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Highlights
Integrative and conjugative elements
(ICEs) and plasmids can both promote
the spread of antibiotic resistance (AR),
but they vary in important characteristics,
including transmission dynamics and,
most likely, fitness costs and their
compensation.

ICEs outnumber conjugative plasmids,
suggesting an important role during bac-
terial evolution, yet they still have been
largely overlooked as vectors of AR.

Overall, ICE–bacterium coevolution ap-
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Mobile genetic elements (MGEs), such as plasmids and integrative and
conjugative elements (ICEs), are main drivers for the spread of antibiotic resis-
tance (AR). Coevolution between bacteria and plasmids shapes the transfer
and stability of plasmids across bacteria. Although ICEs outnumber conjugative
plasmids, the dynamics of ICE–bacterium coevolution, ICE transfer rates, and fit-
ness costs are as yet largely unexplored. Conjugative plasmids and ICEs are
both transferred by type IV secretion systems, but ICEs are typically immune to
segregational loss, suggesting that the evolution of ICE–bacterium associations
varies from that of plasmid–bacterium associations. Considering the high abun-
dance of ICEs among bacteria, ICE–bacterium dynamics represent a promising
challenge for future research that will enhance our understanding of AR spread
in human pathogens.
pears to vary from plasmid–bacterium
coevolution.

ICE–bacterium dynamics thus repre-
sents a promising focus for future re-
search on bacterial evolution and AR
spread.
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Antibiotic resistance and the Importance of Horizontal Gene Transfer
Antibiotics are powerful medicines used not only for the direct treatment of bacterial infections but
also as prophylactics during cancer chemotherapy and surgery. The inappropriate use of these
drugs has promoted a widespread rise in antibiotic resistance (AR) in bacteria [1–4]. The emer-
gence of AR is driven by two processes: (i) chromosomal mutations altering the cellular targets
of antibiotics or decreasing intracellular antibiotic concentrations, and (ii) horizontal gene trans-
fer (HGT) (see Glossary) of AR genes encoded onmobile genetic elements (MGEs), mostly plas-
mids and integrative and conjugative elements (ICEs) (Box 1) [5–8].

MGEs include a large array of elements that mediate the mobility of DNA chunks, either intracel-
lularly (e.g., transposons) or between cells. Intercellular mobility can be achieved through trans-
formation (i.e., the uptake of extracellular DNA), transduction (promoted by bacteriophages), or
conjugation [7,8]. The latter mechanism of genetic exchange frequently involves plasmids or
ICEs. The concerted activities of MGEs play a vital role in promoting the HGT of beneficial traits,
such as genes encoding AR [7,8]. These genes are frequently stockpiled in genetic entities called
integrons, which can be transferred intracellularly and/or intercellularly with the help of transpo-
sons, plasmids, or ICEs. These elements are often arranged at multiple nested levels, similar, in
principle, to Matryoshka dolls [9].

Several studies have explored plasmid–bacterium coevolution [10–12], as well as the link be-
tween conjugative plasmids and the spread of AR genes in multiple bacterial families
(e.g., Enterobacteriaceae) [7]. Less than 20 years ago, the potential of ICEs (popularly known
as conjugative transposons up to the last decade [13]) to shape bacterial evolution began to at-
tract more attention mostly due to the advent of whole-genome sequencing (WGS) and the
resulting improvements in reconstructing HGT events [14]. However, the role of ICEs as
vectors for the spread of AR is largely unexplored (Box 1) [7,8]. Our opinion article puts the spot-
light on these neglected elements and their importance for the dissemination of AR genes.
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Glossary
Bet-hedging strategy: a strategy for
maximizing the geometric mean (and
thus long-term) fitness across different
environmental conditions at the cost of
suboptimal fitness in individual
environments.
Coevolution: a process involving
reciprocal adaptive changes between
two or more genetic entities.
Compensatory mutation: secondary-
site mutations that ameliorate the fitness
cost of beneficial mutations, such as
those encoding antibiotic resistance.
Conjugation: contact-dependent
transfer of genetic material between cells
through a type IV secretion system.
Fitness cost: the trade-off observed
when a mutation/gene leads to a
selective advantage in one fitness-
associated trait (e.g., antibiotic
resistance) yet simultaneously a
disadvantage in another fitness-
associated trait (e.g., reduced growth
rate).
Horizontal gene transfer (HGT): also
called lateral gene transfer, HGT involves
the movement of genetic material
between genomes.
Integrative and conjugative element
(ICE): previously known as conjugative
transposons, ICEs are chromosomally
integrated mobile elements that can be
transferred horizontally between cells by
conjugation.
Integron: a genetic element that
stockpiles and shuffles gene cassettes
through site-specific recombination.
Plasmid: an autonomous self-
replicating extrachromosomal element
that can be transferred horizontally
between cells by conjugation.
Transposons: also called jumping
genes, transposons are intracellular
mobile elements that can 'jump' to
different regions of the genome.
Tripartite ICE: when integrated in the
host, this ICE exists as three separate
chromosomal regions that recombine to
form a single region before excision and
conjugative transfer.

