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Generalized transduction: Lytic phage
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Phage therapy

Danis-Wlodarczyk K, Dgbrowska K, Abedon ST. Phage Therapy: The
Pharmacology of Antibacterial Viruses. Curr Issues Mol Biol. 2021;40:81-
164. doi: 10.21775/cimb.040.081. Epub 2020 Jun 6. PMID: 32503951.



Causative agent
Shigella dysenteriae

Vibrio cholerae

Pseudomonas aeruginosa
Clostridium difficile

Vancomycin-resistant
Enterococcus faecium

B-lactamase producing
Escherichia coli

Imipenem- resistant P.
aeruginosa

Acinetobacter baumannii, P.
aeruginosa and Staphylococ
Cus aureus

Escherichia coli

MDR Vibrio
parahaemolyticus

S. aureus

MDR S. aureus

Unclassified bacterial
dysentery

Salmonella typhi

Antibiotic-resistant P.
aeruginosa

Model
Human

Human

Murine
Hamster
Hamster

Murine

Murine

Murine

Murine

Murine

Murine
Rabbit

Human

Human

Human

Human

Condition
Dysentery

Cholera

Sepsis
Ileocecitis
Ileocecitis

Bacteremia
Bacteremia

Bacteremia

Sepsis

Meningitis and

Sepsis
Sepsis

Oral
Oral

Oral

Oral
Oral
Oral

I.p.

I.p.

I.p.

Wound infections.c.

Diabetic foot
ulcer
Dysentery
Typhoid

Chronic Otitis

Topical

Oral

Oral

Oral

Result summary?

All four treated individuals recovered after 24 h

68 of 73 survived in treatment group and only 44 of 118 in
control group

66.7% reduced mortality

Co-administration with C. difficile prevented infection
92% reduced mortality

100% reduced mortality
100% reduced mortality
100% reduced mortality

Animals protected against fatal dose of A.
baumannii and P. aeruginosa but not S. aureus

100% and 50% reduced mortality for meningitis and
sepsis, respectively

92% and 84% reduced mortality for i.p. and oral routes,
respectively

Co-administration with S. aureus prevented infection

All 6 treated patients recovered

Phage cocktail improved symptoms of 74% of 219 patients

In cohort of 18577 children, phage treatment associated
with 5-fold decrease in typhoid incidence compared to
placebo

Phage treatment safe and symptoms improved in double-
blind, placebo-controlled Phase I/11 trial


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547374/table/T1/?report=objectonly#T1FN1

Integrative and Conjugative Elements (ICEs)

Annual review of genetics
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Integrative and Conjugative Elements (ICEs): What
They Do and How They Work

Christopher M. Johnson and Alan D. Grossman

the two defining features of ICEs are that they integrate into the
host genome and that they encode a functional conjugation system
that mediates their intercellular transfer.

Induction of ICE gene expression leads to excision, production of the conserved
conjugation machinery (a type IV secretion system), and the potential to transfer
DNA to appropriate recipients.

ICEs typically contain cargo genes that are not usually related to the ICE life cycle
and that confer phenotypes to host cells.

DNA damaging agents cause induction of the recA dependent SOS response in host
cells and also induce several ICEs. During the SOS response, DNA damage
generates ssDNA. This is bound by and activates RecA, which causes auto-cleavage
of repressors.



Size range: approximately 18 kb (Tn916) to more than 500 kb (ICEMISymR7A),
Some phenotypes conferred by ICEs: antibiotic resistance(s)
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By definition, plasmids do not carry b
genes essential for the growth of their g
host under non-stressed conditions -4




Plasmids promote their diffusion




Coniugation

Sexual pili: present in numbers of 1-10 per cell, they are 9-10 nm thick
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Structural and functional diversity of type IV
secretion systems

Tiago R. D. Costa E, Jonasz B. Patkowski, Kévin Macé, Peter J. Christie &3 & Gabriel Waksman &

Nature Reviews Microbiology 22, 170-185 (2024) | Cite this article
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Abstract

