIMInG
Running this protocol on the example data provided will take ~18 h on a machine with eight processing cores and at least 
8 GB of RAM. The time spent is nearly evenly divided between read alignment, assembly and differential analysis. However, 
larger data sets with more samples or deeper sequencing runs may take longer, and timing will obviously vary across different 
computers.
Step 1, align the RNA-seq reads to the genome: ~6 h
Steps 2–4, assemble expressed genes and transcripts: ~6 h
Step 5, identify differentially expressed genes and transcripts: ~6 h
Steps 6–14, explore differential analysis results with CummeRbund: variable
Step 15, compare transcriptome assembly to the reference transcriptome (optional): <5 min
Steps 16–18, record differentially expressed genes and transcripts to files for use in downstream analysis (optional): <5 min

antIcIpateD results
rna-seq read alignments
Accurate differential analysis depends on accurate spliced read alignments. Typically, at least 70% of RNA-seq reads should 
align to the genome, and lower mapping rates may indicate poor quality reads or the presence of contaminant. Users working 
with draft genome assemblies may also experience lower rates if the draft is missing a substantial fraction of the genes, or if 
the contigs and scaffolds have poor base call quality. The fraction of alignments that span splice junctions depends on read 
length and splicing complexity and the completeness of existing gene annotation, if available (see INTRODUCTION). table 3 
lists the number of read alignments produced for each replicate during the execution of this protocol on the example data.

transcriptome reconstruction
Because transcriptome annotations are still incomplete, most RNA-seq studies will reveal new genes and transcripts.  
However, some transcripts may be expressed at such low abundance that they may not be fully covered by sequencing reads 

taBle 2 | Troubleshooting table.

step problem possible reason solution

1 TopHat cannot find Bowtie or 
the SAM tools

Bowtie and/or SAM tools binary 
executables are not in a directory 
listed in the PATH shell environment 
variable

Add the directories containing these executables to the 
PATH environment variable. See the man page of your 
UNIX shell for more details

2 Cufflinks crashes with a  
‘bad_alloc’ error  
Cufflinks takes excessively 
long to finish

Machine is running out of memory 
trying to assemble highly expressed 
genes

Pass the –max-bundle-frags option to Cufflinks with a 
value of  < 1,000,000 (the default). Try 500,000 at first, 
and lower values if the error is still thrown

5 Cuffdiff crashes with a ‘bad_
alloc’ error  
Cuffdiff takes excessively long 
to finish

Machine is running out of memory 
trying to quantify highly expressed 
genes

Pass the –max-bundle-frags option to Cuffdiff with a 
value of  < 1,000,000 (the default). Try 500,000 at first, 
and lower values if the error is still thrown

Cuffdiff reports FPKM = 0 for 
all genes and transcripts

Chromosome names in GTF file do 
not match the names in the BAM 
alignment files

Use a GTF file and alignments that has matching  
chromosome names (e.g., the GTF included with an 
iGenome index)
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and are thus only partially reconstructed by Cufflinks. The Cuffcompare utility used in Step 15 tabulates known and novel 
transcripts and can help triage newly discovered genes for further investigation.

table 4 summarizes the transcriptome reconstructions for each replicate and the merged transcriptome assembly produced 
by Cufflinks from the example data. The merged assemblies (created in Step 4) contain more full-length reference transcripts 
and fewer partial transcripts than any of the individual replicate assemblies. In this simulation, we have sequenced only the 
reference transcriptome; hence, all of the ‘novel’ transfrags are in fact assembly artifacts. The merge contains more artifacts 
than any of the replicate assemblies as well. Note also that the merge with reference results in far more reference transcripts 
than the merge without reference assembly. This is because Cuffmerge includes all reference transcripts, even those that  
are not expressed in the assemblies being merged. Whenever possible, a reference annotation should be included during  
the merge.

Differential expression and regulation analysis
This protocol, if run correctly, should reveal markedly differentially expressed genes and transcripts between two or more 
conditions. In an ideal experiment, the protocol should not result in more spurious genes and transcripts than expected  
according to the false discovery rate (the default false discovery rate for Cuffdiff is 5%). However, poorly replicated  
conditions, inadequate depth or quality of sequencing and errors in the underlying annotation used to quantify genes and 
transcripts can all lead to artifacts during differential analysis. Transcriptome assembly errors during Steps 2–5 can contri-
bute to missing or spuriously reported differential genes, and the prevalence of such errors is highly variable, depending on 
overall depth of sequencing, read and fragment length, gene density in the genome, transcriptome splicing complexity and 
transcript abundance.

