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Abstract

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central ner-
vous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These
receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target
for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral ner-
vous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB
receptors. Specific ligands, muscimol and baclofen, respectively, control Schwann-cell proliferation and expres-
sion of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). More-
over, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22
synthesis. In addition, we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expres-
sion of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a
cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive
steroids.
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Introduction
γ-Aminobutyric acid (GABA) is the major

inhibitory neurotransmitter in the mammalian ner-
vous system (Barres et al., 1990). In the central ner-
vous system (CNS), GABAis primarily produced by
inhibitory neurons and released during the firing of
action potentials (Kunkel et al., 1986) in a process
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known as phasic inhibition (Farrant and Nusser,
2005). However, a tonic inhibition resulting from
continuous activation, mainly of extrasynaptic recep-
tors, is also present in some neurons (Semyanov et al.,
2003; Belelli and Lambert, 2005; Farrant and Nusser,
2005). In common with other classic neurotransmit-
ters in the CNS, GABA is additionally produced and
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released by glial cells (e.g., astrocytes). In the hip-
pocampus, for example, GABA released by astro-
cytes regulates neuronal activity and tonic
inhibition (Liu et al., 2000; Jow et al., 2004). Fur-
thermore, in the developing CNS, different mech-
anisms involving the activation of GABA receptors
influence various processes such as neuronal or glial
precursor proliferation, differentiation, and migra-
tion (Barres et al., 1990; Al-Dahan and Thalmann,
1996; Ben Ari, 2002; McCarthy et al., 2002; Owens
and Kriegstein, 2002).

Neuroactive steroids are potent modulators of
some CNS functions and are therefore of interest for
their sedative, anxiolytic, anticonvulsant, and anes-
thetic properties (Reddy, 2003; Belelli and Lambert,
2005). It is generally believed that neuroactive steroids
such as dehydroepiandrosterone, pregnenolone, 
and their sulfates, as well as the 3α-hydroxylated-
derivatives tetrahydroprogesterone (THP or allo-
pregnanolone), tetrahydrodeoxicorticosterone
(THDOC), and 5α-androstane-3α,17α-diol (3α-diol
or androstenediol), might interact with different neu-
rotransmitter receptors (Bovolin et al., 1992;
reviewed in this issue by Leonelli et al. and Schlichter
et al.). Arguably the best characterized nongenomic
action of neuroactive steroids is the action of THP
and THDOC to enhance the function of GABA type
A(i.e., GABAA) receptor (Majewska et al., 1986; Rup-
precht and Holsboer, 1999; Lambert et al., 2003). In
the nanomolar concentration range the neuroactive
steroids act allosterically on GABAA receptor and
enhance the action of GABA, whereas at higher con-
centrations (micromolar range) they directly gate the
GABAA receptor channel complex (Callachan et al.,
1987; Puia et al., 1990). A recent paper performed on
hippocampal neurons grown in synaptic isolation
demonstrated that neuroactive steroids directly gate
GABAA receptors at lower concentration (about 100
nM) as well (Shu et al., 2004). The kinetics of this
receptor activation is relatively slow, but this effect
might underpin some important cellular and behav-
ioral effects of neuroactive steroids (Shu et al., 2004).
However, the GABA modulatory effects of neu-
roactive steroids are also evident in the spinal cord
(Keller et al., 2004). In the dorsal horn neurons of the
spinal cord, the strength of GABAA-mediated synap-
tic inhibition, during development and under phy-
siopathological conditions, can be locally modulated
by controlling the synthesis of 5α-reduced neuroac-
tive steroid metabolites (Keller et al., 2004). In the
peripheral nervous system (PNS), as reported by
Leonelli et al. (this issue), it has been observed that

progesterone (P) and its 5α-derivatives dihy-
droprogesterone (DHP) and THP, are the principal
neuroactive steroids able to affect many biochemi-
cal and morphological parameters in vivo (i.e., sci-
atic nerve of rat) and in vitro (i.e., Schwann cell
cultures) (Magnaghi et al., 2001; Melcangi et al., 2003,
2005). In particular, some of these effects, described
below, seem to be attributable to an involvement of
the GABAA receptor (Melcangi et al., 2005).

In this review we summarize results recently
obtained on the presence of GABA receptors in the
PNS, specifically in Schwann cells, and then we
report the subsequent effects of their modulation by
specific ligands and/or neuroactive steroids. On this
basis, a possible hypothesis of a cross-interaction
between GABAA, GABAB, and neuroactive steroids
is proposed.

GABA Receptors and the Nervous System
According to pharmacological and electrophysio-

logical studies, actions of GABA in the nervous
system are mediated throughout different ionotropic
(GABAA and GABAC) and metabotropic (GABAB)
receptors (Bowery and Enna, 2000; Bettler et al., 2004).

