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SUMMARY

The number of large-scale genomics projects is increasing due to
the availability of affordable high-throughput sequencing (HTS)
technologies. The use of HTS for bacterial infectious disease re-
search is attractive because one whole-genome sequencing (WGS)
run can replace multiple assays for bacterial typing, molecular
epidemiology investigations, and more in-depth pathogenomic
studies. The computational resources and bioinformatics exper-
tise required to accommodate and analyze the large amounts of
data pose new challenges for researchers embarking on genomics
projects for the first time. Here, we present a comprehensive over-
view of a bacterial genomics projects from beginning to end, with
a particular focus on the planning and computational require-
ments for HTS data, and provide a general understanding of the
analytical concepts to develop a workflow that will meet the ob-
jectives and goals of HTS projects.

INTRODUCTION

High-throughput sequencing (HTS) has transformed biomed-
ical research. Declining costs and development of accessible

computing options have resulted in the widespread adoption of
these technologies in the scientific community. PCR and Sanger
sequencing (often referred to as “traditional sequencing” meth-
ods) required proportionally more time generating the data than
was needed for downstream analysis; in contrast, HTS platforms
can produce massive amounts of data relatively quickly compared
to the time needed for analysis and interpretation. The bottleneck
between data generation and meaningful interpretation has gen-
erated a need for new, efficient, and innovative data management
and analysis methods.

Here, we provide a comprehensive review on how to conduct
an HTS project in bacterial genomics with particular emphasis on
infectious disease microbiology. Although basic scientific pro-
cesses and experimental design have not changed, the additional
steps and scale of data generation have caused a paradigm shift in
the time and resource allocations required to successfully com-
plete HTS projects. We present the process in the context of three
applications with various scopes, with the goal that this review will
be relevant and scalable to many areas of infectious disease
genomics research. The three applications include (i) bacterial
typing, (ii) molecular epidemiology, and (iii) pathogenomics. Fig-
ure 1 illustrates how the use of HTS for whole-genome sequencing
(WGS) can apply to scalable projects in a feedback loop. The
whole-genome data can be mined for comparison with current
typing schemes or used to create expanded “fingerprints” of the
bacteria (bacterial typing), which in turn can contribute to
investigating a larger defined bacterial population (molecular

epidemiology). The comparative information regarding popu-
lation trends, identification of novel strains, or genomic fea-
tures can be studied in more depth by employing complemen-
tary research methods to understand pathogenic mechanisms
(pathogenomics).

To overcome the bottleneck associated with big data analysis, a
shift in resource allocation is needed to ensure that adequate com-
putational resources and expertise are available to efficiently pro-
duce high-quality data and results. Therefore, proper planning
and a multidisciplinary team are essential to successfully execute
large-scale HTS projects. This review provides a resource for con-
ducting HTS projects from beginning to end, based on expertise
from successful infectious disease genomics projects in the litera-
ture and personal experiences.

PREPARATION

Reallocation of resources to efficiently handle the increasing sam-
ple sizes and large amounts of HTS data produced presents new
challenges to researchers. The amount of data generated often
exceeds the computational storage and computing capacity of lo-
cal systems, requiring researchers to find additional resources to
organize and manage it all through their analysis workflows.
Therefore, an end-to-end understanding of microbial HTS proj-
ects and available options will better equip researchers to antici-
pate bottlenecks and prepare sufficient resources to mitigate
them.

HTS technologies enhance our ability to characterize and dif-
ferentiate clinically relevant bacterial populations, understand
and predict epidemiological trends, and create new analytical
tools or improve existing non-HTS molecular tests (Fig. 1). The
timeline for project completion depends on many variables such
as the scope of the project (i.e., number of samples, size of the
research team, and depth of research questions), biological char-
acteristics of bacteria under study, sequencing platform(s) used,
and outcome goals. Figure 2 illustrates a generalized timeline of
the major stages in a large-scale HTS project. We have placed a
large emphasis on the planning stage prior to data generation and
the need for ongoing project management to maintain continual
forward progression of tasks through each stage. The analysis has
been separated into three stages: primary, secondary, and tertiary.
Primary analysis is the first analytical pass: quality assurance (QA)
and control of the HTS data. Secondary analysis employs com-
mon (likely automated) workflows typically performed on newly
generated genomes, which can include reference mapping and de
novo assembly. Tertiary analysis is the “sense-making” stage of the
project, where interpretations and conclusions are drawn from
comparative analyses, and it includes more specialized or focused
processes.
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Project Management

The project manager role is often filled by the lead principal in-
vestigator or may be divided among senior members of the proj-
ect. For some large-scale projects, a dedicated project manager
may be assigned. In general terms, the project manager is respon-
sible for organizing and controlling performance as the project
progresses (1). HTS project-specific considerations are summa-
rized in Table 1. Project management tasks can be categorized into
communication, logistical facilitation (i.e., transfer of materials/
data), and data management. For more detailed information on
data management, we refer readers to recent publications that

summarize the need for data management throughout the data
life cycle in HTS projects (i.e., raw, intermediate, and result data)
and propose some best-practice guidance to develop policies for
the management, analysis, and sharing of data within HTS proj-
ects (2, 3).

Experimental Design

The experimental design should be established during the plan-
ning stage and encompass the entire project from the initial ques-
tion/hypothesis through the sampling strategy, data generation
methodology, and analysis plans to defining the outcome goals

FIG 1 Example of three HTS applications for infectious disease bacterial genomics. These applications use HTS data to answer common questions regarding
bacterial pathogenesis in a public health/clinical microbiological research setting from bacterial typing to molecular epidemiology and in-depth pathogenomic
investigations. These applications are shown in a feedback loop to demonstrate that HTS provides data that can be analyzed to various degrees (both depth and
breadth) based on the hypotheses under test and the number of isolates included for comparative genomics.

FIG 2 General HTS project stages and timeline. The importance and time requirements for the project planning stage and ongoing project management are
sometimes underestimated but are invaluable for large-scale HTS projects for which hundreds of samples and terabytes of data are produced. The stages are
divided by natural timeline progression and also increasing depth of investigation and specialized analysis requirements.
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and deliverable endpoints. There are many legitimate sampling
strategies in scientific research; the application will dictate which
strategy is appropriate. Table 2 describes some general examples
of sampling strategies for the three applications targeted in this
review.

The data describing each sample are known as the “metadata”
and are crucial to the extraction of meaningful biological interpre-
tation from the analysis results. Minimal information such as the
source, location, and collection date should be supplied for each
sample to ensure that results can be correctly inferred for the sur-
veyed population. A metadata assessment metric, the Metadata
Coverage Index (MCI), has been suggested as a standardized met-
ric for quantifying database annotation richness. In the future, the
MCI might be used to ascertain the richness of metadata coverage
for genomics standard compliance, quality filtering, and reporting
(4), and yet it remains unlikely that manual curation of metadata
can be eliminated. Researchers persevere globally to establish per-
formance specifications and to fit HTS within existing communi-

ties of practice (regulatory or professional standards) (5, 6).
Hence, in this changing context, HTS processing and quality
guidelines will remain a “space to watch” for the foreseeable fu-
ture.

One of the first and most important steps in any scientific in-
vestigation is the generation of a hypothesis. Although the large
data sets generated by genomics technologies do permit data-
driven research, these studies are typically designed to help
sharpen a broad hypothesis, not to resolve it (7). Once the project
has a defined question or hypothesis, the outcome goals and de-
liverables can be established. These desired goals will guide the
course that the analysis workflow should follow. There are likely
multiple paths that analysis can pursue; thus, establishing a clear
objective and defined endpoint early will help ensure that the proj-
ect is successfully completed in a timely fashion and that resources
will be applied most efficiently. Depending on the purpose and
nature of the study, deliverables may include publications, presen-
tations, regulatory/response action, or policy changes. Knowledge
translation in the form of sharing data publicly should be recog-
nized with high priority to enhance global data repository re-
sources and analysis tool development.

Computational infrastructure resources. The large amount of
data generated by HTS and the processing required to perform
comparative genomics require a substantial computing infra-
structure and sophisticated software. Before undertaking an HTS
project, careful consideration should be given to the computing
requirements and qualified experts (i.e., computational biologists
and bioinformaticians) necessary to complete the data analysis.
For example, a single Illumina MiSeq run can produce up to 15
gigabases and many contemporary, large-scale projects require
multiple MiSeq runs or the use of larger-capacity platforms. Con-
sequently, analysis of such output data sets can take a significant
amount of time and resources. Although some of the most rudi-
mentary analyses for a single genome can be achieved on modern
desktop computers with the proper software and configuration,
generating accurate and timely results for hundreds of simultane-
ously analyzed genomes requires considerably more computa-
tional “muscle.” A standard desktop computer may have only 8
gigabytes (GB) of memory, 4 processing cores, and 1 terabyte (TB)
of storage space, whereas high-end machines found in large data
centers likely have hundreds of gigabytes of memory, as many as
64 processing cores per machine, and access to hundreds or thou-
sands of terabytes of storage. These high-end machines can be
linked together to construct high-performance computing clus-
ters capable of simultaneously analyzing hundreds or thousands
of genomes. Computing on this scale typically has its own admin-

TABLE 1 Project management principles and how they relate to HTS research projects

Principle General components HTS project-specific considerations

Planning Identify questions to be addressed; identify stakeholders;
identify tasks; identify outcomes, identify risks and
plan for them; establish roles and responsibilities

Funding and ethics timelines; equipment costs/availability for all
stages; choose sequencing platform and configurations;
computational resources and analysis plan; appropriate strain
selection; metadata organization and coding of samples;
anticipate risks or bottlenecks in the workflow

Organizing Organize resources; organize data Staff training if required; data management; procurement; data
collection

Controlling performance Organize, focus, and motivate personnel; track work and
results; communicate; update stakeholders; monitor
and mitigate risks

Curate data on an ongoing basis; identify bottlenecks/issues and
facilitate progression to next steps; confirm and assess work
against milestones; progress reports as required

TABLE 2 Sampling strategy examples for 3 applications of HTS projects

Example of sampling strategy Application(s)a

Unbiased prospective or retrospective (or combined)
sampling—sampling of all strains meeting a
specific definition (i.e., over a time period or
region) for unbiased discovery (typically
population-based studies)

• Characterization of genome population: what is
circulating?

BT, ME

• Sample and reveal trends for strains based on
geography or time

ME

Differential or niche sampling—categorically biased
sampling to assess anticipated population
differences (typical case-vs-control or
cohort studies)

• Compare genomic differences between
epidemiologically defined groups (i.e., community
vs hospital acquired; presence vs absence of a
pathogenic phenotype or clinical outcome)

BT, ME, P

• Characterize and compare genomes of closely
related strains from different environmental
niches

BT, ME, P

• Pathogenic vs commensal isolates within the same
species

ME, P

• Characterization of new pathogen genotype(s)
and/or novel strains

P

a BT, bacterial typing; ME, molecular epidemiology; P, pathogenomics.
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istrator and requires housing within a data center with redundant,
uninterruptable power supplies and industrial-scale cooling sys-
tems. Although such large-scale computing clusters may not be
required for small or even some medium-size HTS projects, the
HTS project planning stage should include advance estimates for
the computational resources required. If the requisite computing
infrastructure is not available locally or as a shared resource within
an institution, a popular alternative is commercial cloud comput-
ing services, in which large-scale computational resources are pro-
vided on demand for a fee.

(i) Estimating computational resources. Estimating computa-
tional resources should include attention to items such as physical
memory of the machine (random access memory [RAM]) and
processing power (central processing unit [CPU] cores and
speed), as well as network bandwidth for large data transfers (e.g.,
transfer of data from the HTS instrument to its interim data stor-
age location or final archive).

Computational resource comparisons are often made with re-
spect to secondary processes such as reference mapping (the align-
ment/mapping of HTS sequence reads to a reference genome) or
de novo assembly (the process of combining sequence reads to
reconstruct the original genome without the guidance of a refer-
ence). Both processes are fully described in the Secondary Analysis
section. While resource requirements can vary between tasks and
software chosen, they are often on the order of several gigabytes of
memory and several hours per genome (8). For small numbers of
genomes, secondary analyses can be performed sequentially on a
single workstation or even a high-end laptop; however, large proj-
ects with high sample numbers multiply these resource require-
ments. Thus, adjustments may require different software and/or
upgraded computers depending on the software’s computational
time requirements, the number of genomes to be analyzed, and
the project deadlines.

Network bandwidth is another important consideration, par-
ticularly if cloud computing or offsite computing resources are
used, or if additional data are required from external resources
such as NCBI’s Sequence Read Archive (SRA) (9). Hence, the time
to transfer these data should be taken into account before initiat-
ing an HTS project. Gigabit networking cards are affordable, and
comparable Internet speeds are increasingly becoming available
from most service providers, which are adequate for timely trans-
fers of HTS data.

(ii) Data storage requirements. Storage requirements for an
HTS project include both storage of the initial sequence reads and
the necessary space for performing data analysis. Although storage
is relatively inexpensive, with most standard hard drives capable
of storing 1 TB or more, the inherent large file sizes of raw se-
quence data, as well as the incorporation of publicly available se-
quence read data for many analysis pipelines, can take up signifi-
cant storage space. Common file formats used to store sequence
reads include FASTQ (10), BAM (11), and the SRA (12) format.
These formats store both the individual bases for each sequence
read (ATCG) and a Phred quality score encoding the probability
of an error in the base (13), often in a compressed form. An esti-
mate of the sequence read storage requirements for a single Esch-
erichia coli genome stored in FASTQ format may be on the order
of several hundred megabytes. Hence, permanent raw data storage
requirements must be scaled accordingly for larger numbers of
bacterial genomes.