Box 1. ICEs as Drivers of AR

Together with plasmids, ICEs have been recognized as key vectors for the spread of AR genes in Proteobacteria and
Firmicutes [7,83]. The highly abundant MPFT class [25] of conjugative plasmids carries more AR genes, and exchange
genes, more frequently than do ICEs of the same class [27]. Still, AR genes are common within ICEs, as highlighted by
the examples below. In Pseudomonas aeruginosa, ICEs often carry cassette-borne AR genes, including genes conferring
resistance to carbapenems; they occur in class I integrons [8,18,84] or are flanked by insertion sequences [85,86]. The
large ICE SXT/R391 family disseminates AR genes betweenmany enteric pathogens, such as V. cholerae [49,87] andPro-
teus spp. [88]. In Firmicutes, and specifically in Streptococcus, Staphylococcus, and Enterococcus, Tn916-like ICEs har-
bor genes encoding resistance to tetracycline and vancomycin [89,90]. ICE-emm12, encoding genes for tetracycline and
macrolide resistance, were linked to the emergence of scarlet fever Streptococcus pyogenes clones in Hong Kong [91].
Also in S. pyogenes, a macrolide resistance erm(TR)-carrying ICE was identified in outbreak isolates in New Zealand
[92]. The acquisition of tet(M)-harboring ICE led to the expansion of tetracycline-resistant Streptococcus agalactiae clones
and an increase in neonatal infections [93]. Interestingly, the tet(W) tetracycline-resistance gene was identified within ICEs
in several ruminal bacterial genomes [74]. Recently, the oxazolidinone/phenicol resistance gene optrAwas identified within
an ICESa2603-family ICE in Streptococcus suis [94]. More examples have been covered in excellent reviews of ICEs else-
where [17,22].

Trends in Microbiology
ICEs are widespread mobile units carrying modules responsible for the excision, maintenance,
conjugative transfer, and integration within the new host genome [15]. As the name implies,
these elements are transmitted both vertically to daughter cells (in an integrative state) and horizon-
tally through excision and transfer to other cells (in a conjugative state) [16]. ICEs integrate in the
chromosome by site-specific recombination between direct repeats located in the host and the
ICE, a reaction mediated by an integrase. The integrase is also involved in excision and the forma-
tion of the circular intermediate that will be available for conjugative transfer [15,17]. The horizontal
transfer of these elements can result in abrupt changes in niche preferences. ICEs may cargo
genes that are not linked to their life cycle, such as AR genes [7,18]. Even though our focus is on
the role of these elements in the spread of AR, ICEs can also contain genes for a variety of other
functions, such as virulence-associated genes (e.g., the yersiniabactin-encoding ICEKp in Klebsi-
ella pneumoniae populations [19] and the pathogenicity islands found in Pseudomonas aeruginosa
[20]) and symbiosis genes, as reported for the unique group of ICEs identified in Mesorhizobium
spp. [21]. More examples have been covered in excellent reviews of ICEs elsewhere [17,22].