The GABAA receptor is a member of the ligand-
gated ion channel family, composed of five subunits
drawn from a repertoire of α1–6, β1–3, γ1–3, δ, ε, π,
ρ1–3, and θ (Whiting et al., 1995, 1997; Lambert et
al., 2003). The GABAA receptor is blocked by bicu-
culline and picrotoxin but is enhanced by benzodi-
azepines, barbiturates, a variety of general
anesthetics, and neuroactive steroids (Park-Chung
et al., 1999, Belelli and Lambert, 2005). In particular,
THP and THDOC, as described above, do not exert
a classic steroidal genomic action but act in a nonge-
nomic manner as potent allosteric modulators of the
GABAA receptor (Belelli and Lambert, 2005). Mod-
ulation of the GABAA receptor by neuroactive
steroids is enantioselective and is partially depen-
dent on receptor subunit composition (Lambert et
al., 2003). The GABAA receptor is widely distributed
in adult mammalian brain neurons (Sieghart and
Sperk, 2002) but is also present in astrocytes (Berger
et al., 1992; Hosli et al., 1997; Kang et al., 1998; Israel
et al., 2003) and in certain oligodendrocyte progen-
itor cells (Gilbert et al., 1984; Kettenmann et al., 1984;
Kirchhoff and Kettenmann, 1992).

The GABAB receptor was first identified by Bowery
et al. (1980) as a distinct, baclofen-sensitive,
metabotropic receptor. The designation GABAB was
given to distinguish it from the bicuculline-sensitive,
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ionotropic GABAA receptor (Bowery et al., 1980,
2004). The GABAB receptors are members of the
seven-transmembrane G protein-coupled receptor
superfamily (Bowery et al., 2004), which might influ-
ence presynaptic neurotransmitter release and cause
postsynaptic silencing of excitatory neurotransmis-
sion via the activation of second-messenger systems,
mainly by influencing the activity of adenylate
cyclase and by modulating calcium and potassium
channel activity (Marshall et al., 1999; Bowery and
Enna, 2000). In 1997, the first cDNAs encoding two
GABAB receptor proteins, initially named GABAB-
1a and GABAB-1b (Kaupmann et al., 1997), were
identified. Subsequently, novel GABAB receptor iso-
forms were cloned (Isomoto et al., 1998; Pfaff et al.,
1999). Of particular interest, a number of laborato-
ries independently identified a cDNA encoding for
the GABAB receptor isoform 2 (GABAB-2) (Jones et
al., 1998; Kaupmann et al., 1998; White et al., 1998;
Kuner et al., 1999). The GABAB-1 receptor is retained
in the endoplasmic reticulum and is transported to
the cell surface only in the presence of GABAB-2;
thus, the formation of a functional heterodimeric
complex depends on the presence of both subunits
1 and 2 (Jones et al., 1998; Kaupmann et al., 1998;
White et al., 1998; Kuner et al., 1999; Ng et al., 1999;
Calver et al., 2000). GABAB heterodimer component
proteins (i.e., GABAB-1 and GABAB-2) are expressed
widely throughout the neuronal compartment of the
brain and spinal cord (Margeta-Mitrovic et al., 1999;
Charles et al., 2001). However, recent observations
suggest that certain types of glial cells (i.e., astro-
cytes and activated microglia) from the CNS exhibit
GABAB receptor immunoreactivity (Charles et al.,
2003) and might be considered a possible target for
the action of GABAB receptor agonists (Kang et al.,
1998; Clark et al., 2000).

GABAA Receptor in the PNS
In the CNS the GABAA receptor is expressed both

in neurons and glial cells. Furthermore, studies in cat,
rat, frog, and human embryo dorsal root ganglion
(DRG) have shown that DRG neurons possess func-
tionally active GABAA receptors (Deschennes et al.,
1976; Gallagher et al., 1978; Inoue and Akaike, 1988;
Valeyev et al., 1999). In general in the PNS,myelinated
and unmyelinated fibers possess GABA receptors
and GABA carriers (Brown and Marsh, 1978, Brown
et al., 1979; Morris et al., 1983; Olsen et al., 1984).
Although, GABAA receptors are present on normal
mammalian sensory axons and are reestablished on