Estimation of the storage requirements for data analysis is even

more challenging owing to the numerous analytical possibilities
and the large temporary interim files generated. These analysis
steps often produce multiple redundant copies of the compressed
reads along with large internal temporary files, expanding the ini-
tial storage requirements by severalfold. Although many of these
large temporary files can eventually be deleted, maintaining these
copies over the course of an investigation may be desirable for
troubleshooting and validation of the results. When considering
the tens, hundreds, or thousands of genomes to be processed in
parallel, for example, when generating large-scale whole-genome
phylogenies, one quickly realizes the impact of HTS data volume
on data storage and on the computing and qualified personnel
required to manage it.

(iii) Cloud-based computing. Cloud-based analysis environ-
ments, where computational resources are provided by large-scale
commercial data centers, have become increasingly commonplace
and can provide high-performance computing on demand. Cloud
computing can be divided into three different service models: In-
frastructure as a Service (IaaS), which provides physical comput-
ing resources (e.g., 40 CPU cores and 160 GB of memory) and
complete control over the operating system and software installed;
Platform as a Service (PaaS), which provides a preinstalled oper-
ating system and suite of standard software; and Software as a
Service (SaaS), which provides access to specific software applica-
tions through a common interface such as a Web browser. Ama-
zon Web Services (Amazon.com Inc., Seattle, WA, USA), Google
Cloud Platform (Google, Mountain View, CA, USA), and Mi-
crosoft Azure (Microsoft, Redmond, WA, USA), shown in Table
3, provide a mixture of IaaS and PaaS cloud services and have been
used for large-scale bioinformatics analysis (14–16). However, the
setup and configuration of an HTS cloud-based analysis environ-
ment may still require considerable time and expertise. SaaS pro-
viders, such as Illumina’s BaseSpace (San Diego, CA, USA), im-
part value by removing the required setup and maintenance of
HTS computing environments. For those lacking resources or
time for a local HTS data analysis environment, SaaS may be the
preferred option so long as requisite analysis software is available
to achieve project goals.

For any cloud-based solution, data privacy and security be-
come a consideration. In the United States, the Health Insurance
Portability and Accountability Act (HIPAA) defines a set of stan-
dards for the protection and security of electronic health informa-
tion (http://www.hhs.gov/hipaa/). In particular, the HIPAA Pri-
vacy Rule establishes standards for the use of “protected health
information” (i.e., individually identifiable information) man-
aged by “covered entities” (i.e., health care providers) (17). The
promising use of cloud computing services within health services
has generated an interest in developing HIPAA-compliant or
other privacy-compliant systems in a cloud environment, often
requiring the use of technical solutions such as well-defined access
controls, data encryption, and auditing (18). Most cloud provid-
ers will advertise their privacy and security policies, and interested
readers are encouraged to review these policies for additional in-
formation.

While HIPAA is concerned with the protection of personally
identifiable information, such as clinical records, there are fewer
restrictions on the use or disclosure of deidentified health infor-
mation (17). DNA has previously been excluded from being re-
garded as personally identifiable (17), although this is increasingly
being called into question for human-derived data wherein there
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may be a risk of deducing identifiable information in certain cir-
cumstances (19). As reported by “Pathogen Genomics into Prac-
tice” from the PHG Foundation (20), such risk (of being person-
ally identifiable) is much lower for microbial HTS data generated
from isolated microbial cultures unless there is (unlikely) contam-
inating human DNA carryover. HTS sequences from uncultured
samples sourced from humans (i.e., metagenomics) are perceived
as a higher risk owing to the presence of human genomic infor-
mation. Such human-derived data can and should be removed in
the primary data processing stage. Metadata associated with clin-
ical samples (e.g., description of isolate source) have the highest
risk, as they often include personally identifiable information.

Thus, for the use of cloud computing services, or more broadly
for sharing data into the public archives, a clear definition of what
constitutes personally identifiable information should be prees-
tablished. For privacy compliance purposes, only deidentified in-
formation (e.g., HTS data) should be shared with and stored
within cloud services where possible, with more sensitive infor-
mation kept separate. The GenomeTrakr network in the United
States mitigates this challenge by segregating the HTS data away
from the sensitive metadata. In that system, only HTS data from
microbial cultures and a minimal set of metadata are deposited in
public archives to facilitate efficient monitoring of foodborne
pathogens nationally and globally, while the more sensitive infor-
mation is kept confidential (21). However, even in the absence of
storing identifiable information within cloud services, plans
should be made in advance related to data control, security, and
accountability in the event of a cloud service failure (22).

Software and workflow management. Analysis of HTS data
requires the execution of a large collection of software through a
series of stages, called workflows or pipelines, before the final re-
sult is produced and interpretation can begin. The individual soft-
ware components at each analysis stage are made available
through a variety of sources such as free and open-source down-
loadable packages, Web services, or commercial software. Orga-
nizing these software components into a data analysis workflow
can be challenging. For example, software outputs are often
needed as input to the next step (but may not conform); thus,
these workflows need appropriate transformation and manage-
ment. Software to assist in this process has been developed, span-
ning a spectrum from generic scientific workflow managers to
extremely customized data analysis pipelines. As part of the HTS
planning stage, examination of these software solutions should be
performed, keeping in mind the desired results of the project and
the cost, including expertise for the setup and maintenance of any
software selected. A number of available software options are de-
scribed below and also shown in Table 3. Readers are encouraged
to refer to additional reviews (23) or the software-specific citations
for further details.

Galaxy (24) is a popular Web-based bioinformatics data and
workflow management platform. Galaxy provides a large collec-
tion of data analysis and statistical software as well as data manip-
ulation tools that can be executed through a standard Web
browser. Software and tools required for the analysis can be linked
together within Galaxy to create automated workflows. The cus-
tomized workflow can subsequently be configured to run multiple

TABLE 3 List of bioinformatics analysis resources

Type Name Cost Comments

Cloud services
(IaaS/PaaS)

Amazon Web Services (Amazon.com
Inc., Seattle, WA, USA)

Commercial Commercial cloud environments providing resources to construct
customized high-performance computing environments; acts as a
base from which additional software (e.g., Galaxy) can be utilizedMicrosoft Azure (Microsoft, Redmond,

WA, USA)
Commercial

Google Cloud Platform (Google,
Mountain View, CA, USA)

Commercial

Cloud services
(SaaS)

Illumina BaseSpace (San Diego,
CA, USA)

Commercial Commercial cloud-based bioinformatics analysis environments
associated with different sequencing instruments; provides analysis
tools and data management fine-tuned for each sequencing
instrument; often integrates free and open-source bioinformatics
tools described in this review (e.g., FastQC for quality control of
sequence reads)

Thermo Fisher Cloud (South San
Francisco, CA, USA)

Commercial

Metrichor (Oxford, UK) Commercial

DNAnexus (Mountain View, CA, USA) Commercial Cloud-based bioinformatics environment not specifically tied to any
sequencing platform

Web services Galaxy (24) Free Free and open-source bioinformatics analysis environment available
at https://galaxyproject.org/; private instances can be installed on
local hardware or within a cloud-based environment;

RAST (29) Free Web service focused on genome annotation; available at
http://rast.nmpdr.org/

Center for Genomic Epidemiology
(30–32)

Free Available at http://www.genomicepidemiology.org/; provides access
to free tools related to genomic epidemiology (e.g., genome
sequence typing or construction of phylogenetic trees)

Desktop based CLC Genomics Workbench (CLC Bio,
Aarhus, Denmark)

Commercial Commercial desktop-based bioinformatics environments; may also
provide support for integration with high-performance computing
environments; often integrates existing free and open-source
bioinformatics tools (e.g., Velvet for de novo assembly)

BioNumerics (Applied Maths,
Sint-Martens-Latem, Belgium)

Commercial

Ridom SeqSphere� (Ridom GmbH,
Münster, Germany)

Commercial
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data sets in parallel using high-performance computing environ-
ments. Many workflows are publicly available, making it easier
for novice Galaxy users to run standard analysis pipelines with-
out having to create complex workflows themselves. Tools,
software, and workflows are continually being added by a large
community of bioinformaticians and software developers
through the Galaxy ToolShed (25). Galaxy is publicly available
online (https://usegalaxy.org/) but may not provide the required
storage and rapid processing time for large-scale data analysis or
offer requisite data privacy. Galaxy is free, open-source software
allowing anyone to download and install it on a local computing
environment, be it a desktop/laptop or high-performance com-
puting cluster. Unfortunately, the setup and maintenance of such
an environment require considerable expertise well beyond the
skill set and interest of most nonbioinformaticians. CloudMan
(26) provides a method to alleviate some of the setup and main-
tenance difficulties by simplifying the process of deploying Galaxy
within a cloud environment and has been used successfully, for
example, by the University of Melbourne researchers to develop
the Genomics Virtual Laboratory (27). However, the varying
quality of documentation and support for individual tools may
leave Galaxy less suited for clinical applications. Commercially
supported Galaxy environments, such as Globus Genomics (28)
and the BioTeam Galaxy Appliance (BioTeam Inc., Middleton,
MA, USA), are available and attempt to address some of these
shortcomings for a cost.

Alternatively, many cloud-based SaaS platforms have been de-
veloped with fine-tuned pipelines for HTS data analysis. This soft-
ware requires no installation or local computational infrastruc-
ture and is commonly used through a standard Web browser.
Illumina provides BaseSpace, while Thermo Fisher (South San
Francisco, CA, USA) provides Thermo Fisher Cloud. Pacific Bio-
sciences (PacBio; Menlo Park, CA, USA) provides its single mo-
lecular real-time (SMRT) analysis software in the form of a down-
loadable virtual machine image that can be executed locally or in
cloud-based environments and provides additional analysis sup-
port through partner companies. Oxford Nanopore (Oxford,
United Kingdom) provides cloud-based analysis for its nanopore
sequencers such as the portable MinION and high-throughput
PromethION via the company Metrichor. In addition to sequenc-
er-specific cloud-based analysis platforms, companies such as
DNAnexus (Mountain View, CA, USA) can provide alternative
options.

For many SaaS platforms, HTS data can be directly uploaded to
the cloud either via a Web interface or directly from compatible
sequencing platforms. Once uploaded, a variety of software appli-
cations can be executed on these data for tasks such as de novo
assembly or variant identification. These software applications
may be linked together to form complex scientific workflows. Un-
fortunately, not all data analysis types (such as constructing
whole-genome phylogenies) or pipeline operating procedures are
supported. Alternative, user-supplied solutions may be required.
Additionally, many of these solutions are provided only commer-
cially and associated costs may be prohibitive.

As an alternative to Web-based cloud software, a variety of
commercial desktop applications have been developed. Unlike
cloud-based software, desktop applications are installed on a spe-
cific local machine and interaction is via a (point-and-click)
graphical user interface (GUI). Data analysis can be performed
locally, or data can be submitted to a preconfigured high-perfor-

mance computational cluster for more complex analysis proce-
dures. The list of desktop-based bioinformatics software for anal-
ysis of HTS data is large and growing; however, some popular
options include CLC Genomics Workbench (CLC Bio, Aarhus,
Denmark), BioNumerics (Applied Maths, Sint-Martens-Latem,
Belgium), and Ridom SeqSphere� (Ridom GmbH, Münster,
Germany). Built-in analysis modules are provided by each appli-
cation for standard analysis types, such as de novo assembly;
however, more advanced analysis modules may be available. In
particular, BioNumerics and Ridom SeqSphere� have both been
developing whole-genome and core genome multilocus sequence
typing (MLST) modules (as wgMLST and cgMLST, respectively),
thereby enabling rapid phylogenomic comparisons of many ge-
nomes. However, the associated cost of some of these applications
may be prohibitive for smaller-scale HTS projects or some inves-
tigators.

Another set of software includes the variety of free bioinfor-
matics Web services. These are operated using a standard Web
browser with data analysis performed on remote computing in-
frastructure. However, unlike generic SaaS providers, these ser-
vices are often focused on a particular analysis type, such as the
RAST server (29) for genome annotation, and provide minimal
data management capabilities. The Center for Genomic Epidemi-
ology provides a large collection of free Web services for analysis
types such as in silico MLST typing (30), identification of antimi-
crobial resistance genes (31), and construction of whole-genome
phylogenies (32). These services can provide a rapid method for
data analysis; however, minimal control is provided over the op-
erating procedures of each pipeline, caps may be implemented on
the amount of data that can be uploaded, and no guarantee is
provided as to when results will be completed. Data are generally
processed on demand, but there is limited retention of the analysis
or the results other than for a short duration.

(i) Data analysis reproducibility. Reproducibility of analysis
results is an important aspect of scientific research (33); however,
reproducibility in the data sciences can be challenging owing to
the use of complex analysis workflows and incomplete recording
of details and software necessary to replicate a study (34, 35). The
use of HTS data for infectious disease analysis is a growing field,
with a large collection of data analysis software and pipelines ac-
tively under development. Use of the previously mentioned work-
flow managers and analysis software is useful, but there exists no
single software package that can handle all data types and all anal-
yses of interest to the typical research laboratory (although there is
effort being made in this area; see, for example, http://irida.ca).
Thus, it is common to analyze HTS data using a variety of different
software from multiple sources, either desktop based or Web
based, commercial or open source, before a final result can be
generated (23). Data transformations between software are also
common, often requiring custom-written scripts. Reference data-
bases used in many types of analysis (e.g., genome annotation) are
often changing over time, and software is continually being re-
vised. This complexity leads to difficulties in repeating analyses as
well as potential for introducing and propagating errors through
to the final result. Differences in the choices of bioinformatics
software, databases, and analysis strategies for the same data sets
have been shown to lead to differences in the final results and
potential misinterpretations (36, 37). At minimum, a thorough
record of all software (versions), databases, data transformations,
and software operating parameters used to generate the final re-
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sults is necessary for identification of errors and to assess analysis
reproducibility.