ICE excision and subsequent transfer promotes the horizontal spread of the ICE in the bacterial
population [23,24]. Even though ICEs are widely distributed in bacterial genomes, and outnumber
conjugative plasmids [25], by comparison with plasmid studies we still have only little knowledge
of their exact evolutionary dynamics and their adaptation to bacterial hosts. Several studies have
focused on the evolutionary dynamics in plasmid–bacterium coevolution. This discrepancy, when
compared with ICE–bacterium dynamics (Table 1), may be explained by the fact that plasmids are
easier to manipulate experimentally and the study of ICEs has gained momentum only recently,
due to the advent of WGS. The comparatively large number of studies focusing on MGE evolu-
tion, highlighted in Table 1, may be misleading as these are not necessarily analyzing their evolu-
tionary dynamics, and their specific adaptation to the bacterial host, but rather some aspect of the
evolution of bacterial host cells. Importantly, the inferred numbers highlight the huge dispropor-
tion observed in studies focusing on plasmids and ICEs or conjugative transposons.
Table 1. PubMed Search Performed on the 15 April 2020, Including ‘Plasmid’, ‘Integrative
Conjugative Element’, or the Former Designation ‘Conjugative Transposon’ and a Combination
of Relevant Keywords

Evolution Antibiotic resistance Fitness Compensatory

Plasmid 7550 18 720 738 220

Integrative conjugative element 278 403 36 3

Conjugative transposon 441 1343 54 4
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We argue that there are three main reasons for studying the evolution of ICE-mediated AR in bac-
teria: (i) AR represents one of the most concerning threats to hospitalized patients; (ii) AR is often
encoded on ICEs, and (iii) ICE–bacterium coevolution may result in outcomes that differ from
those documented for plasmid–bacterium associations. Here, we explore the different lifestyles
of ICEs and conjugative plasmids, and we present evidence supporting our hypothesis that the
evolution of ICE–bacterium associations differs from that of plasmid–bacterium associations.
We also propose an integrative approach based on experimental and computational methods
to study ICE–bacterium coevolution. In this opinion article we focus on the role of ICEs in the
spread of AR and the associated evolutionary dynamics by comparison with conjugative plas-
mids. It is important to emphasize that ICEs (as plasmids) may similarly contribute to the dissem-
ination of virulence genes and other genes beneficial for the host cells [17,22].

ICE Biology
ICEs contribute to genome plasticity and acquisition of novel traits, such as AR, pathogenicity,
and metabolism [14,15]. Like plasmids and many other MGEs, ICEs owe their evolutionary suc-
cess in part to these adaptive phenotypes. Phylogenetic analyses of type IV secretion system
(T4SS) suggested that ICEs and conjugative plasmids have exchanged conjugation modules
along their evolutionary history, whereby T4SS associated with the two elements are only distin-
guishable at short evolutionary distances [25]. These analyses allowed the classification of the se-
cretion machinery involved in bacterial conjugation into eight mating-pair formation (MPF) classes
[25,26]. Many important aspects of ICE biology are unknown, such as the burden that its acqui-
sition imposes on the new host and the traits involved in ICE–bacterium coevolution (Table 1). At
the same time, certain properties have been assessed, as exemplified in the following, generally
highlighting that ICEs are distinct from plasmids in their characteristics and evolutionary dynam-
ics: (i) ICEs combine features of transposons and prophages since they can integrate into and ex-
cise from the chromosome using tyrosine/serine recombinases or DDE transposases [15]; (ii)
ICEs are more frequently transferred between distant taxa than are conjugative plasmids [27];
and (iii) ICEs have a dual lifestyle including both vertical and horizontal transmission and are
Table 2. Specific Features Typically Associated with ICEs and Conjugative Plasmids

ICEs Conjugative
plasmids

What separates them

Location Integrated in the
chromosomea

Extrachromosomal

Signature modulesb Integration/excision Replication

GC content (by comparison with that of the host
genome)c

Closer More distinct

Sizec Less variable More variable

Density of DNA repeatsc Lower Higher

What brings them together

Type of mobility Intercellular

Mobility mechanism Conjugation

Shared modules Maintenance, conjugative transfer

aICEs can also exist as circular extrachromosomal elements, formed upon excision and transfer to a new host.
bEven though the integration/excision module is classically associated with ICEs and the replication module with plasmids,
ICEs may carry genes coding for replicases, while some plasmids may also carry genes encoding integrases [27].
cData retrieved from the comparison between conjugative plasmids and ICEs belonging to a specific mating-pair formation
class, the MPFT [27].
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typically immune to segregational loss, whereas plasmids are affected by segregation during cell
division (Table 2) [16,28,29]. These differences can translate into different coevolutionary paths.

