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Toxin-antitoxin (TA) loci encode two-component systems that 
consist of a stable “toxin” whose ectopic overexpression either 
kills cells or confers growth stasis, and an unstable “antitoxin”. 
TA systems have been initially discovered on plasmids, where 
they confer stability of maintenance through post-segregational 
killing (PSK). Plasmid loss results in rapid decrease of antitoxin 
levels, which allows the stable toxin to kill the plasmid-free cell. 
Later, TA systems were also found on bacterial and archaeal chro-
mosomes, sometimes in staggering numbers.1,2 They are classi-
fied into five types depending on the nature and action of the 
antitoxin. In type I systems, the antitoxin is a small antisense 
RNA that base-pairs with the toxin encoding mRNA. By con-
trast, in type II systems, the antitoxin is a protein that interacts 
post-translationally with the toxin protein. The antitoxin in type 
III systems is a pseudoknot containing RNA that directly binds 
the toxin protein.3,4 In the recently proposed type IV systems, the 
protein antitoxin interferes with binding of the toxin to its target 
rather than inhibiting the toxin directly by binding,5 whereas the 
antitoxin protein in type V systems cleaves the toxin-encoding 
mRNA.6

Type I TA systems have been discovered in Gram-negative and 
Gram-positive bacteria and are arranged either as overlapping, 
convergently transcribed genes pairs (e.g., hok/Sok, bsrG/SR4) 
or as divergently transcribed gene pairs located apart (e.g., tisB/
IstR1, shoB/OhsC). In the first case, the antitoxin is a cis-encoded 
antisense RNA, in the latter case, it is a trans-encoded sRNA. 
Chromosomally encoded systems are often present in multiple 
copies. As Fozo concludes from a comparison of “wild” and labora-
tory strains of E. coli, the number of copies seems to be connected 
to the ecological niche that is occupied by the bacterial host.7

With the exception of SymE, all type I toxins are small hydro-
phobic proteins (less than 60 aa) containing a potential trans-
membrane domain. They seem to act similar to phage holins by 
inducing pores into cell membranes, which impairs ATP synthe-
sis. Consequently, replication, transcription and translation may 
be inhibited, which leads to cell death. Recently, the TisB toxin 
was shown to produce clusters of narrow anion-selective pores 
in lipid bilayers.8 Ldr from γ-proteobacteria and Fst restricted to 
firmicutes cause nucleoid condensation.9,10 Thereby, Ldr affects 
purin metabolism and decreases intracellular cAMP levels.9 
Many toxins are not bacteriocidal, but interfere with phage prop-
agation, modulate the cell membrane or prevent mature particle 
formation.9 In some cases, only overexpression of toxin genes 
shows a toxic effect.7
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The first and—at the same time—best studied type I system 
is hok/Sok of E. coli plasmid R1, which was discovered by Kenn 
Gerdes in 1986 and subsequently found to be also encoded in the 
genomes of several enterobacteriaceae (refs. 11, 12 and reviewed 
in ref. 9). Later on, other type I systems were found in E. coli like 
ldr/Rdl, tisB/IstR1, ibs/Sib, shoB/OhsC and symE/SymR, which 
are reviewed in this Special focus.7,9,13

In Gram-positive bacteria, the first type I TA system—fst/
RNAII—was identified in 1989 on the Enterococcus faecalis plas-
mid pAD, where it acts similar to E. coli hok/Sok in post-segre-
gational killing of plasmid free daughter cells. Since then it has 
been investigated in great detail in Keith Weaver’s group.10 Fst-
like systems have been also predicted in plasmids of other Gram-
positive bacteria like Staphylococcus, Lactobacillus and Listeria, 
and some of them are encoded on chromosomes. By contrast, in 
B. subtilis, only chromosomally encoded type I TA systems are 
known to date, and the first of them—txpA/RatA—was identi-
fied in a screen for sRNAs only in 2005 (reviewed in this issue, 
ref. 14). Meanwhile, four toxin families are known in this spe-
cies: TxpA/BsrG, BsrH/BsrE, YonT and YheZ.14