Laboratory resources: choosing an HTS platform. The term
“laboratory” in this review refers to the wet laboratory component
of HTS projects, which is the preanalytical steps, including the
sample processing and data generation. Sample processing in-
cludes the thawing of archived strains and/or isolation of the bac-
teria through culturing and DNA extraction, of which the major-
ity of molecular biology or microbiology laboratories are well
equipped to execute. Some laboratories may already have se-
quencers or ready access to HTS platforms, whereas other projects
may need to incur the cost of purchasing such equipment or send-
ing the samples to a third-party sequencing service center.

The HTS field is fluid with regular updates and technology
developments; thus, we present general terminology and consid-
erations for those embarking on HTS projects and refer readers to
several excellent reviews on the currently available HTS platforms
(38–41). Additionally, the “NGS Field Guide” (first published in
2011 [42]) is now updated online, providing a comprehensive
comparison of HTS platforms (http://www.molecularecologist
.com/next-gen-fieldguide-2016/). Beyond the restraints of cost
and accessibility, selecting the optimal HTS platform(s) to meet
the project outcome goals should take additional key features into
consideration: (i) read length, (ii) read type, (iii) error types and
rates, and (iv) coverage and run output. It should be noted that
these features are not necessarily exclusive or fixed; modifications
can be made to improve affordability and to meet the project
needs within the constraints of one platform or by combining
technologies.

(i) Read length. Read length is a general but distinguishing fea-
ture of the currently available platforms, with short-read sequenc-
ers producing reads between 75 and 1,000 bp and long-read se-
quencers producing reads from 1,000 to �30,000 bp; however, by
the time that this review is published, these numbers may have
changed. The most common short-read HTS platforms include
the HiSeq, NextSeq, and MiSeq platforms from Illumina and the
Ion PGM and S5 platforms from Thermo Fisher (South San Fran-
cisco, CA, USA). The longer-read, single-molecule sequencing
technologies are the Sequel and RSII systems from Pacific Biosci-
ences and the MinION, PromethION, and SmidgION by Oxford
Nanopore Technologies. The outcome goals and biology of the
microbes being sequenced will dictate the read lengths required to
provide accurate data to traverse repetitive DNA elements and
unambiguously resolve the order and orientation of genomic se-
quences flanked by such repetitive elements. If only short-read
sequencers are available, modifying the read type (see below) may
be one avenue to traverse low-complexity regions.

(ii) Read type. Once the sequencing platform is chosen, there
are additional options for how the template libraries are prepared
and/or how the instrument is run to optimize the data toward the
project goals. With respect to the ubiquitous Illumina technology
(as a short-read sequencer example), libraries can be prepared and
indexed as single-end (SE) reads, paired-end (PE) reads, or mate-
pairs (MP). The choice of library will impact how one elects to
fragment or shear the DNA. The sequencing kits have a “cycle”
number, which is the number of times that the instrument will add
a nucleotide to the DNA fragment copy. For example, a “600-cycle
kit” could theoretically synthesize up to 600-bp-length sequences
in massively paralleled clusters. If a single-read library is chosen,
the user would set the instrument parameters to sequence a

600-bp fragment in one direction only. A PE library would reduce
the individual read lengths achievable with the same sequencing
kit but would read the same template library fragment from both
directions (similar in concept to the forward- and reverse-strand
sequencing reads on the Sanger platform). Therefore, if the DNA
fragments are 1,000 bp in length (insert size), a PE run could
generate 300-bp reads from either end of the 1,000-bp library
fragment, leaving an intervening gap (inner distance) of 400 bp
that remains unsequenced. The known inner distance between the
PE reads can be applied algorithmically to traverse repeat regions
larger than the single-read length alone. MP libraries are also
known as “long-insert paired-end,” as procedural differences in
the library preparation utilize much longer DNA fragments and
leave a greater inner distance between the two PE sequences, en-
abling one to effectively traverse larger repetitive regions in the
genome.

Knowing some genome biology for the microbes being se-
quenced can aid greatly in the selection and design of the HTS
library. For example, monomorphic organisms such as Bacillus
anthracis or Mycobacterium tuberculosis containing small-scale
variations may be suitably sequenced using short single reads. Or-
ganisms with highly promiscuous genomes and those with multi-
ple internally repeated sequences (e.g., ribosomal operons and
insertion sequence [IS] elements) and foreign acquired DNA (e.g.,
prophage and genomic islands) may require multiple data types—
PE, MP, and/or long-read sequence data—from a complementary
platform in order to suitably assemble the genome.

The long-read sequencing technologies are evolving quickly as
fast, accurate data with the ability to traverse repetitive or low-
complexity genomic regions are in high demand (43, 44). Several
library approaches may be applied for Pacific Biosciences single
molecular real-time (SMRT) technology and be used to produce
continuous long reads (CLR; 1,000 to 25,000 bp) and shorter,
more accurate circular consensus reads (CCS; 500 to 1,000 bp). An
optimal approach is to combine the longer but more error-prone
reads with the shorter but more accurate, higher-coverage data
from the same platform (45) or another platform. In another use-
ful development, the Oxford Nanopore system offers longer reads
with new real-time flexibility options such as resequencing re-
gions for higher coverage or stopping the sequencer in midrun to
focus on specific microorganisms in a metagenomic sample (46).
Illumina, meanwhile, also offers a library preparation kit to pro-
duce synthetic long reads (Moleculo) that have been shown to
improve resolution of low-complexity genomic regions (47).

(iii) Error types and rates. Error types and rates vary between
platform technologies, with the short-read technologies such as
Illumina having lower error rates, more comparable to those of
traditional Sanger sequencing at �2%. Despite this low overall
error rate, Illumina sequences are prone to single nucleotide sub-
stitutions (48–50). Substitution errors can usually be overcome
with sufficient coverage depth (essentially sequencing redundancy
at each base) (51) and an adequate number of replicates to identify
true variants between genomes (52). In contrast, ion-measuring
sequencers remain prone to insertions/deletions (indels) owing to
base calling errors in homonucleotide regions. The ion-based se-
quencers also have lower error rates (�4%) relative to the long
reads produced by platforms such as Pacific Biosciences and Ox-
ford Nanopore, which are more prone to deletions and can have a
higher frequency of deletion errors (�18%). However, as men-
tioned above, options within the long-read platforms have been
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developed to improve their consensus base call accuracy. In all
cases, the key to overcoming most platform error types remains
related to ensuring that one acquires sufficient depth of read cov-
erage.

(iv) Coverage. Based on the experimental design and outcome
goals, the depth of coverage and quality of the resultant assembled
genome(s) should be a major focus when choosing a sequencing
platform. The term “coverage” is often used interchangeably with
“depth” or “sequence redundancy” and refers to the number of
times that a base is represented in the raw sequencing data (51).
The sequences produced by the instrument are not equally distrib-
uted across the genome, and thus, the term coverage is often re-
ported as the average coverage (e.g., 10� coverage) and is used to
plan in advance the number of samples placed simultaneously on
a sequencing run. The theoretical average coverage (C) can be
calculated with the Lander-Waterman equation as C � LN/G,
where L is the length of the read, N is the number of reads, and G
is the length of the genome in base pairs (53). Knowing that the
reads will not be evenly distributed across the entire genome, it
may be wise to overestimate the coverage required for each sample
so that lower-coverage regions are sufficient for downstream anal-
yses such as variant calling (i.e., if a minimum 50� coverage is
deemed required for confident variant calling, calculate the ex-
pected coverage for each sample to be 75 to 90� to ensure that all
regions meet the minimum coverage requirement). All HTS plat-
form vendors have resources to provide the theoretical run output
information needed to calculate the number of genomes that can
be combined on a run (i.e., multiplexed) once the desired cover-
age has been stipulated. Note that owing to wet lab inefficiencies
and operational complexity, it is not always be possible to achieve
theoretical run outputs per vendor specification, and so conserva-
tive estimates are recommended at the stage of configuring runs.

SAMPLE PROCESSING AND DATA GENERATION

DNA Extraction and Template Assessment

Steps to avoid contamination, ongoing programs of staff compe-
tency training, and proactive method improvement procedures
are considered good standards of practice. Similar to Sanger se-
quencing, the input template is often the cause of HTS failure.
Poorly prepared samples rarely make good libraries for HTS.
Quality monitoring and control in the wet lab workflow begin
with quantification and assessment of extracted nucleic acid tem-
plate quality (yield, purity, and integrity [size]).

Accurate quantitation is critical to successful HTS. Most library
preparation protocols are very sensitive to DNA input concentra-
tion (libraries may generate poor yields or smaller fragment sizes);
therefore, it is important to achieve accurate template quantifica-
tion. One should measure template concentrations via two meth-
ods of quantitation, such as absorbance (e.g., spectrophotometer
or NanoDrop) and fluorescence (e.g., Qubit) systems. Fluores-
cence approaches (e.g., Picogreen) are more precise than UV
absorbance-based methods; hence, templates quantified with
fluorescence will yield more accurate measures of template
concentration. However, if concentration measurements from the
two approaches are grossly different, the sample is likely contam-
inated and will need to be cleaned up.

HTS is exceptionally more sensitive than Sanger sequencing to
contaminants carried over in the templates. Impurities are prob-
lematic as they negatively impact many enzymatic stages during

HTS library preparation; hence, all templates should be assessed
for the presence of excess proteins, organics, and/or other enzyme
inhibitors such as bile salts or carbohydrates (e.g., bacterial cap-
sular slime), a problem which demonstrates the benefit of employ-
ing absorbance measurements. Template purity is assessed by cal-
culating absorbance ratios, namely, A260/A280 (the ratio of the
absorbance at 260 nm divided by the reading at 280 nm) and
A260/A230; lower ratios indicate that more contaminants are pres-
ent. Low A260/A280 ratios (below 1.8) suggest the presence of con-
taminating protein, phenol, or surfactant micelles; nucleic acids
that are not fully resuspended can scatter light, also resulting in
low A260/A280 ratios. Elevated absorption at 230 nm is caused by
contamination with particulates (e.g., silica particles), precipitates
such as carryover of chaotropic salt crystals (i.e., guanidine thio-
cyanate, LiCl, or NaI), phenolate ions, solvents, and other organic
compounds, which also may cause abnormal A260/A280 ratios. Al-
though A260/A280 ratios lack sensitivity for protein contamination
in nucleic acids, a DNA sample is considered sufficiently pure
when an A230/A260/A280 ratio of at least 1:1.8:1 is achieved (54).
Elevated A260/A280 ratios (higher than 2.1) usually indicate the
presence of RNA; this can be tested by running the sample (�1
�g) on an agarose gel. Protein or phenol contamination is indi-
cated by A230/A260 ratios greater than 0.5. Additional RNase treat-
ment after nucleic acid template extraction and postextraction
cleanup of templates may be required. Lastly, although isolation of
virtually intact high-molecular-weight genomic DNA (gDNA) is
not essential for short-read HTS technologies (such as Illumina),
it is crucial for longer-read platforms (e.g., PacBio and Oxford
Nanopore). Hence, template integrity (size of extracted gDNA)
should be qualitatively assessed by performing electrophoresis in
an agarose gel or similar device (e.g., Agilent Tapestation device or
equivalent) before proceeding to HTS library generation. Al-
though templates will appear as smears, the predominant DNA
species should be located very high in the gel or digital image
(appearing close to the loading well), which is indicative of high-
molecular-weight (intact) template.

HTS Library Preparation and Sequencing

As discussed in the Preparation section, the outcome goals will
determine the sequencing data needed (i.e., read length, read type
[SE, MP, PE], and average coverage) and the chosen HTS plat-
form(s) will dictate the options available for library preparation to
generate said data. Consequently, all HTS platforms as well as
commercial library preparation kit vendors provide protocols,
with appropriate procedural stopping points as opportunities for
library quality monitoring and control. There are diverse library
preparation methods, each of which comes with its own set of
nuances. Detailed commentary will not be made here as such de-
cisions are based not only on the project goals but also on the
laboratory equipment available; instead, motivated readers are re-
ferred to the appropriate proprietary protocols for their chosen
library kit(s) and HTS platform(s). Users are urged to think care-
fully about these protocols, weighing them against their own ex-
perience and training, and consider appropriate stopping points
to apply controls and quality checks, even beyond what may be
minimally recommended by the manufacturers.

PRIMARY ANALYSIS

For meaningful, confident biological inference and interpreta-
tion, all HTS users should implement robust quality assurance
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(QA) and quality control (QC) procedures, formalized in a quality
management system (QMS) for reproducibility. QA specifies the
laboratory operational measures taken to produce data of docu-
mented accuracy, whereas QC procedures are applied to demon-
strate that the process is robust. For example, QC processes are
designed to immediately detect errors caused, for example, by
HTS (the test system) failure, adverse environmental conditions,
or operator error. In HTS, QA procedures are implemented for
determining the quality of laboratory data (measured against in-
ternal and external quality control measures), as in proficiency
panel comparisons or training, and for monitoring the accuracy
and precision of the method’s performance over time. Although
quality best practices for microbial genomics/forensics deploying
HTS have lagged behind the clinical genetics field (5, 55), signifi-
cant global efforts such as the Global Coalition for Regulatory
Science Research (GCRSR) (56), the OIE Ad Hoc Working Group
on High Throughput Sequencing and Bioinformatics and Com-
putational Biology (HTS-BCG; Massimo Palmorini, personal
communication), and the Global Microbial Identifier (GMI) (57)
are under way, aiming to formalize such standards and quality
metrics for infectious disease surveillance, food regulatory activi-
ties, and clinical diagnostics (58).

This section describes general quality practices for wet lab
workflows and data generation for HTS. Quality practices for the
analyses of resultant data are described in subsequent sections of
the review.