Upon transfer to a new recipient cell, the ICE can integrate into the chromosome or can potentially
evolve to become an extrachromosomal element (Figure 1, Key Figure). Integration can occur at a
single attachment site or can be random (Table 3) [30,31]. ICEs can share the same integration
site in the genome [32,33], potentially leading to strong competition for the limited integration
sites among different coinfecting ICEs and inducing high levels of selection for an ICE’s compet-
itive ability. Because plasmids use a very small proportion of cellular resources [34], competition
between coresident plasmids is expected to be weaker.
Key Figure

Evolutionary Dynamics of Conjugative Plasmid–Bacterium (A) and ICE–
Bacterium (B) Associations
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Figure 1. (A) A plasmid is transferred to recipient cells by a conjugative T4SS (1) andmay impose a fitness cost upon arrival in
a new host. Compensatory mutations may arise in the plasmid, the host, or both (blue triangles) to circumvent the burden o
carrying a new plasmid. Plasmid–bacterium coevolution enables plasmid fixation with or without positive selection. Exclusion
systems may prevent the acquisition of the new plasmid. Under certain conditions, plasmids may evolve to become an ICE
(2), for example by acquisition of a module responsible for integration/excision, after recombination with a coresident MGE
and integrate into the chromosome of the new host (3). (B) An ICE is excised from the donor chromosome and forms a
circular intermediate (1). This circular intermediate is then transferred to a new host by conjugative T4SS. The integration
of an ICE within the chromosome of a new host may impose a burden on the cell. However, currently there are no studies
assessing the strategies used to minimize or even eliminate the cost of ICE carriage and the putative emergence o
compensatory mutations in ICEs, in the host chromosome, or in both (represented by question marks next to the blue
triangles). As for conjugative plasmids, exclusion systems may block the acquisition of the new ICE. It is still unknown
which selective pressures promote the integration of the circular intermediate (2). It is possible that this intermediate is
maintained as an extrachromosomal element (3) that will then evolve to become a plasmid (for example, by acquisition of a
replication module after recombination with a coresident MGE). The figure was created with BioRender. Abbreviations
ICE, integrative and conjugative element; MGE, mobile genetic element; T4SS, type IV secretion system.
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Table 3. Summary of Features Observed in Model ICE Families

ICE family
prototypes

Originally
described in

Common hotspot for
integration

Experimentally
determined
systemsa

Transfer
rate
(per
donor)

Number of
experimentally
tested family
membersc

Refs

SXT/R391 Vibrio cholerae Into the 5′ end of a prfC gene Eex, Par, Rep, Rmo,
T/At

1 × 10–4 81 [42,95–99]

Tn916 Enterococcus faecalis Many different chromosomal
regions

Rep 10–4 to
10–7

58 [100–102]

ICEclc Pseudomonas
knackmussii

Into the 3′ end of a tRNAGly

gene
Par, Rep 1 × 10–2 9 [43,103–105]

ICESt1/ICESt3 Streptococcus
thermophilus

Into the 3′ end of a fda gene Rmo 3.4 ×
10−6

2 [106–108]

ICEBs1 Bacillus subtilis Into the 3′ end of a tRNALeu

gene
Eex, Rep 1 × 10–2b 1 [48,109,110]