Considerable progress has been made in recent years in the structural and molecular
biology of type IV secretion systems in Gram-negative bacteria. The latest advances
have substantially improved our understanding of the mechanisms underlying the
recruitment and delivery of DNA and protein substrates to the extracellular
environment or target cells. In this Review, we aim to summarize these exciting
structural and molecular biology findings and to discuss their functional

implications for substrate recognition, recruitment and translocation, as well as the

You have full access to this article via
Sapienza Universita di Roma
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Various pathogenic bacteria and symbionts deploy

type IV secretion systems (T4SSs) to deliver effector proteins,
DNA—protein complexes or other macromolecules into
eukaryotic or protozoan host cells.

a, The T4SS establishes contact-dependent interkingdom
interactions by injecting effectors directly into eukaryotic cells
to promote bacterial intracellular survival and symbiosis.

b, Many bacterial species and a few Archaea deploy a contact-
dependent T4SS for the delivery of DNA and toxins to other
bacteria or Archaea. Various species in

the Xanthomonadales instead deploy T4SSs for the contact-
dependent delivery of protein toxins to kill other bacteria for
niche establishment.

¢, Some bacteria can deploy T4SSs for the contact-

independent uptake or release of DNA. ssDNA, single-stranded
DNA.



Type IV Secretion System:
DNA secretion and HGT

 Plasmids

* Integrative Conjugative Elements ICE
« Conjugative-Transposons

Evolution  Antibiotic resistance  Fitness  Compensatory

Plasmid 7550 18720 738 220
integrative conjugative element 278 403 36 3
Conjugative transposon 441 1343 54 4

Trends in Microbiology, January 2021, Vol. 29, No.1 9



T4SSs in Gram-negative species are composed minimally of 12
core subunits that are generically termed VirB1-VirB11 and
VirD4 (ref. &). Systems assembled only with the core VirB-VirD4
components are considered ‘minimized’, and many of these
systems function as conjugation machines by delivering DNA
substrates to target bacteria2®. Over the course of evolution,
T4SSs have acquired several additional protein components
that are integrated into the core structure composed of VirB
and VirD4 proteins. As a result, assembly of an expanded T4SS
may require up to 25 different proteinsi®il, Some of these
expanded systems can mediate conjugative DNA transfer, but
many have acquired new functionalities relating to
translocation of effector proteins or toxins, with or without
retention of the ancestral DNA transfer functioniZi3,


https://www.nature.com/articles/s41579-023-00974-3#ref-CR8
https://www.nature.com/articles/s41579-023-00974-3#ref-CR9
https://www.nature.com/articles/s41579-023-00974-3#ref-CR10
https://www.nature.com/articles/s41579-023-00974-3#ref-CR10
https://www.nature.com/articles/s41579-023-00974-3#ref-CR11
https://www.nature.com/articles/s41579-023-00974-3#ref-CR12
https://www.nature.com/articles/s41579-023-00974-3#ref-CR13

Early biochemical studies supplied evidence that the VirB subunits VirB7, VirB9 and
VirB10 assemble as a stabilizing structural scaffold for the T4SS; this scaffold ultimately

was designated as the oUter membrane core complex (OMCC)zz.

The most recent structure presented for the nearly intact T4SS encoded by plasmid R388
(T4SSg;55) NOw has provided important refinements of these earlier structures


https://www.nature.com/articles/s41579-023-00974-3#ref-CR8
https://www.nature.com/articles/s41579-023-00974-3#ref-CR15
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Architecture of Type IV secretion system (T4SS)
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(A) The pilus biogenesis mode showing
the pilus growing from the stalk structure
within the T4SS. At this stage VirB11
(light brown) interacts with VirB4 (green)
to activate this mode.

(B) A substrate translocation mode
where VirB11 (light brown) interacts with
VirD4 (purple) facilitating substrate
transfer.