The computational analysis of HTS sequence data can be con-
ceptualized in primary, secondary, and tertiary stages. Primary
HTS data analysis may be performed on-instrument (i.e., the HTS
sequencer) or directly after the data have been generated. On-
instrument primary analysis output includes reports and visual-
izations of HTS run metrics that are proprietary to each HTS
platform. These primary data analysis outputs summarize run
characteristics for monitoring platform performance and assess-
ing HTS data quality; some are provided even before all data are
collected (i.e., cluster density for Illumina). At minimum, metrics
for a completed run should meet performance specifications es-
tablished by the HTS platform manufacturer. Ideally, any HTS
run should yield close to the instrument’s expected specification
for the numbers of raw (unprocessed) output reads and for on-
instrument quality-filtered reads (i.e., percent Q score of �30).
Additional run performance metrics may include density or num-
ber of read-generating templates, G�C content template bias, or
first base read success.

HTS runs should be assessed not only to ascertain whether the
sequencer performed and collected sound data but also to assess
whether project requirements/expectations of the data will be met
by the data generated (59). Assessment of the HTS read quality
with respect to base call quality scores is but one important
consideration. So, too, is the read signal intensity plotted over
the read length: an expected decline over cumulative bases is
observed for most HTS platforms, affecting the accuracy of
individual base calls. Thus, base calling error rates are typically
dependent on the length of read and where (within the read)
the base error rate is measured. Regardless of the HTS applica-
tion or platform, representative additional metrics that should
be evaluated include depth of coverage, uniformity of coverage,
and whether multiplexed libraries were well balanced or if par-
ticular genomic regions or sequences are under- or overrepre-
sented.

All HTS platforms will provide said metrics as described above;
however, third-party software also has been developed to assess
raw HTS data before beginning downstream analysis. These tools
are important when the sequencing run assessment metrics are
unavailable or for applying standardized quality checks across a
large and varied set of data. This is of particular importance when
incorporating publicly available sequence read data. NCBI’s SRA
(12) provides a few common quality assessments, such as base-
quality charts of the reads, but sequencer-specific quality metrics
are missing, and quality standards for data may have been incon-
sistently applied before the data were deposited.

FastQC (http://www.bioinformatics.babraham.ac.uk/projects
/fastqc/) is a popular open-source software package that can be
used for a general overview of the sequence read data quality.
FastQC produces a summary report consisting of a series of charts
for aspects such as base quality and G�C content of the sequenced
reads. The report is evaluated by FastQC and given a grade of
“pass,” “warning,” or “failure” based on built-in criteria. Guid-
ance for interpreting such reports is available on the FastQC web-
site.

In addition to quality reports, cleaning of the reads may be
performed to generate higher-quality read sets for more strin-
gent downstream analyses. Cleaning of reads is accomplished
by removing low-quality reads, masking (replacing low-quality
bases with an “N” to represent an “undetermined” base), trim-
ming low-quality ends of reads, and removing adaptors and
other sequencing artifacts. Software for cleaning reads includes
the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),
Trimmomatic (60), and PEAT (61). The effectiveness of read
cleaning methods has been studied, and the methods have been
shown by some to have a positive impact on de novo assembly,
reference mapping, and variant calling (62, 63). However, not
all read cleaning methods are equally effective. While the
method of read trimming has been shown by some to aid in
variant calling (62), other studies suggest that read trimming
can also increase the number of misaligned reads, leading to an
increase in the number of false-positive variants called (64, 65).
This is supported by others (63), who recommend masking as a
more effective read cleaning method due to the removal of
low-quality base calls while still maximizing the information
retained within each read.

Another quality control step for sequencing reads is the detec-
tion and possible removal of contaminated DNA sequences.
Adaptor sequences, ligated onto the ends of DNA fragments dur-
ing library preparation, can sometimes be included in the read
data set if the DNA fragments are smaller than the sequencing read
length capabilities. These can be detected and removed by soft-
ware such as FastQC or Cutadapt (66). Other sources of contam-
ination include the control plasmid (e.g., phiX used in Illumina)
(67) or a potentially contaminated/mixed sample. Programs de-
signed to identify and, for some, filter contaminants include
Kraken, Deconseq, MGA, QC-Chain, and Genome Peek (68–72).
Ensuring that the input data are high quality and cleaned of po-
tential contamination will increase the quality of downstream
analysis results.

SECONDARY ANALYSIS

Reference Mapping and Variant Calling
One of the most common types of analysis performed on newly
generated HTS data is to compare them with and identify the
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variations observed between other, similar genomes. This type of
analysis is carried out by reference mapping followed by variant
calling. Reference mapping is the process of determining the op-
timal placement of reads along a previously assembled, closely
related reference genome, and variant calling is the process of
detecting variation from the reference genome in the form of sin-
gle nucleotide variants (SNVs), insertions/deletions (indels), or
other types of structural variation. The output of the reference
mapping process is a file called a “pileup,” containing the optimal
placement of the sequence reads along the chosen reference ge-
nome, often stored using sequence alignment/map (SAM) or the
binary version (BAM) formatted files (11). The aligned reads are
further processed in a subsequent variant calling stage, which ex-
amines the pileup and produces a list of identified variants often
stored in a variant call format (VCF) or binary version (BCF) file
(73, 74). Table 4 provides a sample of popular software used for
reference mapping and variant calling, and readers are encour-
aged to refer to additional reviews (75, 76) for more details.

Guidelines for variant calling, such as the Genome Analysis
Toolkit (GATK) best practices (77), have previously been pub-
lished. However, these guidelines often default to giving instruc-
tions for variant calling in human and other eukaryotic data sets

and so contain subtle differences that are not suitable for variant
calling in microbial genomes. In particular, the assumption of
variant calling with diploid organisms is often made, such as is the
case with the SAMtools package (73). Variant calling software that
assumes a diploid model may produce heterozygous variant calls,
which are unexpected for haploid organisms and can be indicative
of false positives introduced owing to read misalignment or copy
number variation of repetitive regions (78). For the GATK best
practices, it is recommended that the Unified Genotyper be ap-
plied, as opposed to the Haplotype Caller, when dealing with non-
diploid organisms (77).

Reference mapping issues. There are a number of common
issues that can impact the results of reference mapping. One such
issue is the presence of repetitive regions in the sequenced ge-
nome, the reference genome, or both. A combination of short read
lengths for existing HTS technologies (on the order of hundreds of
base pairs) and repetitive regions on the reference genome will
result in ambiguity in selecting the best location to align matching
reads (79). Approaches aimed at mitigating such ambiguity in-
clude completely ignoring reads aligning to multiple locations,
picking a random location for reads with equal-scoring mapping
locations, or reporting all nonunique read alignment locations.

TABLE 4 List of reference mapping and variant calling software

Type Name (reference[s]) Comments

Reference mapping Bowtie 2 (83) Available at http://bowtie-bio.sourceforge.net/bowtie2/
BWA-SW (84) Available at http://bio-bwa.sourceforge.net/
SMALT Available at http://www.sanger.ac.uk/science/tools/smalt-0

Variant calling GATK (Unified Genotyper) (90) Part of the GATK toolkit for variant calling of nondiploid organisms
FreeBayes Uses Bayesian inference to detect variants; available at

https://github.com/ekg/freebayes
BreakDancer (86) Detects structural variation from anomalous read pairs produced by mate-pair

sequencing; available at http://breakdancer.sourceforge.net/
MetaSV (245) Executes and combines results from many different structural variation detection

software; available at http://bioinform.github.io/metasv/

Variant annotation SnpEff (88) Available at http://snpeff.sourceforge.net/
TRAMS (89) Available at https://sourceforge.net/projects/strathtrams/files/Latest/ or as

integrated within Galaxy; free for academic use, requires written consent from
authors for commercial use

Toolkits GATK (77, 90) All-in-one toolkit for reference mapping and variant analysis; free for
academic use, nonfree for commercial use; available at
https://www.broadinstitute.org/gatk/

SAMtools (11, 73) Toolkit for working with sequence alignments in SAM/BAM formats; can also be
used for variant calling but assumes a diploid model; available at
http://www.htslib.org/

BCFtools (11, 73) Toolkit for working with variants in VCF/BCF formats; available at
http://www.htslib.org/

VCFtools (74) Toolkit for working with variants in VCF format; available at
https://vcftools.github.io/

Picard Toolkit for working with sequence alignments and variants in SAM/BAM or VCF
formats; available at http://broadinstitute.github.io/picard/

Visualization IGV (85) Available at https://www.broadinstitute.org/igv/; visualization of multiple tracks
of information and multiple genomes

Tablet (246) Available at https://ics.hutton.ac.uk/tablet/; visualization of sequence alignments,
variants, or genes

iobio (247) Web service for upload and visualization of sequence alignments (BAM format),
or variants (VCF format); available at http://iobio.io/
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Potential caveats of these approaches range from excluding poten-
tial variation in the final results to misidentifying variants. Repet-
itive regions within the sequenced genome that are not present in
the reference genome will lead to an unusually large pileup of
reads in the repeat region (e.g., a genome sequenced to 50� cov-
erage will show 100� coverage or more in the repetitive region
depending on the number of extra copies harbored by the se-
quenced genome). Treangen and Salzberg describe in more detail
the effect of reference mapping in repetitive regions (79).

In addition to repeat regions, structural variation (e.g., dele-
tions or translocations) and additional mobile elements (e.g.,
plasmids, transposons, and prophage) can be problematic for ref-
erence mapping. Structural variation can cause reads to be mapped in
an incorrect manner, while mobile elements can be excluded from
reference mapping analysis altogether if absent from the reference
genome. One approach to capture mobile elements not present in the
reference genome is to perform de novo assembly, gene prediction,
and annotation of a newly sequenced genome’s unmapped reads.
The presence of many mobile genes after this analysis will be an indi-
cation that a putative mobile element exists in the sequenced genome
but is absent in the chosen reference genome. Approaches for struc-
tural variation often require alternative analysis strategies and poten-
tially alternative sequencing methods (i.e., long-read sequencing or
mate-pair sequencing) (80).

Selecting a reference genome. Selecting an appropriate refer-
ence genome is an important first step to reference mapping and
yet can be a nuanced decision. Ideally, the reference genome cho-
sen should have no gaps or errors in the sequence data and should
be genetically a very close match to the sequenced genome. NCBI
(http://www.ncbi.nlm.nih.gov/) provides access to a large collec-
tion of previously published reference genomes that can be used,
and yet caution should be exercised since publicly available ge-
nomes may be too genetically dissimilar for use as a reference in
one’s own investigation. Generating a high-quality reference ge-
nome in an ad hoc manner is possible, especially with longer-read
technologies such as PacBio’s SMRT sequencing, which can often
produce completely or nearly ungapped genomes. Closely related
draft genomes can be used as a reference; however, it should be
noted that contiguous consensus sequence (contig) breaks and
collapsed repeats in such draft genomes are problematic for map-
ping HTS reads, and extra consideration, such as manual inspec-
tion of the pileup in these regions and possibly masking of these
regions, should be conducted before variant selection.

Quality control of input data. As mentioned in the Primary
Analysis section above, inspection of the sequence reads should be
done to verify that they pass standard quality checks before pro-
ceeding with any secondary analysis. Additionally, assessment of
whether or not an appropriate depth of coverage has been
achieved for sequencing should be conducted. Low coverage can
lead to false-negative variant calls, while excessive coverage is
wasteful and can lead to performance issues such as longer run-
ning time or higher memory usage (76). A read coverage of at least
50� has been recommended for the best results (37, 81). Se-
quenced genomes that do not pass these quality checks can be
excluded from further analysis or resequenced to generate a bet-
ter-quality data set. Once a raw data set has been selected, cleaning
of the sequence reads (as described in the Primary Analysis sec-
tion) can be performed to verify that the data are of sufficient
quality for downstream use.

Generating a read pileup. After quality control of input se-

quence reads, an alignment of the quality-filtered reads is gener-
ated to produce a collection of mapped reads (along with their
optimal placement on a reference genome), resulting in a read
pileup against the reference. A large collection of software has
been developed for efficiently aligning HTS reads to a reference
genome (76, 82); popular options include Bowtie2 (83) and
BWA-SW (84). Standard input files include sequence reads (in
FASTQ format) and a reference genome. The output is a read
pileup often stored in the SAM (text-based, uncompressed) or
BAM (binary, compressed) file format (11).

Quality control of a read alignment pileup. Following the gen-
eration of a sequence read alignment pileup, validation should
occur to verify that the pileup is correct. A large collection of
bioinformatics toolkits, such as SAMtools (11), have been devel-
oped for inspection of read alignment files and generating sum-
mary statistics. Additional visual inspection and quality analysis of
the pileup can be performed with software such as the Integrative
Genomics Viewer (IGV) (85).

One important issue to evaluate is whether a high percentage of
unmapped reads exists, which can indicate quality issues with the
read data or contamination or could indicate a large number of
unique regions in the sequenced genome (i.e., a mobile element).
SAMtools along with other tools have the capability to check for
the percentage of unmapped reads. High numbers of unmapped
reads may also indicate that the reference genome selection was
inappropriate; in this case, selection of a new reference genome is
advised.

Variant calling, filtering, and annotation. Variant calling is the
process of scanning the SAM/BAM file and searching for areas of
significant variation from the reference genome. This is often lim-
ited to SNVs, insertions/deletions, and other small regions of vari-
ation due to the shorter read length of the sequenced reads. Larg-
er-scale variant detection is possible when using appropriate
sequencing techniques, such as mate-pair sequencing with longer
insert sizes. Here, each pair of reads is mapped, and anomalies in
the distances between pairs of reads or the orientation of pairs of
reads are used to detect larger structural variations such as inser-
tions, deletions, or inversions (86). Variant callers typically pro-
duce a report of potential variants using the VCF (text-based vari-
ant call format) or BCF (smaller, more-efficient binary) file
formats (73, 74). Examples of variant calling software are given in
Table 4, with additional reviews (75) providing more details.