regenerated sensory axons, however, the presence
of these receptors on Schwann cells had not been
investigated (Bhisitkul et al., 1987). Only the uptake
of GABA by a high-affinity mechanism has been
demonstrated in purified rat Schwann cells main-
tained in cell culture in vitro for up to 6 mo
(Gavrilovic et al., 1984). Studies performed in our
laboratory, using RT-PCR analysis have demon-
strated that sciatic nerve and Schwann cells express
mRNAs coding for some subunits for the GABAA
receptor (Table 1). Primer pairs specific for rat sub-
units α1, α2, α3, α6, β1, β2, β3, γ1, γ2L, and γ2S were
used, and the results were compared to those
obtained with different brain regions (used as a posi-
tive control). The major bands found in the sciatic
nerve of adult male rats were those of α2, α3, β1, β2,
and β3. Bands for α6 and γ1 subunits were never evi-
dent, whereas faint signals for α1, γ2L, and γ2S sub-
units were observed. The GABAA subunit mRNAs
in Schwann cells maintained in cell culture showed
a similar pattern of expression, although with dif-
ferent intensities. The RT-PCR products were con-
firmed by sequencing, and the results indicated a
100% identity with mRNA sequences of GABAA-α3
(accession no. X51991), -β1 (accession no. X15466), -β2
(accession no. X15467), and -β3 (accession no. U14420)
subunits, and a 97% homology for the α2 subunit
(accession no. L08491) (Melcangi et al., 1999; Mag-
naghi et al., 2001). To confirm the presence of the
most representative GABAA receptor subunit pro-
teins on rat Schwann cells (maintained in culture),
an immunocytochemical analysis using a confocal
microscope, was performed. Using specific anti-α2
and anti-α3 antibodies raised in guinea pig, we
observed a clear immunoreactivity for both proteins
in Schwann cells (Fig. 1). Moreover, using a pan-anti-
body recognizing the β3 subunit, a specific signal
with a more patchy distribution in the Schwann cells
was revealed (Fig. 1). The negative controls, in which
the primary antibodies were substituted with a
preimmune serum, revealed nondetectable signals
(Fig. 1).

GABAB Receptor in the PNS
The presence of the GABAB receptor in the PNS

has been demonstrated in the rat DRG, in periph-
eral axons, in autonomic nerve terminals, and in pig
nodose ganglion cells (Bowery et al., 1981; Desar-
menien et al., 1984; Liske and Morris, 1994; Sun and
Chiu, 1999; Towers et al., 2000; Zagorodnyuk et al.,
2002), but the expression of the receptor in Schwann
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cells has not yet been investigated. By utilizing RT-
PCR, we have evaluated whether the mRNAs encod-
ing for different isoforms of GABAB receptors (i.e.,
1a, 1b, 1c, and 2) were present in sciatic nerve and
Schwann cells. Analysis of rat whole brain was per-
formed as a positive control. The data obtained indi-
cated that GABAB isoforms 1a, 1b, 1c, and 2 mRNAs
are not only expressed in the brain, as reported pre-
viously (Margeta-Mitrovic et al., 1999; Towers et al.,
2000; Charles et al., 2001), but also in the sciatic nerve
and Schwann cells (Table 1). These findings were
supported by Western blot analysis, as an antibody
raised against the GABAB-1 protein revealed two
bands of approx 130 and 100 kDa (Magnaghi et al.,
2004a). As reported by others (Kaupmann et al., 1997;
Ige et al., 2000), bands of this size correspond respec-
tively to the 1a and 1b isoforms of native subunits.
Furthermore, using an antibody against the GABAB-
2 receptor, a band of approx 110–120 kDa was evi-
dent for both sciatic nerve and Schwann cells
(Magnaghi et al., 2004a). This band has a molecular
weight identical to the native GABAB-2 receptor pro-
tein (Jones et al., 1998; Kaupmann et al., 1998; White
et al., 1998; Kuner et al., 1999; Ige et al., 2000).

The presence of the GABAB-1 and GABAB-2 pro-
tein has also been evaluated by immunocytochem-
istry. By utilizing epifluorescence microscopy, a
longitudinal section of rat sciatic nerve reveals
intense staining for the GABAB-1 protein in Schwann
cells, which were identified by the use of the classic
marker glycoprotein P0 (Magnaghi et al., 2004a). The
presence of the GABAB-1 protein is also evident in
rat Schwann cell cultures (Fig. 2), with staining

widely distributed in perinuclear space and in cel-
lular processes. In rat sciatic nerve the presence of
the GABAB-2 receptor protein was confirmed by
immunocytochemistry. Intense fluorescent staining
for this receptor is evident in the Schwann cells body
compartment, as observed in the coronal section of
rat sciatic nerve (Magnaghi et al., 2004a). Finally, the
GABAB-2 receptor was also identified in cultures of
rat Schwann cells (Fig. 2), with an identical pattern
of distribution to that established for the GABAB-1
receptor. A confirmation of the presence of the
GABAB receptors in the PNS comes from a study
with GABAB-1 knockout mice, in which it has been
observed that similar to the CNS, the GABAB-1 sub-
unit is an essential requirement for GABAB function
in the peripheral enteric nervous system (Sanger 
et al., 2002).

