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First-Order Impedance/Transition Conditions



First-Order Impedance Conditions
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As is well known, the interface between air and a highly conducting medium can
be modeled by introducing the Leontovich boundary condition, also known as
Standard Impedance Boundary Condition (SIBC):

The condition can be derived under the assumption

n̂

, 

0 0, 






0 0

1N 
 

 



First-Order Transition Conditions: Resistive Sheet
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Consider now a thin layer of a highly conducting, nonmagnetic dielectric:

The bulk current density J can be replaced by an equivalent surface current Js:
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First-Order Transition Conditions: Resistive Sheet

and since the tangential electric field is continuous , i.e.,
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where

is the (electrical) resistivity of the sheet.



First-Order Transition Conditions: Resistive Sheet

Consider now a thin layer of lossy, nonmagnetic material with complex
permittivity c =  –j/w immersed in free space. The volume equivalence
principle allows us to replace the layer by the equivalent polarisation current
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Assuming k0t  1, the component of Je normal to the layer can be neglected and
the tangential component replaced by the surface current , hences eJ J
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First-Order Transition Conditions: Conductive Sheet

The dual of an (electrically) resistive sheet is a (magnetically) conductive one
simulating a lossy material with c = 0 . The corresponding conditions are

with
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Combination Sheets

The conditions for resistive and conductive sheets can be written as:
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By addition and subtraction we get the transition condition for a combination
sheet:
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Impedance Condition via Transition Conditions

A combination sheet is generally partially transparent. However, if
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then the combination sheet becomes opaque and its transition conditions
reduce to the SIBC on the two sides of the sheet:
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is the surface impedance on both sides of the sheet.



The Sommerfeld Half-Plane Problem:
Resistive Sheet



Resistive Half Plane

Let us then consider a TM-polarized plane wave impinging on a resistive half
plane:
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The boundary conditions satisfied by the half plane are
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Dual Integral Equations

As in the PEC case, we introduce the angular-spectrum representation of the
fields:
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or, equivalently,



Dual Integral Equations

By enforcing the boundary condition on the resistive sheet we find:

where .

On the other hand by enforcing that the scattered magnetic field is zero (or,
equivalently, that the current density is zero) on y = 0, x < 0 :
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Upper and Lower Functions
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As in the PEC case, the second integral equation is satisfied by letting the
unknown angular spectrum be an "upper function":

whereas the first equation is satisfied provided that:
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where L1,2() are unknown "lower" functions.

(functional equation)



Splitting Procedure

   
1

e
2

0

21 , ,
1

R
K K   





 

      

According to the Wiener-Hopf procedure, it is now necessary to factorise
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Generally, the factorization of a function into a product (or sum) of upper (+) and
lower (-) split functions is a difficult task if analytical results are desired; however,
direct integral expressions can be employed that can be evaluated numerically
(this is referred to as a numerical splitting).
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Splitting for the Resistive Half Plane

For the present case of a resistive half plane, explicit expressions for the split
functions K±() where first obtained by Senior in 1952, who later rewrote them in
terms of the more convenient Maljuzhinets function:
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The Maljuzhinets Function

In the previous expression and p is the Maljuzhinets half-plane
function, given by
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Solution for the Resistive Half Plane

Having achieved the factorization, the solution for the spectrum is obtained by
proceeding as in the PEC case: by inserting the factorized form into the functional
equation we have
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Solution for the Resistive Half Plane

Since the left hand side is an upper function and the right hand side is a lower
function, both must be entire functions.

The asymptotic behavior of such a function at infinity can be deduced from the
property

which implies .

On the other hand, from the edge condition we find
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As in the PEC case, we conclude that the left hand side of the modified functional
equation is infinitesimal at infinity. The Liouville Theorem can now be invoked to
conclude that such a function is identically zero.



Solution for the Resistive Half Plane

Therefore

or
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Conductive Half Plane

In this case we let
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where now the spectral function Pm(cosa) is proportional to the spectrum of
the magnetic current density supported by the conductive half plane.