Variant filtering involves removing variants that do not match
defined thresholds to remove false positives from further analysis.
Many metrics can be used for filtering variants, such as the depth
of coverage or the QUAL field of a VCF file, which provides a
Phred-scaled quality score for the listed variant (74). The GATK
best practices describe a process known as variant quality score
recalibration, which requires a known set of true variant calls used
to calibrate the variant quality scores followed by removal of vari-
ants with low scores (77). For novel variant discovery in microbial
genomes, these known variant calls may not be available, limiting
the use of variant quality scores due to unknown thresholds. In-
stead, the use of other hard-filtering thresholds to remove poor-
quality variants can be used, such as a minimum depth of coverage
or a minimum proportion of reads supporting a variant call (e.g.,
minimum of 10 reads and 75% of all reads supporting a variant
call) (77, 87).

Once there is adequate evidence that the variants are true, they
can be annotated with relation to an annotated reference genome.

Lynch et al.

892 cmr.asm.org October 2016 Volume 29 Number 4Clinical Microbiology Reviews

http://www.ncbi.nlm.nih.gov/
http://cmr.asm.org


Variant annotation is the process of placing the variation in the
context of the genomic features that contain those variants and
their effects on those features such as amino acid changes and
frameshifts. Software for variant annotation includes snpEff (88),
TRAMS (89), and GATK (90). Each program requires an anno-
tated reference genome as input along with a list of variant calls, in
VCF/BCF format, and will produce a list of the effects of these
variants. Although the variant calling process can be automated, it
is important to note that variants should be manually inspected to
ensure that the gene annotations are accurate, and ideally, those
inferred to alter metabolic processes or virulence mechanisms
would be further confirmed with laboratory experimentation, as
described under “Bacterial Pathogenomics.”

De Novo Assembly

De novo assembly is defined as the reconstruction of a genome
from sequence reads without the aid of a reference. More techni-
cally, de novo assembly is the computational process of recon-
structing longer contiguous consensus sequences (contigs) by de-
termining the longest overlap and optimal placement of shorter
reads. The result of this initial automated approach is considered a
draft genome. If additional information such as optical mapping
data, mate-pair, or long-read sequences is available, these contigs
can be ordered into larger scaffolds; the resulting assembly is clas-
sified as a “high-quality draft genome.” A designation of “closed
genome” requires that the gaps between these scaffolds be re-
solved. A “finished genome” requires the resolution of any misas-
semblies or other sequencing anomalies and uncertainties. The level
of closure or finishing (sequence polishing) pursued for the genomes
in a project will depend on requirements of the sequencing project as
defined in the project planning phase. Additionally, the sequencing
data for each isolate should be of sufficient quantity, quality, and type
(e.g., paired-end or single short reads, long reads, or a combination of
data types) to generate a de novo assembly that satisfies the project
objectives determined in the planning phase.

Choosing de novo assembly software. As HTS technology
evolves, so too does the development of new and/or improved de
novo assembly programs. There are detailed reviews of assembly
software found elsewhere (48, 91–94); however, we have included
a comparative list of some popular assemblers within each of the
major assembly algorithms, greedy, overlap-layout-consensus
(OLC), and de Bruijn graphs, in Table 5. Assemblers have evolved
in roughly this order with early assemblers such as TIGR using the
greedy approach during the Human Genome Project (95). The
OLC assemblers organize reads into graph structures with each
read being a node in the graph connected by an edge to other over-
lapping reads (48). This paradigm was more commonly used with
Sanger data and HTS longer reads as the process is computationally
intensive and, in the past, has not performed as well with high vol-
umes of short, high-coverage HTS reads, although advances have
been made to improve the performance of OLC-based assemblers
(93). For example, the AMOS suite of assembly tools remains a pop-
ular choice for OLC-based assembly of HTS data (96). De Bruijn
graph assemblers partition the reads into overlapping subsequences
of length k, called k-mers, to create the nodes for efficient graph struc-
tures, allowing programs to computationally handle larger data sets.
Early de Bruijn-based assemblers such as Euler (97) and Velvet (98)
popularized the use of these methods for bacterial genomes. Algo-
rithms have since evolved and expanded upon these original para-
digms to improve assemblies of long-read data such as HGAP, Edena,

and SGA (99–101) and short, high-coverage data such as SOAPde-
novo and SPAdes (102–104).

As this review is aimed at researchers working with bioinfor-
maticians on HTS projects (not bioinformaticians themselves),
we want to stress that it is not essential to understand the mathe-
matical theory behind all de novo assemblers. It is, however, im-
portant to understand that all assemblers have their strengths and
limitations. The performance of an assembler is influenced by the
biology of the genome (e.g., repetitive elements, overall size, mul-
tiple extrachromosomal plasmids, etc.), the nature of the data
(e.g., sequence length, orientation, coverage depth, and unifor-
mity), and the computational resources available (105).

Evaluating de novo assemblies. Without knowing the true ge-
nome structure of an organism, a de novo assembly is a hypothesis
formed by short DNA segments compiled into contigs through
computed mathematical models. Contiguity and correctness are
two attributes of the resultant assembly that can be assessed. There
have recently been reports in the literature focused on comparing
the performances of assembly workflows (8, 106–109). Common
summary statistics for genome assemblies include the total num-
ber and lengths of the contigs. An additional popular measure is
the N50 statistic. The N50 refers to the median contig length of
which 50% of the assembled nucleotides are found to be; this
definition extends to the N50 scaffold and the NG50, which incor-
porates the expected genome size (107). These summary statistics,
however, assess only the contiguity of the assembled sequences,
not their correctness.

The correctness or accuracy of an assembly can be evaluated by
mapping the original reads back onto the assembly to identify
regions with unusually high coverage (possibly a repeat collapse)
or low coverage (possibly indicating an incorrect join) (94). There
are a growing number of programs compiled to aid with assembly
evaluations such as Amosvalidate, Quast, and REAPR software,
described in more detail elsewhere (110–113). There have also
been genome assembly competitions, such as Assemblathon 1 and
2 (106, 107) or GAGE-B (109), where several researchers were
tasked with constructing de novo assemblies with the same data.
These studies concluded that there was no one assembler that
performed best for all organisms and metrics used to evaluate the
assembly quality. Therefore, it may be useful to test a few de novo
assemblers and evaluate the workflow that meets project goals for
assembly quality and can perform efficiently within the available
computational resources.

TERTIARY ANALYSIS

Tertiary analysis includes the processes required to “make sense”
of the data or interpret the results to gain a broader understanding
of genome content (e.g., annotation and mobile genetic element
identification) and of how the genomes compare to each other
and larger populations (e.g., molecular epidemiology and phylog-
enomics) and for further characterization of the bacteria, host-
pathogen interactions, and bacterial behavior (i.e., pathogenom-
ics). The level of tertiary analysis required is dependent on the
project objectives and is not limited to the analytical methods
described below, nor are the methods necessarily performed in the
order that we have elected to present them.

Bacterial Genome Annotation

Genome annotation is the process of identifying the biologically
important features contained in a genome and attaching descrip-
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tive information to those features. Genome annotation is typically
one of the first steps applied after sequence assembly and can be
performed on draft or closed sequences, although the latter is
preferred when conducting a detailed comparative analysis of a
group of genomes, since features that exist in the actual genome
may not be present in the draft assembly (owing to gaps) or may be
misassembled, which can result in spurious relationships and in-
valid conclusions regarding genomic structure and organismal
function.

The features typically annotated in bacterial genomes are the
protein coding genes, referred to as coding sequences (CDS), and
the noncoding genes, such as the rRNA and tRNA. Other biolog-
ically important features, such as pseudogenes, operons, clustered
regularly interspaced short palindromic repeats (CRISPRs), trans-
posons, integrons, and other genomic features, also fit into this
feature annotation category; we do not cover these types of anno-
tations here (mobile element detection is covered below). The
focus of this section is on the annotation of entire prokaryotic

(bacterial and archaeal) genomes, which tend to range in size
(�700 to �10,000 genes), have variable gene content, and have a
predictable gene structure and organization that lend themselves
well to automated approaches. We provide only a brief overview
of the process of annotating bacterial genomes; for an in-depth
discussion of microbial genome annotation, we refer the reader to
the many existing excellent reviews (114–116).

Genome annotation can be divided into two main tasks: struc-
tural annotation and functional annotation. Structural annota-
tion, commonly referred to as gene finding or gene prediction,
involves the identification of the location of the protein coding
genes (CDS) and the noncoding genes (tRNA and rRNA). The
functions of the noncoding genes are self-evident; however, the
functions of the protein coding sequences are diverse and not
straightforward to determine. These genes must undergo func-
tional annotation to infer their probable biological function. A
flowchart outlining the bacterial genome annotation process is
provided in Fig. 3.

TABLE 5 List of de novo assembly software

Type Name Read type Comments

OLC String Graph Assembler
(SGA)

Illumina (�200-bp reads) Performs best on larger genomes with high coverage; has a built-in error
correction module; https://github.com/jts/sga

MIRA Sanger, Ion Torrent, Illumina,
PacBio (CCS reads or
error-corrected long CLR
reads)

Can combine multiple libraries/sequencing technologies into a single,
hybrid assembly; slower run times than other assemblers; capable of
producing high-quality assemblies; requires higher level of expertise to
set run parameters;
https://sourceforge.net/p/mira-assembler/wiki/Home/

Hierarchical Genome
Assembly Process (HGAP)

PacBio Long-read de novo assembler for PacBio SMRT sequencing data; only one
long-insert shotgun DNA library required; uses short reads to correct
long reads within the same library; de novo assembly using Celera
assembler; includes assembly polishing with Quiver;
https://github.com/PacificBiosciences/Bioinformatics-Training
/wiki/HGAP

De Bruijn graph Velvet Illumina, 454, Ion Torrent,
Sanger

High memory requirement; easy to run; can map reads onto a reference
sequence(s) to help guide the assembly (Columbus module); user must
select a single k-mer length to use (VelvetOptimiser can be used to
select the optimal k-mer length);
https://www.ebi.ac.uk/�zerbino/velvet/

Velvet-SC Illumina Adaptation of Velvet assembler for single-cell sequencing data; no error-
correction module; http://bix.ucsd.edu/projects/singlecell/

SOAPdenovo Illumina Has an error correction, scaffolder, and gap-filler module; relatively fast
compared to other assemblers;
http://soap.genomics.org.cn/soapdenovo.html

Ray Illumina, 454 Can combine different technologies to create a hybrid assembly; well
documented; http://denovoassembler.sourceforge.net/

A5-MiSeq Illumina Uses the IDBA-UD algorithm; easy to use-little bioinformatics experience
required; relatively fast with low memory requirements;
https://sourceforge.net/projects/ngopt/

ALLPATHS Illumina, PacBio Requires at least 2 specialized libraries (e.g., Illumina fragment and PacBio
long-read or Illumina jump library); has an error correction module;
http://www.broadinstitute.org/software/allpaths-lg/blog/

Assembly by Short
Sequences (ABySS)

Illumina, 454, Sanger http://www.bcgsc.ca/platform/bioinfo/software/abyss

SPAdes Illumina, Ion Torrent, PacBio,
Nanopore

Can support single-cell sequencing input data; can handle nonuniform
coverage; has an error correction module (BayesHammer/IonHammer)
and scaffolder; uses multiple k-mer lengths; capable of producing high-
quality assemblies; relatively fast assembler; most widely used assembler
for bacterial genome assembly; http://bioinf.spbau.ru/spades

Maryland Super-Read Celera
Assembler (MaSuRCA)

Illumina only or mixture of
short and long reads
(Sanger, 454)

Attempts to create superreads using the paired-end reads;
http://www.genome.umd.edu/masurca.html

OLC/de Bruijn hybrid CLC Assembly Cell (CLC
Bio, Aarhus, Denmark)

Illumina, 454, Ion Torrent Commercial software with licensing fee; easy to use with point-and-click
graphical user interface; contains a scaffolder module; fast

Proprietary algorithm SeqMan NGen (DNAStar
Inc., Madison, WI, USA)

Illumina, PacBio, 454, Ion
Torrent

Commercial software with licensing fee; easy to use with point-and-click
graphical user interface; fully integrated with Lasergene’s SeqMan Pro;
patented algorithm (black box)
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Bacterial gene prediction programs come in two flavors: ab in-
itio, or intrinsic gene finders, which attempt to identify coding
sequences based solely on the information contained within the
newly sequenced genome or contig, and extrinsic gene finders,
which use a database of previously identified and verified bacterial
protein coding sequences to aid in the identification of genes in
a newly sequenced genome. Extrinsic gene finders, such as
ORPHEUS (117) and CRITICA (118), enjoyed early popularity;
however, they have largely been supplanted by ab initio gene find-
ers, which rival extrinsic approaches in their accuracy since they
learn from known gene content information already within the
target genome and thus can be better tuned to find the remaining
genes. In contrast, extrinsic gene finders rely on gene content typ-
ically harvested from model organisms such as Escherichia coli,
which may be evolutionarily distant to the newly sequenced ge-
nome, resulting in reduced prediction accuracy.

The central task for ab initio gene finders is to distinguish cod-
ing from noncoding sequences within a set of all open reading
frames (ORFs; contiguous stretches of genomic sequence flanked
by in-frame stop codons), which may or may not contain coding
sequences, within the newly sequenced genome. These gene find-
ers use extensive heuristics combined with sophisticated compu-
tational approaches, such as state machines, dynamic program-
ming algorithms, and hidden Markov models (HMMs), to carry
out this task. HMMs have become especially popular for this task
since they have the ability to “learn” the attributes for genome
features, such as coding sequence composition, and distinguish it
from sequences that lack the attributes, such as noncoding se-
quence composition, and can even predict the start and endpoints
of a feature within a larger genomic region. GeneMark.hmm (119)
and GLIMMER (120) are two well-known, highly accurate ab in-
itio gene predictors. Prodigal is another highly accurate gene

finder, although it forgoes HMMs in favor of a combination of
dynamic programming and heuristics to distinguish coding se-
quences from noncoding sequences (121). These programs have
predictive accuracies in the range of 95 to 98%, although they can
have trouble identifying genes acquired from foreign DNA and in
genomes of high G�C content. Each of these programs varies in
its approach; for a detailed review, the reader is referred to refer-
ence 122.