Effects of Specific Ligands of GABAA
and GABAB Receptors in the PNS

To investigate the potential physiological signifi-
cance of the expression of GABAA and GABAB recep-
tors in Schwann cells, we determined the influence
of specific receptor ligands on certain important fea-
tures and properties of such cells maintained in cul-
ture. For example, peripheral myelin protein 22
(PMP22), which is one of the most important pro-
teins required for the maintenance of the multi-
lamellar structure of the peripheral myelin, has been
considered (Quarles, 1997; Bronstein, 2000). In
humans, alterations of the PMP22 gene are associ-
ated with a set of hereditary peripheral neuropathies,

Table 1
Presence of GABAA and GABAB Receptor Subunits in the Whole Rat Sciatic Nerve 

and in Schwann Cell Culture of the PNS

Subunits Sciatic nerve Schwann cell

GABAA α1 RNA +/– RNA +/–
α2 RNA + RNA +, Protein +
α3 RNA + RNA +, Protein +
α6 RNA – RNA –
β1 RNA + RNA +
β2 RNA + RNA +
β3 RNA + RNA +, Protein +
γ1 RNA – RNA –
γ2S RNA +/– RNA +/–
γ2L RNA +/– RNA +/–

GABAB 1a RNA +, Protein + RNA +, Protein +
1b RNA +, Protein + RNA +, Protein +
2 RNA +, Protein + RNA +, Protein +

(+) A reliable signal; (+/–) a faint signal; (–) lack of a signal.
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e.g., Charcot-Marie-Tooth type-1Adisease (Naef and
Suter, 1998). We demonstrated that a 24-h exposure
of Schwann cells to a relatively low concentration 
(1 μM) of the selective GABAA receptor agonist mus-
cimol exerted a clear stimulatory effect on the level
of PMP22 mRNA, suggesting that PMP22 might be
under the control of the GABAA receptor ligands
(Magnaghi et al., 2001; Melcangi et al., 2005).

In the Schwann cell culture model GABAB recep-
tors are negatively coupled to the adenylate cyclase
system (Magnaghi et al., 2004a). It should be empha-
sized that modification of cAMP levels in Schwann
cells is associated with changes in their morpho-

logical and functional parameters, including prolif-
eration, differentiation, and their ability to synthe-
size certain myelin proteins (LeBlanc et al., 1992; Lee
et al., 1999; Mirsky and Jessen, 1999; Mirsky et al.,
2001). Consequently, we initially evaluated whether
the specific GABAB agonist baclofen might influence
the proliferation of Schwann cells induced by
forskolin. Baclofen (100 μM) counteracted the
forskolin-induced proliferation of Schwann cells at 4 d
in vitro, and this effect became more evident at later
times of exposure (i.e., 5 and 6 d in vitro) (Magnaghi
et al., 2004a). Additionally, the percentage of Schwann-
BrdUrd-immunopositive cells was significantly

Fig. 1. Localization of GABAA receptor subunits α2, α3, and β3 in rat Schwann cell culture by confocal microscopy.
Schwann cells were cultured on cover slips (Magnaghi et al., 2004a); following differentiation, they were fixed for 20 min
in 4% PBS-paraformaldehyde.The cover slips were incubated overnight at 4°C with one of the primary antibodies against
GABAA subunits. We have used guinea pig anti-GABAA-α2 (1:500) and anti-GABAA-α3 (1:300), which were a generous
gift of Prof. J. M. Fritschy (University of Zurich, Switzerland), and rabbit anti-GABAA-β3 (1:250). After washing, the cover
slips were incubated for 2 h with Alexa-488 anti-guinea pig secondary antibody (1:200), rinsed, and mounted with 
PermaFluorTM mounting media. Controls for antibody specificity included a lack of a primary antibody. Confocal laser
microscopy was performed using a Bio-Rad Radiance 2100 Confocal System (Bio-Rad, Milan, Italy) and a Nikon TE2000-S
Eclipse microscope, utilizing the 488-nm laser. Immunoreactivity for the α2 subunit (A) and the α3 subunit (B) in the
Schwann cells is evident. (C) A specific immunoreactivity for the β3 subunit showed a patchy distribution in Schwann
cells. (D) Schwann cells in which primary antibodies were substituted with preimmune serum revealed no detectable
signal. Scale bar, 15 μm.
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reduced by baclofen treatment. Furthermore, 2 h of
exposure to 100 μM baclofen also modified the
mRNAlevels of some specific peripheral myelin pro-
teins, including the glycoprotein P0, PMP22, myelin-
associated glycoprotein, and Connexin 32. The
quantification of these changes revealed that mRNA
levels of P0 and PMP22 are significantly decreased
after exposure to baclofen. Western blot analysis indi-
cated that protein levels of P0 and PMP22 are also
similarly decreased after a 2-h exposure to baclofen
(Magnaghi et al., 2004a).