While the plasmid-encoded systems ensure segregational 
stability, the biological role of the numerous chromosomally 
encoded TA systems remained enigmatic for a long time. The 
RNA cleaving toxin SymE from E. coli has been proposed to 
recycle damaged mRNAs produced under SOS stress conditions 
or to prevent infection with RNA phages.9 In B. subtilis, many 
toxin genes (e.g., txpA, bsrG and yonT ) are located on prophages 
and were suggested to be required for the maintenance of these 
phages,14 which resembles the function of plasmid-encoded PSK 
systems. Some TA systems are induced under certain conditions 
like oxygen limitation or glucose exhaustion, and the function 
of these toxins could be to cause bacteriostasis to limit oxygen or 
glucose consumption, respectively.14 Kawano suggests that bac-
teria benefit from TA systems in their defense against invasion 
factors like bacteriophages.9 As Wagner and Unoson emphasize 
in this issue,13 it has been found only recently that chromosomal 
TA systems play a role in persister formation.15,16 Persister cells are 
a subset of a bacterial population that has stochastically entered a 
dormant state and thus becomes refractory to the action of anti-
biotics, whereas their isogenic, rapidly growing siblings are sen-
sitive. The mechanism of persister formation is still unknown. 
The deletion of tisAB led to a sharp decrease of the level of per-
sister cells resistant to the antibiotic ciprofloxacin, whereas SOS-
dependent induction of tisB expression increased the persister 
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levels significantly.15 This can be brought in line with the effect of 
TisB on membrane integrity, decreasing intracellular ATP levels 
and thus macromolecular synthesis rates. By creating a dormant 
state, TisB causes a shutdown of antibiotic targets that results in 
multidrug resistance. The same effect—decrease of persister lev-
els—was observed previously upon deletion of type II TA loci in 
E. coli (reviewed in ref. 16). These studies demonstrated unam-
biguously an important biological function of chromosomally 
encoded TA systems in E. coli.

What is known about the mechanism of action of the RNA 
antitoxins? In the majority of cases (hok/Sok, tisB/IstR1, fst/
RNAII, ibs/Sib), the antitoxins inhibit translation of the toxin 
mRNAs, whereas in others, they promote toxin-mRNA deg-
radation (Fig. 1). Translation can be prevented by different 

means: In hok/Sok, the Sok RNA binds to the SD sequence of 
mok, which is translationally coupled to hok, and thus, indi-
rectly blocks hok-mRNA translation (reviewed in refs. 9, 12). 
Similarly, in ldrD/RdlD, a mok-like ORF termed ldrX overlaps 
ldrD, as the ldrD mRNA has also no capacity to bind ribosomes 
directly, and RdlD obstructs translation of ldrX.9 In tisB/IstR1, 
the tisB SD is sequestered by intramolecular base-pairing. The 
IstR1 RNA binds 100 nt upstream of the tisB translation ini-
tiation region (TIR) at an unstructured ribosome standby-site, 
thereby restraining ribosomes from binding there and sliding 
into the TIR when the stem-loop region opens up occasion-
ally.13 Interestingly, the antitoxin RNA II of the E. faecalis plas-
mid pAD combines features of cis- and trans-encoded sRNAs: 
Toxin and antitoxin RNA overlap by a bidirectional termina-
tor (similar to cis-encoded antisense RNAs) and, additionally, 
contain a set of direct repeat sequences located far apart (like 
trans-encoded antisense RNAs). RNAII/fst RNA binding yields 
a partial duplex, which is sufficient to block fst translation.10 The 
Sib antitoxins also interact with two regions of their ibs toxin 
RNAs, one located in the SD sequence, the other within the ibs 
ORF, to block toxin translation. Thereby, interaction with the 
ORF region is critical for specificity, i.e., discrimination between 
different target toxins.7