The noncoding rRNA and tRNA genes can also be structurally
annotated using automated approaches. The standard method for
predicting tRNA uses tRNAscan-SE (123), which calculates the
likelihood of the presence of a tRNA by scoring the presence of the
well-defined substructures inherent in each tRNA molecule and
boasts an impressively low false-positive rate of just one falsely
called tRNA molecule in 3,000 average-size bacterial genomes.
Several rRNA gene prediction software programs exist and can
identify the 16S, 23S, and 5S genes normally collated in a single
operon and existing typically in one to 15 copies in the average
bacterial genome. Of these, the most popular is probably Infernal
(124), which uses stochastic covariance models to score primary
and secondary structure. Also popular is RNAmmer (125), which
uses HMMs to identify rRNA genes. For RNAmmer, the ability to
identify the presence of these genes is respectable (above 95%),
but its accuracy suffers in predicting the exact starts and stops of
the genes since, unlike coding sequences and tRNA sequences,
there exist no well-defined signals demarking them; hence, due
caution should be exercised when analyzing ribosomal genes ob-
tained from automated prediction software.

The set of coding sequences contained in the bacterial genome
defines its biology, and so it is of great interest and importance to
characterize the functions of these coding sequences. This is espe-
cially true in the prediction/assessment of pathogen virulence and
risk. Modern genome annotation approaches use a combination
of sequence similarity searches, HMM-based searches, and a vari-
ety of biochemical property searches to infer the function of genes
in newly sequenced genomes.

Similarity searches rely on the assumption that similar gene
sequences possess identical functions; it should be recognized that
this is generally a good assumption but does not always hold, since
even a single base pair change may alter or even abolish the func-
tion of the resulting protein product. In this approach, the BLAST
family of similarity searching programs is used to determine the
degree of similarity between a newly sequenced gene and a data-
base of reference genomes. Annotations from reference genes with
sufficient similarity and length are then transitively applied to the
newly sequenced gene. The choice of reference databases used to
compare sequences is key to the success of the functional annota-
tion process based on similarity search. Highly curated reference
sequences with lab-validated functions, such as HAMAP (126),
are preferred for maximal accuracy. However, these curated data-
bases lack breadth, and many genes will be missed. Databases con-
taining large coverage, such as the NCBI nr (nonredundant) da-
tabase and the EMBL Nucleotide Sequence Database (127), are
effective at annotating as many genes as possible but are the least
reliable, since their annotation and curation are the responsibility
of the submitter and lack any validation. Analysis of the nr data-
base has shown that it likely contains a substantial number of
noncoding ORFs misannotated as actual coding sequences (128).
Transitive annotation from these databases without additional
verification can result in the misannotation of genes and propa-

FIG 3 Overview of bacterial genome annotation. Structural annotation iden-
tifies the location of genes on the contigs of an assembled bacterial genome.
Protein-encoding locations are identified, followed by automated assignment
of gene function by comparison to existing databases. Non-protein-encoding
genes are annotated by identifying key signatures for each type of gene. The
resulting annotations are combined with an optional manual curation that can
be performed before the final annotated genome is produced.
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gation of error. Semicurated, high-quality reference sequences,
such as those contained in the NCBI microbial RefSeq database
(129), which contains a combination of high-quality, manually
curated genomes and other uncurated but consistently annotated
genomes, provide a good compromise between accuracy and
scope. If possible, a stratified annotation process should be used
wherein reference sequences are searched, and annotations ap-
plied, in series from highest to lowest acceptable accuracy.

An alternate approach to similarity searching using BLAST is to
employ profile HMMs that contain information describing the
content, length, and variation in groups of related sequences with
defined function, called a sequence family. The TIGRFAM collec-
tion (130) represents a manually curated, experimentally vali-
dated set of profile HMMs that contain validated functional char-
acterization of protein function. Hits to TIGRFAMs can be used to
reliably infer the same or highly similar function in target coding
sequence. The TIGRFAM collection can typically annotate
around 30% of the genes in a typical bacterial genome. FIGfams
(131) are similar to TIGRFAMs but are automatically generated
and describe sequences from the same protein family. The func-
tional annotations in FIGfams are of high quality and, like
TIGRFAMs, can be used to reliably infer functional annotation of
a target coding sequence. The Pfam database (132) is a third da-
tabase of manually curated and automatically generated profile
HMMs that can be used to infer function, although this database
includes functional information for protein domain families in
addition to overall protein families, so care should be taken to
ensure that hits to the HMMs in this database are valid for the
entire target protein under study and not to a smaller functional
domain.

Despite the existence and growth of these reference databases,
many newly sequenced genes may have no matching counterpart
contained in these databases, and the databases themselves can
contain a substantial number of genes without a known function
(i.e., hypothetical and conserved hypothetical genes). For these
sequences, it may be possible to identify the partial function(s) of
the protein products by an examination of their inferred biochem-
ical properties. As mentioned, the Pfam database can be searched
to look for matching functional and structural domains. Motif
sequences are short, conserved sequences that impart a significant
biological function to that protein, such as DNA binding, metal
binding, or phosphorylation motifs. Sequence motifs can be
searched against the PROSITE database (133) with the Scan-
Prosite tool (134). Transmembrane domains are sections of a pro-
tein that span cell membranes. Proteins harboring transmem-
brane domains can be involved in cell signaling, cell adhesion,
catalysis, or transport of substances across the cell membrane. A
popular HMM-based transmembrane domain predictor is
TMHMM (135). Protein subcellular location (e.g., cytoplasm, cy-
toplasmic membrane, periplasm, and extracellular space) can be
used to assist in a protein’s function and can be predicted with
PSORTb (136).

Organizing and running this menagerie of genome annotation
tools and methods to generate high-quality annotations are be-
yond the typical researcher’s capability; instead, automated ge-
nome annotation systems have been developed that compile these
tools into coordinated pipelines that remove much of the com-
plexity of performing bacterial genome annotation. Early pipe-
lines such as MAGPIE (137), GenDB (138), BASys (116), MaGe
(139), RAST (29, 140), and IMG-ER (141), are available as Web

applications and provide a wide variety of annotation services,
including manual review and correction, and submission to pub-
lic archives such as NCBI. More recently, downloadable annota-
tion systems such as DIYA (142) and Prokka (143) have been
made available that take advantage of the availability of high-per-
formance workstations. These systems allow additional customi-
zation of the pipeline workflows and databases and are rapidly
gaining popularity due to their high customizability. The choice of
annotation pipeline to apply for an annotation job depends on a
number of factors and requires an understanding of their strate-
gies and relative advantages and disadvantages; a detailed review
of these and other annotation systems is available in reference 122.

Recombination and Mobile Elements

DNA sometimes harbors features that allow it to rearrange, result-
ing in a change in the gene content for the organism that contains
that DNA. The mechanisms that impart these rearrangements are
naturally occurring and found across the spectrum of life. In this
review, we restrict the scope of our discussion to the types of
rearrangements occurring in prokaryotes, which come in two
forms: bacterial genetic recombination and mobile elements.

Recombination. Genetic recombination refers to the exchange
of two segments of DNA contained on the same chromosome or
on different chromosomes, resulting in new combinations of
genes and other genomic structures. Recombination is a method
for bacteria to acquire diversity that may aid in survival, and bac-
terial organisms often take advantage of recombination for im-
mune system evasion (144) or to acquire antimicrobial resistance
(145). Because bacterial recombination is acquired asexually, it
does not follow hereditary evolution and, hence, must be taken
into account when generating phylogenies and conducting popu-
lation structure analysis.

Early programs for identifying recombination in bacteria such
as ClonalFrame (146) use MLST data but are not scalable to WGS.
More recently developed programs such as ClonalFrameML
(147), Gubbins (148), and BRAT NextGen (149) are designed to
more efficiently analyze HTS data and yet still take considerable
time to analyze large data sets and are difficult to install and use.
Scalable, easy-to-use systems for recombination detection in bac-
terial genomes are yet to be realized, but given their desirability,
we anticipate the introduction of such tools in the near future.

Mobile genetic elements. Mobile genetic elements, often sim-
ply referred to as “mobile elements,” are segments of DNA with
the ability to move around within a genome and between ge-
nomes. Among bacteria, mobile elements play a critical role in
shuttling genes that confer survivability in a particular ecological
niche. This includes virulence factors and antimicrobial resistance
genes and, as such, plays a critical role in human health and dis-
ease. Here, we describe the main types of mobile elements found
in prokaryotes.

(i) Transposons. Transposons are genetic elements that rear-
range their position within a bacterial genome or between two
separate genomes. Transposons carry genetic elements that con-
trol their own movement. Transposition requires at minimum a
transposase enzyme and a pair of flanking sequence elements
called terminal inverted repeats. These minimal transposons are
referred to as insertion sequence (IS) elements. The ISMapper
program (150) can be used to identify IS elements from genome
sequence data. Insertion sequences can be classified by their sim-
ilarity, and currently, over 1,500 insertion sequences grouping

Lynch et al.

896 cmr.asm.org October 2016 Volume 29 Number 4Clinical Microbiology Reviews

http://cmr.asm.org


into 20 families have been identified. The ISsaga software suite
(151) can be used to identify and classify IS elements. If two IS
elements exist with an intervening set of genes between them, they
can form a composite transposon. Composite transposons can
transpose these “cargo” genes, which frequently contain genes en-
coding virulence or antibiotic resistance, and their flanking IS
elements as a combined unit. Conjugative transposons, also re-
ferred to as integrative and conjugative elements (ICEs), possess
additional genes that facilitate the transfer and integration of the
transposon into the genome of a different bacterial cell. Mobile
element detection programs such as IslandViewer (152) are avail-
able for detecting conjugative transposons along with other
genomic islands of probable horizontal origin.

(ii) Plasmids. Plasmids are smaller, mostly circular, double-
stranded extrachromosomal DNA molecules that exist and repli-
cate independently of the main bacterial chromosome. Impor-
tantly, they often carry genes that confer a selective advantage in a
given environment, such as antibiotic resistance or sanitizer or
metal resistance, and virulence genes. Bacteria can harbor multi-
ple distinct plasmids, and each plasmid can exist in multiple cop-
ies. Some plasmids known as episomes can reversibly integrate
into the chromosome. Many plasmids can transfer themselves
from one cell to another via asexual conjugation. As such, plas-
mids serve as a major mechanism of horizontal gene transfer be-
tween bacteria. Given their importance and ubiquity, it is perhaps
surprising that not many software tools exist to identify and com-
prehensively characterize bacterial plasmids. This paucity arises
from the difficulty of distinguishing plasmids from chromosomal
sequences (and distinguishing plasmids containing similar con-
tent) using draft whole-genome data generated with short-read
sequencing technologies. Although most plasmids do have iden-
tifiable signals present in their sequences, such as the replicon
region, there is sufficient variation in this region so as to make
their in silico detection difficult; as well, it is possible that plasmid
segments without identifiable signals may exist on different con-
tigs in draft genome sequence data. Plasmid sequences can be
compared to databases of known plasmids, but the high inherent
plasticity found in plasmids gives rise to extensive mosaicism that
makes this approach unreliable. The PlasmidFinder website (153)
can be used to detect and type plasmids from the Enterobacteria-
ceae family and can detect multiple plasmids within a bacterial
genome, although it cannot fully extract and assemble full plasmid
sequences from draft contig data. The use of mate-pair technolo-
gies can help to scaffold contigs belonging to plasmids but cannot
guarantee a full plasmid sequence. Currently, the most popular

approach for completely assembling and characterizing plasmids
relies on long-read sequencing technologies such as those gener-
ated by the Pacific Biosciences and Oxford Nanopore platforms.
Long-read technologies often can yield fully closed plasmid se-
quences as single contigs, even from genomes containing multiple
plasmids (154).

(iii) Prophage. Bacteriophage, commonly referred to simply as
phage, represent viruses that specifically infect bacterial cells.
Phage can have a lytic life cycle stage, wherein their genomic ma-
terial exists and replicates within the bacterial cell but separately
from the host bacterial genome, or they can exist in a dormant
lysogenic life cycle stage, wherein they become integrated within
the chromosomal DNA of the host bacterial cell (or sometimes
may be inserted in a plasmid); this lysogenic phage state is referred
to as (an integrated) prophage. Prophage often contain genetic
features of interest to microbiologists, such as those conferring
pathogenicity factors, antimicrobial resistance, or means for alter-
ing bacterial cell surface structures that allow invasive bacteria to
evade the host immune system. As noted for plasmids, prophage
also are a major vector of horizontal gene transfer in prokaryotes.
Prophage can be identified by similarity to known phage or by
analyzing the G�C content and nucleotide composition differ-
ences from the surrounding bacterial chromosomal DNA. Pro-
phage are also known to preferentially insert and thus disrupt
tRNA genes. Popular tools for the identification of prophage in-
clude ProphageFinder (155) and PHAST (156).

Phylogenetics to Phylogenomics

Comparative analysis of sequences or genomes often includes
phylogenetic methods. Phylogenetics is the study of the evolution-
ary relationships among organisms. Phylogenetics is a very active
field of study and plays an important role in many life sciences.
The literature on phylogenetics is extensive, and many excellent
books and review articles have already been written (157–159).
Here, we aim strictly to introduce the main concepts and technol-
ogies used in phylogenetics that can be applied for comparison of
single genes, a subset of concatenated DNA segments, or even full
genomes; the latter is referred to as phylogenomics and will be
discussed with respect to infectious disease bacterial genomics ap-
plications.