Collectively, the observations presented here indi-
cate that Schwann cells are a potential target for
GABA action. The activation of GABAA receptors
exerts a stimulatory effect on PMP22 (Magnaghi 
et al., 2001), whereas the activation of GABAB recep-
tors influences important cellular processes in these
peripheral glial cells (i.e., proliferation and myelin
protein expression). Consequently, at least in the case
of PMP22, these findings reveal that depending on
the receptor involved (GABAA or GABAB), GABA
might increase or decrease the synthesis of this
myelin protein.

Neuroactive Steroids and GABA
Receptors in the PNS

Neuroactive steroids such as THP, THDOC, and
3α-diol exert their actions primarily by binding to
the GABAA receptor to enhance the function of this
transmitter-gated ion channel (Park-Chung et al.,
1999; Rupprecht and Holsboer, 1999; Lambert et al.,
2003; Belelli and Lambert, 2005). Although the effects
of these endogenously neuroactive steroids on neu-
ronal function in the CNS have been studied exten-
sively, their actions in the PNS have received little
consideration (Melcangi et al., 1999, 2000b, 2003).

Similarly, investigations on the effects of neu-
roactive steroids, such as P or estradiol, on GABAB
receptors, have been restricted to the CNS (Al-Dahan
and Thalmann, 1996; Kelly et al., 2003). However, it
could be suggested that in comparison to what hap-
pens on the GABAA receptor, the neuroactive steroids
seem to modulate GABAB with different mecha-
nisms. Namely, the neuroactive steroid action on
GABAB does not seem to be related to a direct inter-
action with the receptor sites. For example, in neo-
cortex of ovariectomized rats, physiological levels
of P increased the apparent GABAB receptor density
(defined by Bmax), whereas the antiprogestin RU38486
produced the opposite effect (Thalmann and Tehrani,
2000). Moreover, during the estrous cycle, variations

Fig. 2. Localization of GABAB receptor subunit-1 and -2
in rat Schwann cell culture by confocal microscopy. Schwann
cells were obtained and treated as described in Fig. 1. The
cover slips were incubated with one of the primary antibodies
against GABAB subunits. We have used the guinea pig pan-
anti-GABAB-1(1:300), which recognizes both 1a and 1b sub-
units, and anti-GABAB-2 (1:250), as described in Magnaghi
et al. (2004a). The immunoreactivities were revealed with
Alexa-488 anti-guinea pig secondary antibody (1:250), and
subsequently the samples were mounted with PermaFluorTM

mounting media. Controls for antibody specificity included
a lack of a primary antibody. Confocal laser microscopy was
performed using a Bio-Rad Radiance 2100 Confocal System
and a Nikon TE2000-S Eclipse microscope, utilizing the 
488-nm laser. (A) Immunopositivity for the GABAB-1 subunit
is evident in the Schwann cells. (B) Schwann cells are addi-
tionally immunopositive for subunit 2. (C) Schwann cells
with preimmune serum instead of primary antibodies revealed
no detectable signal. Scale bar, 15 μm.
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of P concentration in the cerebral cortex influence
the binding of GABAto GABAB receptors (Al-Dahan
and Thalmann, 1996).

Further examples of an interaction between neu-
roactive steroids and GABAreceptors in the CNS are
represented by GABA-regulated action on endoge-
nous neuroactive steroid synthesis. In the frog hypo-
thalamus, GABA inhibits, in a dose-dependent
manner, the activity of several key steroidogenic
enzymes, including 3α-hydroxysteroid-dehydroge-
nase and cytochrome P450-C17 (Do-Rego et al., 2000;
Mensah-Nyagan et al., 2001). This effect is mimic-
ked by muscimol and blocked by the specific GABAA
antagonist bicuculline (Do-Rego et al., 2000; Mensah-
Nyagan et al., 2001). However, in rat retinal ganglion
cells, the synthetic GABAA agonist muscimol stim-
ulates the biosynthesis of pregnenolone, an effect
reversed by the antagonists bicuculline and picro-
toxin (Guarneri et al., 1995). The discrepancies in
these studies could be attributable to the different
species utilized and/or to the different pharmaco-
logical properties of GABA with respect to those of
synthetic ligands utilized. Moreover, in rat cortex a
GABAB-mediated mechanism underpins the
increase in THP and THDOC synthesis induced by
γ-hydroxybutyric acid (GHB, a metabolite of GABA)
(Sanna et al., 2004; Belelli and Lambert, 2005). Suc-
cessively, neuroactive steroids, acting as amplifiers
of the GABA neurotransmission, play a role in the
GABAA-mediated actions of GHB (Barbaccia et al.,
2002).