aEex, entry exclusion; Par, partition; Rep, replication; Rmo, restriction–modification; T/At, toxin–antitoxin.
bTransfer rate drops by about 50-fold when the ICE is transferred into recipient cells that already contain ICEBs1 [48].
cData retrieved from ICEberg, accessed on the 15 April 2020i.
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Once integrated into the host chromosome, ICEs are replicated as part of it, likely making ICEs more
stably maintained than plasmids in bacterial lineages, even though their stability still awaits a critical
and comparative analysis. ICEs can be excised and transferred to other cells, either stochastically
or under specific conditions (e.g., in the presence of recipient cells lacking SXT/R391 family ICEs
[35] or host cell damage leading to ICEclc induction [36]). A single DNA strand is transferred to the
new host, where a DNA polymerase regenerates the double-stranded element. A copy of the ICEs
is maintained in the donor cell, and a recombination event may reintegrate the ICE into the chromo-
some. Detecting replicating intermediates in population-based assays is challenging, as the observed
small fraction of ICEclc cells induced for transfer [37]. Besides ICEclc, replication was also observed
for SXT/R391 and ICEBs1 [38–40], and this guarantees stability and propagation in the dividing cell
lines. Partition systems are widespread in bacteria and their role in stable inheritance of plasmids
has been extensively studied [41]. These systemswere reported in SXT/R391 and in the ICEclc family
of ICEs and they help to reduce the loss of excised ICEs [42,43]. Toxin–antitoxin and restriction–
modification systems, encoded within ICEs, can trigger postsegregational killing of daughter cells
that have lost the respective system, thereby eliminating possible competitors [44] and enhancing
ICE maintenance. Superinfection exclusion systems were identified in SXT/R391 family ICEs; they
prevent redundant transfers, promoting recombination between ICEs of different exclusion groups
and the formation of tandem arrays [35].

Two model elements have been used to study transfer events: ICEclc and ICEBs1, identified in
Pseudomonas knackmussii and Bacillus subtilis, respectively. The former is prevalent in
Proteobacteria (a list of strains carrying ICEs belonging to the ICEclc family can be browsed
onlineii [45]) and its transfer occurs only at low frequencies during the stationary phase from spe-
cialized transfer-competent cells and requires the addition of fresh nutrients [23,40]. Transfer-
competent cells are characterized by reduced cell division or growth. Recently, a four-step regu-
latory cascade was proposed to activate ICEclc transfer competence in Pseudomonas [46]. The
secondmodel ICE, ICEBs1, is widespread in Gram-positive bacteria and its transfer can be stim-
ulated by the presence of recipient cells lacking the ICE. As seen for many ICEs (Table 3), ICEBs1
is site-specific and tends to integrate into a single attachment site in the chromosome. Integration
of this ICE into alternative attachment sites can be detrimental to both ICEBs1 and the host and
leads to reduced or absent excision and also low cell proliferation and viability [47]. Conditions
that induce DNA damage of the host cell can also trigger ICEBs1 transfer and SXT-related
ICEs from Vibrio cholerae [48,49].
12 Trends in Microbiology, January 2021, Vol. 29, No. 1
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The Missing Information on ICE–Bacterium Evolutionary Dynamics
ICEs and plasmids can be regarded as biological entities with ecologies and evolutionary trajectories
relatively independent from their host cells [50]. Unlike plasmids, the genes and trait functions involved
in ICE adaptation to their host cells – and howbacteria respond to the acquisition of foreign DNA – are
currently unknown. Also, a direct comparison between the cost of carriage of ICEs and conjugative
plasmids encoding similar traits is currently missing. However, theory predicts that ICEs should im-
pose lower fitness costs than conjugative plasmids. In detail, as the mobility of MGEs increases,
they should become increasingly costly for two main reasons. First, the increased capacity for HGT
observed in conjugative plasmids, when compared with ICEs [51], should impose direct energy
costs for expressing the conjugation genes. Second, mobile elements with a high rate of HGT
move between multiple hosts, and the acquisition of these elements introduces foreign DNA (the fre-
quency of gene exchange is expected to be higher in plasmids [27]) into the genome of a bacterium
that tends to be deleterious [51,52].