General phylogenetic concepts. The central concept in phylo-
genetics is the phylogenetic tree, also known as an evolutionary
tree or a phylogeny (Fig. 4A). The phylogenetic tree depicts the
inferred evolutionary relationship among the organisms under
study. The tree consists of nodes and branches. The “leaves” of the

FIG 4 General phylogenetic concepts. (A) The general structure of a phylogenetic tree consisting of nodes and branches. A terminal node represents a particular
organism (or sequence) under study. Terminal nodes are connected to internal nodes representing hypothetical ancestors. A common ancestor and all of its
descendants are referred to as a clade. The ancestor to all descendants in the tree is called the root. (B) A cladogram showing the relative recency of common
ancestry. Branch lengths are not informative in a cladogram. (C) A phylogram showing both the relative recency of common ancestry and evolutionary distance.
Branch lengths are scaled to reflect the evolutionary distance between an organism and its ancestors.
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tree (i.e., nodes without descendants) are referred to as terminal
nodes. Nodes with descendants are referred to as internal nodes;
each internal node represents the most recent common ancestor
(MRCA) of those descendants. Branches connect the descendants
to their ancestors. The ancestor of all the descendants in the tree is
called the root, although not all trees have a root. Subgroups
within a tree consisting of a common ancestor and its descendants
are referred to as clades.

Phylogenetic trees are depicted either as cladograms (Fig. 4B)
or as phylograms (Fig. 4C). Cladograms show only the relative
recency of common ancestry. The evolutionary distance between
ancestors and descendants is not depicted; therefore, only the tree
topology is informative in cladograms, not the branch lengths.
Cladograms are often used to represent a hypothetical relation-
ship between species. In contrast, phylograms show the relative
recency of common ancestry along with the evolutionary dis-
tances (such as time or genetic mutations), which are depicted by
scaling the branches to reflect the distance between ancestors and
their descendants. Branch length values are often presented along
the branch or by adding a scale bar. In contrast to cladograms,
phylograms often are used to represent, to the degree possible, the
“real” evolutionary relationship among species. Note that only the
tree topology and the relative branch lengths (for phylograms) are
meaningful in a standard phylogenetic tree. Both phylograms and
cladograms can have a vertical or horizontal orientation, and the
relative order of the terminal nodes can be adjusted by “rotating”
the internal branches in the tree without changing the relation-
ships depicted by the tree; that is, the relationships between ter-
minal nodes are defined by the internal nodes linking them, not by
the left-to-right (or top-to-bottom) order in which they appear in
the tree.

Inferring phylogenetic trees. Phylogenetic trees can be inferred
by analyzing the physical variation or the genetic variation present
in the organisms under study. These genetic data are normally
available only for living or recently living organisms; thus, the
available data pertain only to the leaf nodes in the tree. However,
owing to the lack of data for the ancestors of these terminal nodes,
their placement in the tree must be inferred by tree-building tech-
niques. Standard tree-building methods typically assume a bifur-
cating tree structure where each internal node is connected to two
descendants. If the ancestral node is not known, as is often the
case, the result is an unrooted tree. Unrooted trees depict only the
relative relatedness of the leaf nodes but do not illustrate the an-
cestry. Trees can be rooted by including an outgroup (i.e., a leaf
node with data from an organism that is known to be ancestral to
the other organism in the tree); this allows the tree-building pro-
grams to impute the MRCA of all the leaves in the tree and results
in a rooted tree where the direction of evolution and therefore the
absolute ancestry are inferred.

Many different tree-building methods exist; however, the most
popular for building phylogenies from genetic data can be
grouped into two classes: distance-based methods and character-
based methods. For both classes, the input normally comes in the
form of an aligned set of genetic data, also called a multiple-se-
quence alignment (MSA). Distance-based methods, such as the
neighbor-joining (NJ) method and the unweighted pair group
method with arithmetic mean (UPGMA), calculate the number of
genetic differences (polymorphisms) between every sequence and
every other sequence in the comparator group and then use these
distances to infer the tree. Distance methods are simple to imple-

ment and efficient to run but do not incorporate evolutionary
models. Character-based methods, such as the maximum parsi-
mony (MP) method and the maximum likelihood (ML) method,
examine the actual mutations present in the sequence data and use
this information to infer the best tree (160). They can incorporate
sophisticated evolutionary models that generate more accurate
branch lengths than the simpler distance-based methods; how-
ever, they can require substantial processing power to run, espe-
cially for large trees.

The robustness of a phylogenetic tree (i.e., the likelihood that it
is “correct”) is often estimated by bootstrapping. In this method,
the columns of the input multiple alignment are randomly sam-
pled with replacement to generate a new multiple alignment that
will have some columns repeated and others absent relative to the
original, and a tree is inferred from this new alignment. This pro-
cess is repeated a certain number of times (e.g., 100 or 1,000). The
resulting trees are compared for their concordance by calculating
the number of times that each ancestor grouped the descendants
repeatedly in the same clade in each run. The result is a semistatis-
tical measure of how robustly each internal node in the tree sup-
ports the inferred evolutionary relationship of the organisms un-
der study. The nodes are often labeled with their bootstrap values
in the resulting tree.

Phylogenomics. Phylogenomics is the application of WGS data
to the study of evolution. Traditional phylogenetic methods often
make use of one or a few genes for tracing the evolutionary history
of an organism. HTS provides the capability to extend these meth-
ods with information from the entire genome, enabling recon-
struction of extremely high-resolution phylogenies. This has
applications in infectious disease surveillance and outbreak re-
sponse, where reconstructed phylogenies from genomes have the
potential to complement or replace traditional typing methods
such as MLST, pulsed-field gel electrophoresis (PFGE), or sero-
typing.

Although constructing whole-genome phylogenies has shown
many successes, there are still many challenges. Constructing
whole-genome phylogenies on highly recombinant organisms is
problematic, as recombination can confound phylogenetic meth-
ods by obscuring the signal of vertically inherited variation (161).
For homologous recombination, where similar sequences of DNA
are exchanged, if the source of recombination is external to the
study population, the exchanged regions can contain a higher
number of SNVs than observed elsewhere in the population. This
has the consequence of increasing genetic distance and also
branch lengths with most phylogenetic methods and could lead to
falsely excluding direct transmission within an epidemiological
study (147). If recombination occurs with a source internal to the
population under study, then inconsistencies in the phylogenetic
signal can occur, leading to an incorrect tree topology (147, 161).
Managing homologous recombination often involves identifying
and excluding phylogenetic signals from regions having under-
gone recombination, leaving only those regions arising from ver-
tical descent—that is, the clonal frame (161). For nonhomologous
recombination, introduction of paralogous sequence can lead to
inflation of genetic distance, for example, by introducing false-
positive SNVs due to incorrect read mapping (161).

Additional concerns include data management and scalability.
Handling these issues has led to the development and adoption of
many phylogenetic analysis methods, which can be broadly cate-
gorized as alignment-based, alignment-free, and gene-by-gene
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methods. A categorized list of software can be found in Table 6,
while additional in-depth reviews can be found in references 159
and 162.

(i) Alignment-based phylogenies. Alignment-based whole-ge-
nome phylogenies typically rely on the generation and analysis of
a multiple-sequence alignment (MSA), that is, an alignment of
nucleotide or amino acid characters where each row represents an
isolate and each column in the alignment represents a hypotheti-
cal homology. As described under “Inferring phylogenetic trees,”
the generated MSA is analyzed using distance-based or character-
based methods to produce a phylogenetic tree. Although origi-
nally designed for the use of multiple alignments of single genes,
these methods have been adapted to make use of whole genomes.
Some of the more popular methods involve the generation of a
whole-genome multiple-sequence alignment, the generation of a
concatenated alignment of genes, or the construction of a whole-
genome SNV-based alignment.

Whole-genome alignments, where homologous regions of en-

tire genomes are aligned, are a straightforward method for con-
structing an MSA to be used for phylogenomic analysis. Once
constructed, a whole-genome alignment can be used for phyloge-
netic inference either at the small scale by using nucleotide varia-
tion or at the larger scale by examining rearrangement or
duplication events (163). Additionally, many modern recombina-
tion-detection and phylogenetic inference software programs make
use of whole-genome alignments. Software such as Gubbins (148)
makes use of whole-genome alignments to scan for regions of ele-
vated SNV density occurring on branches of an initially constructed
phylogenetic tree of all nucleotide substitutions. Significantly highly
SNV-dense regions are reported as potential recombination events
and removed to construct a phylogenetic tree with nucleotide varia-
tion from only the clonal frame. Other software such as Clonal-
FrameML (147) makes use of whole-genome alignments along with a
model of recombination and maximum likelihood methods to iden-
tify and mask recombinant regions and then reconstruct a phyloge-
netic tree with variation from the clonal frame.

TABLE 6 List of phylogenomics softwarea

Type Subtype Name (reference[s]) Input Dist. Comments

Alignment based Whole-/core genome
alignment

Gubbins (148) WGA L Recombination detection and removal; requires independent
generation of a whole-genome alignment (e.g., with de novo
assemblies or reference mapping)

ClonalFrameML (147) WGA L Recombination detection and removal; requires independent
generation of a whole-genome alignment

Harvest suite (166) AG L All-in-one package for genome alignment, variant detection,
recombination removal, and visualization; alignments
restricted to the core genome

Concatenated gene
alignments

Osiris (248) SR/AG L/W Galaxy-based pipeline; for sequence read input, assemblies can
be performed as part of the pipeline; demonstration server at
http://galaxy-dev.cnsi.ucsb.edu/osiris/

Reference based CFSAN SNP Pipeline (174) SR L Available at http://snp-pipeline.readthedocs.io/en/latest/
SNVPhyl SR L Galaxy-based pipeline; available at http://snvphyl.readthedocs.io/
Lyve-SET SR L Available at https://github.com/lskatz/lyve-SET
Snippy SR L Available at https://github.com/tseemann/snippy
CSIPhylogeny (32) SR W Available at https://cge.cbs.dtu.dk/services/CSIPhylogeny/
REALPHY (176) SR/AG L/W Makes use of multiple reference genomes and includes invariant

sites in alignment (similar to whole-genome alignments);
available at http://realphy.unibas.ch/fcgi/realphy

Reference free SISRS (180) SR L Composite reference genome assembled from sequence reads
and used to identify variation

kSNP (178, 179) SR/AG L Identification of SNVs through k-mer comparisons; reference
genomes can optionally be included to annotate SNV
functions

Alignment free Word based FFP (182) AG L Suite of small, command-line-based tools for constructing
phylogenies

CVTree3 (249) AG W Available at http://tlife.fudan.edu.cn/archaea/cvtree/cvtree3/
Match lengths Andi (184) AG L Available at https://github.com/evolbioinf/andi/

Gene by gene rMLST PubMLST rMLST (188) AG W Available at http://pubmlst.org/rmlst/; only for academic and
noncommercial use, requires emailing software maintainers
for an account

rMLST/cgMLST Ridom SeqSphere� AG L Commercial software, used in studies such as reference 195;
includes modules for genome assembly among others

cgMLST/wgMLST BioNumerics AG L Commercial software, used for example by reference 175;
includes modules for genome assembly and reference-based
SNV phylogenies among others

SISTR (200) AG W Allows for rapid global comparison with Salmonella genomes
from NCBI; available at https://lfz.corefacility.ca/sistr-app/

a Abbreviations: WGA, whole-genome alignment; AG, assembled genome; SR, sequence reads; Dist., distribution of software; L, locally installed software; W, web service.

Infectious Disease Bacterial Genomics

October 2016 Volume 29 Number 4 cmr.asm.org 899Clinical Microbiology Reviews

http://galaxy-dev.cnsi.ucsb.edu/osiris/
http://snp-pipeline.readthedocs.io/en/latest/
http://snvphyl.readthedocs.io/
https://github.com/lskatz/lyve-SET
https://github.com/tseemann/snippy
https://cge.cbs.dtu.dk/services/CSIPhylogeny/
http://realphy.unibas.ch/fcgi/realphy
http://tlife.fudan.edu.cn/archaea/cvtree/cvtree3/
https://github.com/evolbioinf/andi/
http://pubmlst.org/rmlst/
https://lfz.corefacility.ca/sistr-app/
http://cmr.asm.org


Constructing a whole-genome multiple alignment often starts
with an initial set of de novo-assembled genomes. A common ap-
proach, as taken by software such as progressiveMauve (164), first
identifies smaller homologous and colinear (i.e., no genomic
structural variation) regions of each genome and then combines
these regions into a whole-genome alignment. An in-depth de-
scription of whole-genome alignment methods can be found in
Colin Dewey’s book chapter on whole-genome alignments (163).

While the use of de novo-assembled genomes is common for
constructing whole-genome alignments, scalability and running
time can become a concern with large data sets of hundreds of
genomes. As an example, the authors of progressiveMauve report
a running time of 24 h for 20 genomes and 70 h for 40 genomes
(164), not including the time spent for the assembly of each ge-
nome. For generation of larger-scale whole-genome alignments,
some studies (165) have instead used a reference mapping ap-
proach. A reference genome is selected, and SNVs, indels, and
other variations are identified and used to generate a consensus
sequence for each genome. These consensus sequences are com-
bined into a whole-genome alignment. Alternatively, more recent
software, such as the Harvest suite (166), takes a different ap-
proach. Instead of whole-genome alignments being constructed,
only the core genome among a set of isolates is aligned, taking
many orders of magnitude less time than whole-genome align-
ments (minutes compared to hours with progressiveMauve on the
same data set) (166). Additionally, the Harvest suite includes soft-
ware for removal of recombinant regions, generation of a phylo-
genetic tree, and visualization of the phylogenetic tree alongside
identified variants, providing an all-in-one package for phylog-
enomic analysis. However, the Harvest suite requires high-quality
assemblies to achieve these results, and variation in noncore re-
gions of the genome is excluded compared to whole-genome
alignment methods (166).