The literature described above for the CNS sug-
gests a mutual interplay between the GABAergic
system (via GABAA and GABAB receptors) and neu-
roactive steroids, such as P and its derivatives. We
therefore investigated whether there is similar cross-
talk between these neuroactive steroids and
GABAA/GABAB receptors in the PNS.

Effects of Neuroactive Steroids on GABAA
Receptors

As reported above, P and its 5α-derivatives DHP
and THP are unusual modulators of several bio-
chemical and morphological parameters in the PNS.
In particular, as reviewed by Leonelli et al. (this
issue), these neuroactive steroids stimulate the
expression of specific peripheral myelin proteins,
such as P0 and PMP22 (Magnaghi et al., 2001; Mel-
cangi et al., 2005). However, whereas the GABAA
receptor-enhancing steroid THP also increases the
levels of P0 mRNA, this steroid is the only deriva-

tive of Pidentified to date that can stimulate the levels
of PMP22 mRNA and protein (Melcangi et al., 1999,
2000a, 2000b, 2003). The testosterone derivative 3α-
diol, another positive allosteric modulator of the
GABAAreceptor (Frye et al., 1996a, 1996b), is able to
significantly increase gene expression and protein
levels of PMP22 (Magnaghi et al., 2000a, 2004b).

In conclusion, these observations with GABAA
receptor modulatory steroids complement those
made with muscimol, suggesting that the expres-
sion of PMP22 seems to be under the control of the
GABAA receptor in Schwann cells.

Effects of P and its Derivatives on GABAB
Receptors

Certain steroids that enhance GABAA receptor
function, in common with the GABAA receptor ago-
nist muscimol, influence the expression of the impor-
tant Schwann cell protein PMP22. Therefore, the
nongenomic actions of these steroids somehow pro-
duce changes in Schwann cell gene/protein expres-
sion. As described above, activation of the GABAB
receptor influences Schwann cell proliferation and
expression of some important myelin proteins (Mag-
naghi et al., 2004a). We therefore investigated in
Schwann cells the effects of neuroactive steroids on
GABAB receptor subunit expression. Hence, we ini-
tially analyzed the possible effects exerted by P and
its 5α-reduced derivatives, DHP and THP, respec-
tively (10 nM). Schwann cells in culture were exposed
to the steroids for 1, 2, 4, and 24 h, and GABAB-1a, 
-1b, and -2 subunit expression was analyzed by real-
time PCR. We examined all three subunits as GABAB-
1a, GABAB-1b, and GABAB-2 because they are
essential for the expression of a functional GABAB
receptor (Jones et al., 1998; Kaupmann et al., 1998;
White et al., 1998; Kuner et al., 1999; Ng et al., 1999;
Calver et al., 2000). The experiments revealed that 
4 h of exposure to THP produces a robust stimula-
tion of the mRNA of all three subunits, GABAB-1a
(Fig. 3a), GABAB-1b (Fig. 3b), and GABAB-2 (Fig. 3c),
whereas 24 h of exposure to this neuroactive steroid
decreased the expression of the 1b (Fig. 3b) and 2
(Fig. 3c) subunits.

The effect of THP on GABAB receptor expression
is comparable to the influence of this steroid on
GABAA receptor subunit expression in the CNS. Long-
term exposure (i.e., 5 d) of cortical neurons in vitro to
THP decreases the levels of α and β GABAA subunit
mRNAs (Yu et al., 1996). Similarly, changes in GABAA
receptor subunit composition in rat cerebral cortex
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and hippocampus, during pregnancy and after deli-
very, are influenced by fluctuations in endogenous
brain concentration of THP (Concas et al., 1998;
Maguire et al., 2005). Therefore, we hypothesize that
in the PNS, the neuroactive steroid THP exerts a
GABAA-mediated regulation of the GABAB receptor
expression. The intracellular mechanism leading this
control is presumably complex and to date has not
been identified. However, possible mechanisms by
which GABA, after GABAA receptor activation, might
control transcriptional activity have been hypothe-
sized (Obrietan et al., 2002; Galanopoulou et al., 2003;
Mantelas et al. 2003). In the developing rat cortex, for
instance, the neuronal nitric oxide synthetase and
brain-derived neurotrophic factor are controlled via
the GABAA receptor (Mantelas et al., 2003); it has been
proposed that the depolarization following GABAA
receptor activation leads to the opening of L-type volt-
age-gated calcium channels, resulting in an increase
of calcium influx, which in turn leads to phosphory-
lation and activation of the transcription factor cAMP
response element-binding (CREB) protein (Mantelas
et al., 2003). Interestingly, in rat hippocampal neurons
it has been demonstrated that GABAB-1a and GABAB-
1b subunit expressions are mediated by CREB 
protein (Steiger et al., 2004).