Transcript expression levels vary over a dynamic range of 5–10 orders of magnitude and are often roughly log-normally 
distributed with an additional ‘background’ mode near 0. Figure 6 shows the distribution of expression levels used in the  
example data set, which were generated from a real  
Drosophila sequencing experiment and represent typical 
expression profiles. The expression of each gene is compared 
in Figure 7, with the synthetically perturbed genes clearly 
visible. The ‘volcano plot’ in Figure 8 relates the observed 
differences in gene expression to the significance associated 
with those changes under Cuffdiff’s statistical model. Note 
that large fold changes in expression do not always imply 
statistical significance, as those fold changes may have been 
observed in genes that received little sequencing (because 
of low overall expression) or with many isoforms. The 
measured expression level for such genes tends to be highly 
variable across repeated sequencing experiments; thus, 
Cuffdiff places greater uncertainty on its significance of any 
observed fold changes. Cuffdiff also factors this uncertainty 
into the confidence intervals placed around the reported 
expression levels for genes and transcripts.

taBle 3 | Expected read mapping statistics.

chromosome c1 rep 1 c1 rep 2 c1 rep 3 c2 rep 1 c2 rep 2 c2 rep 3

2L 4,643,234 4,641,231 4,667,543 4,594,554 4,586,366 4,579,505

2R 4,969,590 4,959,051 4,956,781 5,017,315 5,016,948 5,024,226

3L 4,046,843 4,057,512 4,055,992 4,111,517 4,129,373 4,104,438

3R 5,341,512 5,340,867 5,312,468 5,292,368 5,301,698 5,306,576

4 201,496 202,539 200,568 196,314 194,233 194,028

M 0 0 0 0 0 0

X 4,145,051 4,144,260 4,152,693 4,131,799 4,114,340 4,134,175

Total 23,347,726 23,345,460 23,346,045 23,343,867 23,342,958 23,342,948

taBle 4 | Transfrag reconstruction statistics for the example data set.

assembly Full length partial novel

C1 rep 1 8,549 940 1,068

C1 rep 2 8,727 958 1,151

C1 rep 3 8,713 996 1,130

C2 rep 1 8,502 937 1,118

C2 rep 2 8,749 945 1,158

C2 rep 3 8,504 917 1,091

Merged with reference 21,919 35 2,191

Merged without reference 10,056 590 1,952
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Figure 9a shows the expression level of regucalcin  
(D. melanogaster ; encoding CG1803 gene product from tran-
script CG1803-RA) in the two example conditions. Expression 
in condition 2 is approximately threefold higher than in 
condition 1, and the confidence interval is tight around each 
measurement. Tight confidence intervals are common around 
moderate and high gene expression values, especially when 
the genes have fewer than three or four isoforms. A plot of 
isoform-level expression values shows this change to be attributable to upregulation of a single regucalcin isoform (Fig. 9b). 
Again, confidence intervals are tight because overall depth of sequencing for this gene is high, and each isoform has a ‘dis-
tinguishing’ feature, such as a unique exon, covered by many reads in both samples. This allows Cuffdiff to calculate accurate 
measurements in which it has confidence. Increased sequenced depth on that isoform’s unique initial exon is clearly visible 
(Fig. 9c), but we caution users from attempting to visually validate expression levels or fold change by viewing read depth in 
a browser. Expression depends on both depth and transcript length, and coverage histograms are susceptible to visual scaling 
artifacts introduced by graphical summaries of sequencing data.

In contrast to regucalcin, Rala (encoding Ras-related protein), which has lower expression and depth of sequencing than 
regucalcin, has larger isoform-level measurement uncertainty in expression; this, in turn, contributes to higher gene-level 
expression variance and prevents Cuffdiff from calling this gene’s observed fold change significant (Fig. 10). Note that this 
gene also has significantly differentially expressed isoforms. However, as a gene’s expression level is the sum of the expres-
sion levels of its isoforms, and some Rala isoforms are 
increased while others are decreased, the fold change in 
overall gene expression is modest.

The number of genes and transcripts reported as dif-
ferentially expressed or regulated depends entirely on the 
conditions being compared. A comparison between true rep-
licates should return few if any such genes and transcripts, 
whereas a comparison of different tissues or cell lines will 
generally return hundreds or even thousands of differentially 
expressed genes. It is not uncommon to find genes with 
relatively small fold changes (e.g., less than twofold) in  
expression marked as significant. This reflects the high  
overall sensitivity of RNA-seq compared with other whole-
transcriptome expression quantification platforms. table 5 
lists the values you should expect to see when running  
Steps 16 and 17 of the protocol on the example data.

a
TCONS_00024713

TCONS_00024716
TCONS_00024715
TCONS_00024714

b Rala

sample_name

F
P

K
M

0

5
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20

25

XLOC_013332

C1 C2

Rala

sample_name

F
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K
M
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0

5
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15

TCONS_00024713

TCONS_00024715
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TCONS_00024714

TCONS_00024716

C1 C2

Figure 10 | Differential analysis results for Rala. (a) This gene has four 
isoforms in the merged assembly. (b) Cuffdiff identifies TCONS_00024713 
and TCONS_00024715 as being significantly differentially expressed. The 
relatively modest overall change in gene-level expression, combined with 
high isoform-level measurement variability, leaves Cuffdiff unable to 
reject the null hypothesis that the observed gene level is attributable to 
measurement or cross-replicate variability.
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