The evolutionary dynamics between plasmids and bacteria dictate the evolution of AR in many
species [53–58]. These dynamics represent a simple case of adaptation through natural selec-
tion. Plasmids may cause a fitness cost when they arrive in a new bacterial host, but these
costs are eased over time by compensatory mutations during plasmid–bacterium coevolution
[55,59–62]. Importantly, these dynamics of cost and compensation shape the evolution of
plasmid-mediated resistance, producing successful combinations of AR plasmids and clinical
bacteria, which thrive in clinical settings [53]. ICE's bistable lifestyle (as explained below) may
also impact the fitness effects of these elements and the evolution of ICE-mediated AR. On the
one hand, when ICEs are in the OFF or basal state, transfer genes are not expressed and the el-
ements are stably maintained while integrated in the chromosome. The ICEs are not lost during
cell division (segregational loss, which affects plasmids), ensuring vertical transmission. More-
over, ICEs tend to downregulate their core functions (but not their potentially beneficial accessory
genes) [16], which may partially alleviate the fitness cost imposed on the host. On the other hand,
when ICEs are in the ON state, for example, under certain external triggers, the expression of con-
jugation genes can be activated in a small subpopulation of transfer-competent, usually slowly
growing cells (as a bet-hedging strategy to minimize the metabolic burden for the total popu-
lation, while preserving the capacity to transfer DNA) [16,63]. Taken together, these characteris-
tics strongly suggest that the evolution of ICE–bacterium associations may not be completely
analogous to plasmid–bacterium coevolution.

Despite the great relevance of ICEs to the evolution of AR, there is little information available on the
fitness effects of ICEs, and none related to the presence/absence of compensatory mutations (ei-
ther in the chromosome and/or in the ICEs) that may ameliorate the cost of carriage (Figure 1). In
the presence of tetracycline, a tet(M)-carrying ICE from Enterococcus faecalis was beneficial to
the host, but in the absence of selection these ICEs tend to reduce host growth [64]. Similar re-
sults were observed for the integration of a multiple AR gene-carrying ICE named ICEMh1PM22 in
Pasteurella multocida andMannheimia haemolytica [65]. Interestingly, the latter ICE was retained
in transconjugants following extended passage without antibiotic selection. Transfer of ICEclc to
Pseudomonas putida improved fitness on 3-chlorobenzoate (exclusively metabolizable due to
the ICE), but impairs fitness on other carbon substrates [66]. ICEclc transfer to P. aeruginosa
PAO1 did not cause significant fitness reductions in the bacteria [67], which might explain the
broad distribution of this family among Proteobacteria. A copper resistance-encoding ICE did
not incur any measurable fitness costs in Pseudomonas syringae pv. actinidiae, even in the ab-
sence of copper [68]. Thus, AR genes and genes encoding other beneficial traits carried on
ICEs and plasmids are likely to persist in bacterial populations even in the absence of selective
pressure.
Trends in Microbiology, January 2021, Vol. 29, No. 1 13
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New Approaches to Dissect ICE–Bacterium Coevolution and AR Spread
We propose an integrative approach to help improve our understanding of different aspects of
ICE evolution and biology: competition experiments followed by experimental evolution, geno-
mics, and transcriptomics (Figure 2). We also briefly discuss the importance of studying ICEs in
relevant reservoirs and the need for better bioinformatics resources to trace the presence of
these elements.

The evolutionary dynamics of ICE–bacterium associations can be assessed by experimental evo-
lution [69]. Mating experiments should be conducted to allow ICE conjugation from wild-type
strains to ICE-free recipient strains. Using different markers for donors and transconjugants al-
lows us to distinguish them in the laboratory and to track the transfer of the ICE into ICE-free
TrendsTrends inin MicrobiologyMicrobiology

Figure 2. Proposed strategies for Studying ICE–Bacterium Coevolution. Growth curves and competition
experiments between transconjugants and ICE-free recipient strains using high-throughput flow cytometry should be used
to estimate the fitness cost of ICE carriage. Experimental evolution will then follow to characterize the putative emergence
of compensation mechanisms associated with ICE carriage. These mechanisms, as well as the ICE structure and
integration site, can be traced in evolved populations by WGS. RNA sequencing of naïve and compensated
transconjugants is likely to help in exploring the global transcription profile of ICE-carrying recipient strains and studying
the nature of compensatory adaptation. The figure was created with BioRender. Abbreviations: ICE, integrative and
conjugative elements; T4SS, type IV secretory system; WGS, whole-genome sequencing.
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Outstanding Questions
How often do ICEs exchange AR genes
in complex microbial communities?