In all B. subtilis type I TA systems (e.g., txpA/RatA, bsrG/
SR4, yonT/As-yonT), the antitoxin RNA binds at the 3' end of 
the toxin-mRNA and promotes its degradation.14 Durand et 
al. propose that this type of regulation is due to differences in 
the RNA degradation machinery between Gram-positive and 
Gram-negative bacteria.14 However, as in some of these cases 
the SD sequence is located in a double-stranded region (txpA, 
bsrG) and, therefore, barely accessible, it cannot be entirely 
excluded that the antitoxin RNA has an additional effect on 
toxin translation.14

Complementary base-pairing of antitoxin and toxin RNAs 
results in double-stranded RNA regions, which are substrates for 
endoribonuclease III that initiates toxin RNA degradation. In 
some cases, RNase III is essential for the action of the antitoxin 
(txpA/RatA, yonT/As-yonT), whereas in others (hok/Sok, symE/
SymR, ibs/Sib, tisB/IstRI and bsrG/SR4) it is dispensable.7,9,13,14

Although toxin inhibition by the RNA antitoxin is the major 
regulatory principle, various additional strategies are employed 
by type I TA systems to guarantee tight regulation of toxin 
expression or to keep toxin levels low unless they are required. 
In many cases, the toxin SD sequence is sequestered by intra-
molecular base-pairing (tisB, shoB, bsrG, txpA) that obstructs 
ribosome binding, and the start codon of yonT is GUG, which 
also likely reduces translation initiation.14 txpA and yonT mRNAs 
have “perfect SD sequences” (≥ 11 bp complementarity to anti-
SD in 16S rRNA), which are predicted to efficiently recruite, but 
slowly release ribosomes (reviewed in ref. 14). Often, transla-
tion competent molecules are produced only after 3' or 5' pro-
cessing of the toxin mRNA (hok, tisB, shoB): The 3' end of hok 
mRNA folds back and base-pairs with the 5' end that contains 
an efficient translation initiation region (tac). Gradual processing 
of hok mRNA from the 3' end results in two truncated species, 
the shortest of which is translation competent.9 Similarly, only 

Figure 1. two regulatory mechanisms employed by type i toxin/an-
titoxin systems. Antitoxin RNAs are drawn in red, toxin RNAs in blue. 
Black rectangles denote promoters, and yellow and brown boxes 
toxin and antitoxin genes, respectively. open yellow symbols indicate 
ribosomes. Violet arrows denote RNase iii cleavage. ? cleavage not 
demonstrated experimentally. (A) translation inhibition. the antitoxin 
RNA is complementary to the sD sequence of the toxin mRNA. interac-
tion between both molecules prevents ribosome binding, and, hence, 
translation initiation. the toxin/antitoxin RNA duplex is most likely 
degraded by RNase iii. (B) Promotion of mRNA degradation. toxin and 
antitoxin RNA are complementary at their 3' ends. interaction between 
both RNAs promotes toxin mRNA degradation, and, consequently, does 
not allow toxin synthesis.
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one of three tisB mRNA variants derived from 5' endonucleolytic 
processing is translated.13 Sometimes, the toxin gene is only tran-
scribed under certain conditions: tisB and symE are under SOS 
control, i.e., regulated by the Lex repressor. Proteolytic digestion 
by Lon protease affects SymE levels.9 The stability of bsrG mRNA 
is reduced 3- to 4-fold at high temperatures.14

In spite of the data accumulated over the past years, our knowl-
edge on type I TA systems is still limited. It seems that all bac-
teria that do not live as intracellular parasites encode numerous 

TA modules in their genomes. Notwithstanding the variation 
between the type I systems discovered so far, they seem to con-
stitute a conserved family with similar regulatory properties. 
Although a connection between certain type I and II TA systems 
and persister formation has been established, for a large number 
of chromosomally encoded type I TA systems no biological func-
tion is known so far. It remains to be seen if other hypotheses (see 
above) for the acquisition of TA systems will receive experimental 
support.
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