The relaxosome [relaxase (R);
accessory protein (AP); origin of transfer
(oriT) DNA; and integration host factor
(IHF)] processes the DNA and is
recruited to the T4SS through
interactions with the VirD4 coupling
protein (left panel). This is followed by
the transfer of both the DNA and the
relaxase to the recipient cell (right
panel).

llangovan et al., 2015 Structural biology of the Gram-
negative bacterial conjugation systems, Trends in
Microbiology, 23:301-310
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Table 2. Specific Features Typically Associated with ICEs and Conjugative Plasmids

What separates them
Location Integrated in the Extrachromosomal
chromosome”
Signature modules” Integration/excision Replication
GC content (by comparison with that of the host Closer More distinct
genome)®
Size” Less variable More variabie
Density of DNA repeats” Lower Higher
What brings them together
Type of mobility Interceliular
Mobility mechanism Conjugation
Shared modules Maintenance, conjugative transfer

%|CEs can also exist as arcular extrachromosomal elements, formed upon exasion and transfer to a new host.

®Even though the integration/excision module is classically associated with ICEs and the replication module with plasmids,
ICEs may carmry genes coding for replicases, while some plasmids may also cary genes encoding integrases [27].

“Data retrieved from the comparison between conjugative plasmids and ICEs belonging to a specific mating-pair formation
class, the MPF; [27).

10  Trends in Microbiology, January 2021, Vol. 29, No. 1



Plasmids control the initiation of replication
independently by the replication of the
bacterial chromosome




IN CIS ELEMENTS: ITERONS

Iteron-containing plasmid origin Chromosomal origin Konieczny et al., S., Microbiol Spectr. 2014 ;2(6)
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The iteron-containing plasmid origin is recognized by Regulation of iteron-containing plasmid
the plasmid-encoded initiator (Rep), which binds replication initiation by the auto-repression
cooperatively to the iterons. mechanism. Binding of Rep dimers to
plasmid Rep +host DnaA proteins, while at the inverted repeats inhibits the initiation of
chromosomal origin the DnaA protein is sufficient for transcription starting from the rep gene
this process. promoter. Proteases limit the amount of
Rep translocates the DnaBC helicase to the opened both dimer and monomer forms of the Rep

plasmid origin. protein,
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Diagram of the replication control region for Incl1 plasmids. RepZ is the main replication initiation protein and interacts with
the origin of replication (ori), which is near repZ, to initiate replication of the plasmid sequence. Termination of plasmid
replication occurs at CIS, which is located between repZ and ori (57). (B) Predicted RNA structure of the replication control
(Rep) region of the Incl1 plasmid and predicted mechanisms of replication control. Control of repZ translation, and
subsequently control of plasmid replication and copy number, is associated with the negative regulator inc and the positive
regulator repY. To control replication, inc mMRNA binds to the inc sequence and blocks the ribosomal binding site to inhibit
RepY translation. To activate replication, inc mMRNA is unbound from inc, allowing translation of RepY, which facilitates
pseudoknot formation (binding of structure | to structure Il at the binding sites indicated in red) that opens the ribosomal
binding site to facilitate RepZ expression (based on data from reference 55).
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Nucleoid

Current Opinion in Microbiology

Plasmids control their
segregation in the
daughter cells

Szardenings F et al., 2011. Regular distribution of plasmids on the
bacterial nucleoid confers genetic stabilisation of plasmids by type
| par loci. Current Opinion in Microbiology 14 (6): 712-718
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Toxin-antitoxin (TA) loci encode two-component systems that
consist of a stable toxin and an unstable antitoxin



The role of TA systems in the plasmids: FUNCTION

TA systems on plasmids confer stability of maintenance through
post-segregational killing (PSK)
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Classified in VI types by the nature and activity of the antitoxin
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Type I: the antitoxin is a small antisense RNA complementary with the toxin encoding mRNA

Both Gram-negative and Gram-positive bacteria Tvoe |
Type | toxins are small hydrophobic proteins (less than 60 aa) yp
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TA systems in Escherichia coli chromosome
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The role of TA systems
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Type lI: the antitoxin is a protein that interacts post-translationally with the toxin protein

The relB/relE system from E. coli
2:1 complex RelB2 RelE inhibits the promoter

2:2 complex RelB2 RelE2 cannot bind the promoter transcription is
activated

Type ll

Aniiiosdn Toxin

Similar vapB/vapC of Salmonella

Simon J et al. (2013) Toxin—antitoxin systems, Mobile Genetic Elements, 3:5, €26219
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type Il Toxin-Antitoxin Systems in Bacteria. Microorganisms. 2021;9(6):1276.
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TADB 2.0: V. Xie, Y. Wei, Y. Shen, X. Li, H. Zhou, C. Tai, Z. Deng and H.Y. Ou (2018) TADB 2.0: an
updated database of bacterial type Il toxin-antitoxin loci. Nucleic Acids Research, 2018, 46:D749-D753.