Does ICE–bacterium coevolution differ
from plasmid–bacterium coevolution?

Do compensatory mechanisms emerge
to overcome the burden imposed by
ICE carriage?

Upon arrival in a new host, is ICE inte-
gration in the chromosome a manda-
tory step, or is it possible that the
circular intermediate evolves to be-
come an extrachromosomal element
with plasmid-like features?
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cells. To estimate the fitness cost of ICE carriage, growth curves and competition experiments
between the different transconjugants and ICE-free recipient strains should be performed. Exper-
imental evolution of transconjugants and ICE-free recipient strains, followed by fitness measure-
ments, should allow identification of the putative emergence of compensatory mechanisms
associated with ICE carriage. Compensatory mutations can be traced in evolved populations
by WGS of naïve and compensated ICE-carrying recipient strains. Using transcriptomics helps
to explore changes in the global transcriptional profile of the recipient host as a consequence
of harboring the ICE and thus to understand the nature of compensatory adaptation
[34,70,71]. This integrative approach, combining fitness assays, experimental evolution, geno-
mics, and transcriptomics, would allow the identification of compensatorymutations and differen-
tially expressed genes related to the evolutionary adaptations between ICEs and bacteria
(Figure 2). It will also help to explore the contribution of ICEs in bacteria where plasmids do not
seem to play a significant role in the spread of AR genes [8]. These signatures could then be
used to predict which ICE–host associations are likely to be selected in the future from the
ICEs and bacteria present in a given environment. Controlled evolution and/or microcosm exper-
iments are an additional approach that allows us to assess to what extent AR genes on ICEs are
important for AR spread in either the presence or absence of antibiotic pressure. We predict that
the interplay between fitness cost, selection, HGT, and compensatory evolution will determine the
fate of ICEs in bacterial populations and therefore the onset of ICE-mediated AR.

A further challenge will be to study the distribution of ICEs in relevant reservoirs, such as the
human microbiome and the resistome of soil bacteria [72,73]), and assess the contribution of
these elements to the acquisition of AR genes in complex communities. Most recently, ICEs
were demonstrated to shape the resistome of the rumen microbiome [74], with further implica-
tions for human health, while AR genes appear to be more likely disseminated by ICEs than by
prophages in the human gut microbiome [75]. Moreover, understanding how ICEs disseminate
within populations can assist in selecting which antibiotics and antibiotic combinations can be
used to prevent the HGT of AR determinants [76,77]. Shedding new light on the evolutionary
basis of ICE-mediated AR could make a significant contribution to the development of innovative
therapeutic approaches and intervention strategies.

New strategies for improving the detection and characterization of ICEs within bacterial genomes
should also be explored. Currently available tools – ICEfinder [45] and CONJscan [26,78] – have
important limitations, such as the inaccurate prediction of ICEs in draft genomes and the bound-
aries of the attachment sites, as well as the inability to track tripartite ICEs [79]. A recently de-
veloped tool, MGEfinder, tracks the integration site of mobile elements, such as ICEs, by using
short-read sequencing data [80]. However, looking for MGEs on genomes sequenced with
short-read approaches is challenging since these elements are usually fragmented due to the
presence of repetitive regions. Also, the identification of ICE blocks on fragmented genomes re-
quires reference-based alignments, which would bias the analysis. The best solution to retrieve
contiguous MGEs is to use hybrid assembly of Illumina plus PacBio or Illumina and Nanopore se-
quencing data [81,82].

Concluding Remarks and Future Perspectives
Even though ICEs are abundant and important for the spread of AR genes, the transmission and
evolutionary dynamics of these elements are still poorly characterized. Future experiments will
help to explain the evolutionary and molecular basis of ICE–bacterium dynamics and to predict
the epidemiology of ICE-mediated resistance. From a more general point of view, these new
studies will offer significant information regarding the evolution and adaptation of bacteria by
HGT. Ideally, these results will be extremely relevant in the field of microbiology and will create
Trends in Microbiology, January 2021, Vol. 29, No. 1 15
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the perfect scenario for the development of translational research that may ultimately lead to the
development of new intervention strategies aimed at counteracting the spread of AR (see
Outstanding Questions).
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