Conversely, in our experiments we have also
observed that at early times of exposure (i.e., 2 h), P

Fig. 3.The effect of progesterone (P), dihydroprogesterone
(DHP), and tetrahydroprogesterone (THP) on GABAB-1a (A),
-1b (B), and -2 (C) subunit expression in rat Schwann cell
culture. Schwann cells were exposed for 1, 2, 4, and 24 h
to P, DHP, or THP at 10 nM; following total RNA phenol-
chloroform extraction, the samples were processed for Mul-
tiplex PCR assays with specific primers set for 1a, 1b, and
2 subunits. A 1-μg aliquot of each sample was treated with

DNAsi, to avoid DNA contamination, then reverse tran-
scribed, according to the High-Capacity cDNA Archive
commercial kit (Applera). The PCR reaction was performed
using the TaqMan Universal PCR Master Mix (Applera), with
the specific TaqMan MGB probe (i.e., for 1a, 1b, and 2 sub-
units), labeled with fluorochrome 6-FAM (Applera), and the
primer pairs for the specific 1a, 1b, and 2 subunit mRNAs.
The PCR reactions were performed in multiplex with a
housekeeping internal control for the 18S rRNA, labeled
with VIC (Applera). We have utilized the ABI Prism 7000
Sequence Detection System (Applera). PCR parameters were
50°C for 2 min, 95°C for 10 min, 50 cycles of 95°C for 15 s,
and 60°C for 1 min. Data analysis has been taken as the
cycle at which present threshold value of amplification was
reached. Reactions containing a serial dilution of control
samples (also called calibrator) have been included on each
plate to quantify the relative level of the specific mRNA of
interest by the relative standard curve method, as suggested
in the manufacturer’s user bulletin, no. 2 (Applera). Finally,
after normalization for the 18S rRNA, data were expressed
as relative quantity to control (C, vehicle treatment). The
columns represent mean ± S.E.M. of the number of deter-
minations performed (numbers at top of columns). (***) 
p < 0.001; (**) p < 0.01; (*) p < 0.05.
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and DHP are able to decrease the expression of the
GABAB-2 subunit (Fig. 3c), whereas the mRNAlevels
of other subunits are not affected (Fig. 3a,b). This
effect is evident only with P and DHP, as THP is inef-
fective at shorter exposure times (i.e., 1 and 2 h), sug-
gesting a different mechanism of action in such a
decrease of GABAB-2 subunit expression. The
GABAB-2 subunit is important for GABAB receptor
trafficking to the cell surface (Calver et al., 2001).
Therefore, in parallel to the effect of P in the CNS
(Thalmann and Tehrani, 2000), it is possible to
hypothesize that Pand DHPrapidly control cell-sur-
face GABAB receptor availability also in Schwann
cells. These effects do not seem to be genomic in
nature, because they are not blocked by the antipro-
gestin RU38486 (1 μM) (data not shown).

Interestingly, at later times of exposure (i.e., 24 h),
P and DHP significantly decrease the expression of
either subunit 1b or 2 (Fig. 3b,c). This effect is simi-
lar to that evoked by THP treatment (Fig. 3b,c). Con-
sequently, a possible hypothesis might be that the
effects of P and DHP are attributable to their con-
version into THP by the 5α-reductase-3β-hydroxy-
steroid-dehydrogenase enzymatic complex, which is
present in Schwann cells (seeLeonelli et al., this issue).

Collectively, these observations suggest that the
mRNA levels of GABAB subunits might be influ-
enced differently, mainly by THP, via a GABAA-
mediated mechanism, but also partially by its
precursors P and DHP.

Effects of Specific GABA Receptor
Ligands on GABAB Receptors

Given that the GABAA receptor modulator THP
influences GABAB receptor expression, we have eval-
uated whether this effect is mimicked by activation
of the GABAA receptor. To this purpose we have ana-
lyzed, by real-time PCR, GABAB-1a , GABAB-1b, and
GABAB-2 subunits in Schwann cell cultures exposed
to 100 μM muscimol for 1, 2, 4, and 24 h. The results
demonstrate that after 1 h of treatment the GABAA
agonist muscimol exerts a significant increase of the
expressions of subunits 1a and 2 (Fig. 4a,c), with a
similar pattern of action to that observed with THP