TADB provides an web-interface, allowing users to view an entire genome’s TA loci
repertoire within the context of the whole replicon and to access individual pages
dedicated to each TA locus pair, toxin and antitoxin as required
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Proposed antibacterial strategies based on the indirect activation of toxins of TA systems:

(a) activation of the Lon or ClpP proteases that degrade antitoxins (with a plasmid carrying a cloned
protease gene);

(b) triggering TA systems by quorum sensing factors (mazEF/pentapeptide extracellular death factor
EDF) [Kumar and Engelberg-Kulka, 2014]

(c) triggering TAs by artificial induction of the stringent response sequence-specific PNAs targeting the

thyA gene of E. coli, to trigger MazF toxin production by inducing thymine starvation [Rownicki, et
al.,2018]

Réwnicki, M et al., (2020). Targeting Type Il Toxin-Antitoxin Systems as Antibacterial Strategies. Toxins, 12(9), 568



How can we use TA systems on plasmids against bacteria?
TA systems can be used to design antibacterial drugs

Plasmids can be cured, and cured cells can be killed off by stable toxins from plasmid-mediated TA systems

-
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Simon J et al. (2013) Toxin—antitoxin systems, Mobile Genetic Elements, 3:5, €26219
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V. cholerae causes between 21,000 and 143,000 deaths from cholera per yearii.
The most recent cholera pandemics involved the O1 and 0139 serogroups.

Virulence in V. cholerae is coordinated by the master transcriptional activator
ToxR, which regulates the ToxR reguloniZ, and includes the cholera toxin genes.

Cholera epidemics are associated with antibiotic resistance due to resistant genes
present on an integrative and conjugative element named SXT (from
sulfamethoxazole and trimethoprim resistance). SXT can carry genes that confer
resistance to sulfamethoxazole (sul2), trimethoprim (dfrA1 and dfr18),
streptomycin (strB), chloramphenicol (floR) and tetracycline (tetA) and was first
described in V. cholerae serogroup 0139 (ref. £3).

SXT also encodes functions promoting its excision, dissemination by conjugation
and integration, as well as the transcription factors that control expression of
these functionsis,


https://www.nature.com/articles/s41587-019-0105-3#ref-CR11
https://www.nature.com/articles/s41587-019-0105-3#ref-CR12
https://www.nature.com/articles/s41587-019-0105-3#ref-CR13
https://www.nature.com/articles/s41587-019-0105-3#ref-CR13

Our previous experience with type Il toxins*%2 taught us that basal expression of a full-length
toxin gene from Py, is sufficient to kill the E. coli host.

To avoid this, we designed a genetic module containing a toxin split by an intein, and in our
module the split toxin—intein can be activated only by ToxR.

Inteins are protein sequences embedded into a host protein (extein) from which they are
autocatalytically excised in a process called protein splicing.

During protein splicing, the intein ligates the extein extremities and allows the reconstitution of
the mature protein. In nature, a few examples of split inteins also exist allowing the assembly of
a single protein from two genesZt,