Dual Integral Equations

By applying the boundary conditions on the conductive half plane
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and the condition that the equivalent surface magnetic current density is zero
on we get a pair of dual integral equations:0, 0y x 
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Wiener-Hopf Solution

By proceeding as in the previous cases we let
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where and are the same upper/lower split functions as

in the resistive case.
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Wiener-Hopf Solution

The Wiener-Hopf procedure then gives
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The Sommerfeld Half-Plane Problem:
Diffracted Field



Scattered Field Representation: PEC Case

Let us consider a resistive half plane and in particular a PEC half plane (Re=0).
The angular spectrum representation of the scattered electric field is
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Scattered Field Representation: PEC Case

We thus have

   0

i
coss 0 0 0, sec sec d , 0

4 2 2
jk

z
C

E
E e y

j
     

  


       
  

Here the singularities of the integrand are seen to be a pair of simple poles:
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As we will see shortly, their residue contribution allows for recovering the
reflected wave (p1) and offsetting the incident wave (p2) in the
geometrical shadow region.



Asyptotic Evaluation of the Scattered FIeld

The scattered field can be asymptotically evaluated with the steepest descent
method by deforming the integration path C to the Steepest Descent Path
(SDP):

(in the PEC case it turns out that the SDP contribution can be evaluated exactly)

complex -plane

C



0 

0
2



0 

SDP



GO Boundaries
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The angles corresponding to the poles at p ± f0 define the boundaries of three
distinct angular regions, each characterized, in ray optical terms, by the
presence of different GO ray congruences:
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GO: Region 1 (Incident + Reflected Rays)
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GO: Region 2 (Incident Rays)
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GO: Region 3 (Shadow)
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Region 1: Incident + Reflected + Diffracted Wave
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Region 2: Incident + Diffracted Wave
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Region 3: Diffracted Wave
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Non-Uniform Diffracted Field

An application of the steepest descent method in its basic form gives:
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Non-Uniform Diffracted Field

However, there are two issues:

1) the representation of the total field is discontinuous across the RB and SB.

2) For any , the accuracy of the asymptotic expansion decreases in the
vicinity of the RB and SB, where the non-uniform diffraction coefficient
tends to infinity

In fact, the residue contribution of the optical poles has a step
discontinuity at p ± f0 .

In fact, when  is close to p ± f0 there is a pole close to the SP, hence
the radius of convergence of the Taylor series used to derive the
asymptotic expansion of the integral tends to zero



Uniform Diffracted Field

Both problems can be solved by performing a uniform asymptotic evaluation
of the SDP integral, which explicitly takes into account the presence of the
optical poles.
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The essential ingredient is the formula:

where FC(.) is a modified Fresnel integral:   2 2
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(Clemmow transition function)



Uniform Evaluation of the Field

By using this formula we find
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In spite of the presence of the unit-step functions, this expression is now
continuous everywhere…



Uniform Evaluation of the Field
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By using this property, the total field may be cast in the form

which is an exact expression for the total field in the presence of a PEC half
plane and is manifestly continuous everywhere.

This is a consequence of the crucial property of the Clemmow transition function
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Total Field: UTD Transition Function
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where

The total field is often written also in terms of the transition function FKP(.) adopted in 1974 
by R. G. Koyoumjian and P. H. Pathak in their Uniform Teory of Diffraction  (UTD), as
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for p/4  arg z  5p/4)



UTD Transition Function
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Total Field = GO Field + Diffracted Field

The total field can be expressed in several different ways. The one most commonly used is
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Diffracted Field
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where now the upper sign is used in the definition of FKP(.):

The diffracted field can also be written in terms of the transition function FKP(.):
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Resistive Half Plane: Scattered Field
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For a resistive half plane the scattered field can be written as

The uniform evaluation of the solution for the PEC half plane relied on an identity that 
cannot be used in the case of a resistive half plane.

A different (asymptotic, not exact) approach will thus be followed for the management of the 
pole singularities, known as the additive approach, first proposed by van der Waerden in 
1951 (an alternative multiplicative approach also exists, proposed by Pauli and Clemmow).



Resistive Half Plane: Surface-Wave Pole

In addition to the optical poles at p ± f0 there is a third pole singularity arising from the split 
function                         : , cosK  
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We recall:



Resistive Half Plane: Additive Approach

Considering for instance the half space y > 0, we write the scattered field as
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Resistive Half Plane: Additive Approach
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Resistive Half Plane: Additive Approach

Since the terms added and subtracted contain the same pole singularities as the original
integrand, the new ('regularized') integrand is free of pole singularities and thus can be
asymptotically evaluated via the usual steepest-descent method.

The relevant contribution to scattered field is
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Resistive Half Plane: Additive Approach

On the other hand, the additional integrals can be evaluated using the identity used in
the case of a PEC half plane.
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The result for the uniform diffraction coefficient is:
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