Fig. 4. The effect of muscimol on GABAB-1a (A), -1b (B),
and -2 (C) subunit mRNA expression in rat Schwann cell cul-
ture. Schwann cells were exposed to 100 μM muscimol for
1, 2, 4, and 24 h. After total RNA extraction the samples were
then processed for the Multiplex PCR assays with specific

primers set for 1a, 1b, and 2 subunits, as described in Fig. 3.
After normalization for 18S rRNA, data were expressed as
relative quantity to control (C, vehicle treatment). The
columns represent mean ± S.E.M. of determinations per-
formed (numbers at top of columns). (***) p < 0.001; 
(**) p < 0.01; (*) p < 0.05.
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(Fig. 3a,c). After 4 h of exposure to muscimol, more-
over, the expression of the GABAB-1a subunit
decreases significantly (Fig. 4a). Thus, the GABAB-
1a and -2 subunits are similarly modulated by THP
and muscimol. It might be speculated that in
Schwann cells of the PNS, the GABAB-1a subunit is
under the control of the neuroactive steroid THP via
a GABAA-mediated mechanism. Otherwise, at all
times of exposure the 1b subunit is never affected
by muscimol treatment (Fig. 4b), excluding a mech-
anism through GABAA in the control of such a sub-
unit; however, a rapid GABAA desensitization
should be considered.

Finally, regulation of Schwann cell GABAB sub-
unit expression by GABA (1 mM) was investigated.
In this regard, the main effect of GABA was on the
level of the GABAB-1b subunit mRNA, with 1 and 2
h exposure to this agonist producing a significant
stimulation (Fig. 5b). In contrast, 4 and 24 h of treat-
ment significantly decreased 1b expression (Fig. 5b).
Furthermore, treatment with GABA decreased 1a
subunit expression (evident after 4 h of treatment
[see Fig. 5a]), which is a similar effect to that observed
with muscimol (Fig. 4a). In addition, the stimulation
of GABAB-2 subunit after 1 h of exposure (Fig. 5c)
mirrored that produced by muscimol (Fig. 4c).

Collectively, our data indicate that in Schwann
cells there is a complex interplay between neuro-
active steroids, GABAA and GABAB receptors, which
can influence important and fundamental proper-
ties of Schwann cells.

Conclusions
Here, we have demonstrated that the sciatic nerve

and myelin-producing Schwann cells express both
the GABAA and GABAB receptors. Furthermore, the
specific GABAB and GABAA receptor ligands
baclofen and muscimol, respectively, influence the
proliferation of the Schwann cell and the expression
of specific myelin proteins, suggesting a role of these
receptors in Schwann cell biology. The P metabolite
THP, probably by enhancing the function of the
GABAA receptor, influences the synthesis of the
peripheral myelin protein PMP22. Adding further

Fig. 5. The effect of GABA on GABAB-1a (A), -1b (B), and
-2 (C) subunit mRNA expression in rat Schwann cell culture.
Schwann cells were exposed to 1 mM GABA for 1, 2, 4, and
24 h. After total RNA extraction the samples were then
processed for Multiplex PCR assays with specific primers set 

for 1a, 1b and 2 subunits, as described in Fig. 3. After nor-
malization for 18S rRNA, data were expressed as a relative
quantity to control (C, vehicle treatment). The columns rep-
resent mean ± S.E.M. of determinations performed (numbers
at top of columns). (***) p < 0.001; (**) p < 0.01; (*) p < 0.05.
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complexity, THP and the progestagens P and DHP
can influence the expression of GABAB subunits in
Schwann cells. Furthermore, some of these effects
are mimicked by muscimol and GABA, suggesting
GABAA involvement in the control of GABAB recep-
tor expression by neuroactive steroids.

In conclusion, the results obtained to date suggest,
at least in the myelinating cells of the PNS, a cross-
interaction between GABAA and GABAB receptors
and certain neuroactive steroids. Recent observations
on polysialylated form of neural cell-adhesion mole-
cule (PSA-NCAM) progenitor cells in the CNS, which
in vivo differentiate into glial cells, revealed that neu-
roactive steroids and GABA signaling are involved
in autocrine/paracrine loops in the control of PSA-
NCAM progenitor proliferation and differentiation
(Gago et al., 2004). This suggests, as reported above,
a key role for THP in the development of the nervous
system, specifically of its glial components (Ben Ari,
2002; Gago et al., 2004).

Our results therefore suggest that neuroactive
steroids and GABA might similarly play an essen-
tial role in the development and function of certain
components of the PNS. For instance, by changing
the expression of the GABAB receptor, it is possible
that neuroactive steroids modify the sensitivity of
GABAB to GABA influencing Schwann cell prolif-
eration and differentiation. Our future research aims
to better understand this intriguing interaction of
steroids with G protein-coupled and Cys loop recep-
tors, both in health and in disease, in the hope of
identifying novel therapeutic strategies for the treat-
ment of peripheral neuropathies.
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