We split the type Il toxin gene ccdB (Plasmid pToxint) into two parts, each of which is
associated with half of a split intein. Split inteins have been used in several biotechnological
toolstZ and enable control of toxic protein functions in vivo&. We used the split-intein DnaE,
which is present in the dnaE gene of Nostoc punctiforme. DnaE is well characterized and has a
high rate of trans-splicing2. Using inteins enables strict control of toxin production and avoids
toxicity due to basal expressioni%i2 (


https://www.nature.com/articles/s41587-019-0105-3#ref-CR14
https://www.nature.com/articles/s41587-019-0105-3#ref-CR15
https://www.nature.com/articles/s41587-019-0105-3#ref-CR16
https://www.nature.com/articles/s41587-019-0105-3#ref-CR17
https://www.nature.com/articles/s41587-019-0105-3#ref-CR18
https://www.nature.com/articles/s41587-019-0105-3#ref-CR19
https://www.nature.com/articles/s41587-019-0105-3#ref-CR14
https://www.nature.com/articles/s41587-019-0105-3#ref-CR15
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In V. cholerae one of the ToxRS-regulated genes encodes a membrane porin,
OmpUZL, We cloned the N fusion of CcdB-intein downstream of

the ompU promoter (regulated by ToxRS) and the C fusion under P, in the same
plasmid (pU-BAD). The functionality of pU-BAD was tested in an E. coli DH5a strain
expressing the V. cholerae toxRS operon from a second plasmid (pRS). On arabinose-
mediated induction of toxRS expression, only bacteria containing both pU-BAD and
PRS plasmids died

Pgao ARABINOSE GLUCOSE
- toxRS @ PpRS @ pRS
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https://www.nature.com/articles/s41587-019-0105-3#ref-CR21

Test of pU-BAD and of pPW, the genetic pathogenic-weapon, in V. cholerae serogroups
01 and 0139.

V. cholerae O1
V. cholerae O1 V. cholerae 0139 AtoxRS

ARA GLU ARA GLU ARA GLU



we cloned a split-toxin—intein operon under the control of ompU promoter in a plasmid and
added an origin of transfer (oriT) to render it conjugative (plasmid pPW). Conjugation is
carried out from donor strain E. coli 3914, an MG1655 AdapA that contains the RP4
conjugative machinery integrated into its chromosome.

pPW was introduced by conjugation into V. cholerae strains 01, 0139 and an O1-

AtoxRS mutant, but only the AtoxRS strain was able to grow after transfer of the pPW plasmid,
demonstrating that it kills only Vibrio expressing ToxR.
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a split-intein toxin could kill ABR bacteria present in a community.

The SXT integrative and conjugative element family in V. cholerae includes various
antibiotic resistance genesi3. The SXT chassis encodes several transcription factors
that regulate SXT transmission including the SetR repressoris,

We designed a module to detect SXT carriage and kill SXT-harboring bacteria by
implementing an additional component into our antimicrobial: the ccdA gene, which
encodes the antitoxin partner of CcdB. ccdA was cloned downstream of the SXT PL
promoter, which is controlled by the SetR repressor, in a plasmid also containing

the ccdB-intein operon regulated by the Pg,, promoter (pPLA plasmid).
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Rocio Lépez-lgual, Joaquin Bernal-Bayard, Alfonso Rodriguez-Patén, Jean-Marc Ghigo, Didier Mazel.
Engineered toxin—intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed
populations. Nature Biotechnology, 2019, 37 (7), pp.755-760.

The antitoxin ccdA under the
negative control of SetR that is
produced by SXT integrative
element in AMR V. cholerae
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Schematic representation of the specific killing of V. cholerae 0139 after pFW conjugation (left).
Schematic display of the corresponding AND-logic gate (right). b, Conjugation from 3914 of
either pN_,,, or pFW, of V. cholerae serogroup 0139 (blue) and O1 (white) as a recipient mixed
population. Transconjugants were selected on Mueller—Hinton + Sp (plasmid marker). The pFW
plasmid was obtained after a change in a ribosomal binding site (RBS) sequence

of ompU promoter to increase translation of toxin—intein fusion and substitution of the 04
operator sequence by O1 operator sequence (see Methods) to increase SetR binding affinity to
the PL promoter and consequently increase repression. Only the V. cholerae serogroup O1,
which is devoid of SXT in its genome, was detected after pFW conjugation, demonstrating the
specific killing of serogroup 0139, which contains both chromosomally encoded ToxR and SetR,
the chosen indicators of pathogenicity and antibiotic resistance, respectively. Pictures are
representative of three independent experiments.


https://www.nature.com/articles/s41587-019-0105-3#Sec2
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