Concatenated gene alignments, sometimes called a “super-
matrix” or “supergene,” offer an alternative to whole-genome
alignment methods for phylogenetic analysis. While similar to
whole-genome alignments, concatenated gene alignments are
constructed from separate multiple alignments of homologous
genes, specifically orthologous genes, to generate trees reflecting
vertical descent, which are concatenated to produce an overall
alignment (159, 167, 168). Alignments with paralogous genes
should be removed, while missing genes within some isolates can
be either coded as missing data or excluded altogether (159). Iden-
tification of orthologous genes often involves the identification of
highly similar pairs of genes, such as through all-versus-all BLAST
comparisons used by OrthoMCL (169), followed by graph-based
analysis to cluster these pairs of genes into larger orthologous gene
groups (168). Following ortholog identification, multiple align-
ment of each set of genes can be performed with software such as
Clustal Omega (170). As an advantage, concatenated gene align-
ments provide the additional capability of detecting gene duplica-
tion, gene loss, or recombination events by comparing the species
tree (i.e., the underlying phylogeny of a species) with the gene trees
(i.e., the phylogeny of individual genes) (168). However, these
methods often require a priori knowledge of the underlying spe-
cies tree (168), which for closely related bacteria is often unknown
(albeit it could be estimated with other phylogenetic methods de-
scribed here). Also, for any concatenated gene alignment method,
there is the requirement to first assemble and annotate each ge-

nome followed by orthologous gene identification, which can be
computationally costly.

SNV-based phylogenies are generated by identifying SNVs
from a set of genomes and producing a multiple-sequence align-
ment of variant-only sites. The reduction in size of the alignment
to only variant-containing sites provides for a shorter computa-
tion time for generating a phylogeny. However, removing invari-
ant sites can cause overestimation of branch lengths, and proper
correction when generating the phylogeny should be applied
(171, 172).

Identifying SNVs is accomplished through either a reference-
based approach or a reference-free approach. In a reference-based
approach, an assembled reference genome is used as a basis for
identifying SNVs. This is often accomplished through reference
mapping and variant calling; however, assembled genomes also
can be used with software such as MUMMer (173) for identifying
SNVs. The CFSAN SNP pipeline (174) is an example of a locally
installable pipeline that uses a reference mapping and variant call-
ing approach that is currently in use by the U.S. Centers for Dis-
ease Control and Prevention (CDC) and U.S. Food and Drug
Administration (FDA) for outbreak detection and investigation
(175).

Reference-based approaches provide an advantage of being
able to identify the exact location and corresponding gene for each
variant with respect to the reference, validating any variants iden-
tified using the sequence read alignments, and applying recombi-
nation detection and masking techniques. However, the require-
ment for choosing a proper reference can be problematic as
distantly related reference genomes can bias the generated phylog-
eny (176). The software REALPHY (176) provides both a Web
service and downloadable software that attempt to address this
reference genome issue through the use of multiple reference ge-
nomes.

In contrast to a reference-based approach, a reference-free ap-
proach does not require a reference genome but instead identifies
SNVs directly from the sequence data. This eliminates any biases
potentially introduced due to the selection of a reference and al-
lows for the detection of SNVs not present in the reference ge-
nome. However, as noted by Pettengill et al., a reference-free ap-
proach may lead to a higher SNV false discovery rate without
appropriate thresholds (177). The software package kSNP (178,
179) takes a reference-free approach to identifying SNVs by break-
ing up each genomic data set into k-mers and comparing these
k-mers. Another software package, SISRS (180), assembles a com-
posite genome from the sequencing data and uses this assembled
composite as a reference for variant calling.

(ii) Alignment-free phylogenies. Alignment-free methods for
constructing whole-genome phylogenies do not require the use of
a multiple-sequence alignment. Instead, they are constructed by
defining and measuring a quickly computable pairwise distance
between each genome. Once distances are computed, they are run
through previously mentioned clustering algorithms such as
neighbor joining or UPGMA. This enables the rapid generation
of phylogenies with many hundreds or thousands of genomes
without the costly computation time of generating a multiple-
sequence alignment.

The Genome BLAST Distance Phylogeny (181) method calcu-
lates a distance based on alignments between each genome, in this
case using pairwise BLAST alignments. Word-based methods,
such as Feature Frequency Profiles (182, 183), break each genome
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up into k-mers and compare the frequencies of these k-mers to
define a genomic distance. Other software, such as Andi, com-
putes rapid local alignments between each genome and defines the
distance based on mismatches within each alignment (184). Hau-
bold (185), as well as Bonham-Carter et al. (186), has written
excellent reviews of alignment-free methods that can be referred
to for additional details.

The advantages of alignment-free phylogenies are speed and
scalability; phylogenetic trees can be computed quickly for a large
number of genomes. However, care must be taken to properly deal
with many genomic events, such as large insertions or horizontal
gene transfer, which can confound the phylogeny. Methods in-
clude restriction of sequence data for analysis to only those within
the core genome, removal of repetitive sequence data, and appli-
cation of appropriate phylogenetic distance models (183).

(iii) Gene-by-gene phylogenies. An alternative approach to
alignment-based and alignment-free methods is the gene-by-gene
approach. This method is an extension of traditional MLST from
a small set of housekeeping genes to larger collections of genes,
enabling much higher resolution than traditional MLST methods
(187). Ribosomal MLST (rMLST) extends the limited 6 or 7
housekeeping genes used by traditional MLST to a set of 53 genes
encoding the bacterial ribosomal protein subunits and enables
resolution across the entire bacterial domain down to the individ-
ual sequence type level (188). An example of an rMLST database
and Web service for classification of genomes available for aca-
demic and noncommercial use is PubMLST (http://pubmlst.org
/rmlst/). Whole-genome MLST (wgMLST) extends this concept
to encompass all genes within a given genome, on the order of
thousands, while core genome MLST (cgMLST) restricts this gene
set to the core genome loci common among a group of isolates.
Relatedness is often based on a distance between each genome
defined by the number of shared alleles for each gene in the ex-
tended MLST set (189). These distances can be organized into a
distance matrix and analyzed using standard clustering methods,
such as neighbor joining, or methods to account for conflicting
phylogenetic signals (i.e., recombination and horizontal gene
transfer), such as Neighbor-net (190), SplitsTree (191), and PHY-
LOViZ (192).

Recent publications (189, 193–195) have demonstrated the
usefulness of this gene-by-gene approach for rapid identification
and classification of closely related isolates, comparable to classi-
fication generated from alignment-based phylogenies. The soft-
ware BIGSdb (196) has been developed for defining gene loci and
grouping into arbitrary schemata and is used to power many da-
tabases hosted at PubMLST. Commercial software also making
use of the gene-by-gene approach is listed in Table 6.

(iv) Choosing a method for phylogeny generation. The selec-
tion of which phylogenomic analysis method to apply depends
primarily on the intended use of the generated phylogeny as well
as considerations on the available computational resources to
complete the analysis. For organisms thought to be highly recom-
binant, or where recombination detection is a focus, a whole-
genome alignment method would be most useful. This was used in
a study of 240 Streptococcus pneumoniae strains (165) where a
reference mapping approach was used to construct a whole-ge-
nome alignment followed by phylogenomic analysis with meth-
ods later packaged into the software Gubbins (148).

Alternatively, where there is less focus on recombination anal-
ysis, an SNV-only alignment may be most useful. This was applied

in studies on the outbreak of Vibrio cholerae in Haiti in 2010 (197,
198) and for a study on real-time surveillance and outbreak detec-
tion of verocytotoxin-producing E. coli in Denmark in 2012 (199)
and is currently in use by the CDC, along with wgMLST methods,
for real-time surveillance and outbreak detection (175). However,
with highly divergent genomes, overestimation of branch lengths
can occur (171, 176), leaving this method most applicable for a
rapid in-depth analysis where the population under study is
closely related.

Gene-by-gene methods, primarily wgMLST and cgMLST, have
resolution comparable to that of alignment-based methods and
have the benefit of a standard gene schema (and associated classi-
fication nomenclature that encourages data sharing compatibil-
ity) (193, 195). Thus, gene-by-gene approaches are particularly
useful for integration of newly sequenced data into a global con-
text. To date, use of wgMLST/cgMLST methods has been limited
to custom schemata developed and curated for individual se-
quencing projects (193, 195), free Web services specific to a par-
ticular organism (200), or large institutions (175). However, with
commitment by some, such as the CDC (175), to expand avail-
ability of wgMLST tools, these methods will become more and
more relevant in the near future.

Alignment-free methods have been successfully applied in
studies such as a phylogenetic analysis of Escherichia coli/Shigella
(183) and are currently being used by NCBI’s Pathogen Detection
project to construct large-scale phylogenetic trees based on k-mer
analysis (http://www.ncbi.nlm.nih.gov/projects/pathogens/about/).
However, in particular for genomic epidemiology, a large focus
has been on the use of alignment-based or gene-by-gene methods
(175). The NCBI’s Pathogen Detection project itself plans to im-
plement SNV-based methods for further comparisons of isolates
in the future (http://www.ncbi.nlm.nih.gov/projects/pathogens
/about/). Thus, while able to rapidly produce phylogenies, align-
ment-free methods have become most useful for a first, qualitative
look at how sequenced bacteria are related to one another.

Recently, there has been a large focus on comparing these phy-
logenomic methods as well as comparing the performances of
different software for the purpose of assessing their accuracy and
consistency characteristics. Proficiency testing for constructing
whole-genome phylogenies has been ongoing through the GMI
(http://www.globalmicrobialidentifier.org/Workgroups/About
-the-GMI-Proficiency-Tests), and a newly initiated ASM confer-
ence on NGS and Bioinformatics Pipelines included a Pathogen
Surveillance Software Demonstration method exercise for recon-
structing whole-genome phylogenies (https://github.com/katholt
/NGSchallenge). The results of these software comparisons should
provide useful information on the compatibility and accuracy of
different methods for reconstructing whole-genome phylogenies.

HTS IN THE CONTEXT OF SPECIFIC APPLICATIONS

At the beginning of this review, we introduced three common
applications of HTS within the context of infectious disease bac-
terial genomics: bacterial typing, molecular epidemiology, and
pathogenomics (Fig. 1). These applications are not mutually ex-
clusive but are often progressions within a project to provide nu-
anced information or additional in-depth knowledge; however,
consideration of the primary application(s) is important during
the planning stage to ensure that the sampling strategy (Table 2)
and analysis plans can effectively meet project objectives.

Generally, once the planning stage is complete, the early work-
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flow steps (data generation and primary and secondary analysis)
are typically completed within an automated pipeline. Commonly
used tertiary analyses may also be automated; however, this stage
of analysis often requires more specialized processes tailored to
the application. For the purpose of this review, this issue will be
discussed in the context of the three abovementioned applica-
tions.

Bacterial Typing

In silico typing or feature extraction can be considered a secondary
analysis as many bacteria have validated molecular typing schemes
with existing databases for PCR-generated amplicons that can be
extracted from HTS data for comparison. These databases may
contain Sanger-sequenced products of a single comparator gene
(e.g., 16S rRNA gene, rpoB, and cpn60) or a panel of housekeeping
genes as in MLST. Multiple efforts are under way globally for each
organism to expand such typing schemes to take into account
more genomic loci and are certainly going to be leveraged exten-
sively in the future. Additionally, categorical features such as vir-
ulence factors, antimicrobial resistance genes (ARGs), or trans-
posable elements also can be extracted to achieve more detailed
molecular subtyping or to compare bacterial genomes based on
the project objectives, moving feature extraction and in-depth
characterization into tertiary analysis efforts.

The Basic Local Alignment Search Tool (BLAST) is a generic
tool that can be used to extract features from large HTS data sets
(201). The query sequence is compared to a database, searching
for regions of local sequence similarity. Therefore, a reference se-
quence or extracted feature (query) could be compared to the
HTS-derived assemblies (database) to extract similar sequences,
or vice versa, an unknown sequence/contig could be queried
against a database of annotated features. Parameters can be set to
adjust the stringency of the BLAST, and results are presented as
presence/absence or the aligned database matches or “hits” for
further analysis. BLAST is publicly available and can be used on-
line (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to search a variety of
public databases, or the software can be downloaded to search a
personalized, local database. Extracting certain feature classes can
be achieved using specialized Web-accessible databases such as
the multiple “Finder” applications on the Center for Genomic
Epidemiology website (ResFinder [31], VirulenceFinder [199],
PathogenFinder [202]), PHAST (156) to search for integrated
prophage, and CARD to identifiy antimicrobial resistance genes
(203). The latter programs require assembled contigs or anno-
tations as input; however, recently developed tools such as
GeneSippr and SRST2 identify gene markers using a mapping
approach from quality-filtered sequence reads as input instead of
assembled contigs (204, 205).

Historically, bacterial molecular typing offered rapidly commu-
nicated designations for public health and clinical microbiology
applications such as spa typing of S. aureus (206) and NG-MAST
for Neisseria gonorrhoeae (207). Moreover, typing schemes are of-
ten used as categorical variables to influence strain selection in
research applications. Although these targeted typing approaches
are informative, they are not always consistently used, making
epidemiological comparisons difficult (208).

As bacterial typing is enhanced by the finer resolution of ge-
nome-wide data, revealing novel alleles and gene functions, it pro-
vides opportunities for new protocol development (209, 210).
Furthermore, the ability to mine WGS data and extract multiple

typing schemes makes global comparisons achievable, which is
essential for global surveillance and epidemiological investiga-
tions. For example, the SISTR platform (200) uses WGS draft
assemblies to rapidly extract multiple typing schemes, including
both molecular (MLST) and phenotypic (serotyping) schemes.

Molecular Epidemiology

Molecular epideomiology (ME) uses molecular biological meth-
ods to investigate the source, transmission, and pathogenesis of
disease. High-throughput sequencing has had an enormous im-
pact on ME studies of bacterial pathogens. Prior to HTS, ME in-
vestigations relied on classical subtyping techniques to discover
and track microbial pathogens with a common molecular subtype
or “fingerprint” suspected of being implicated in a disease out-
break. Many of these technologies, such as pulsed-field gel elec-
trophoresis (PFGE) and MLST, are established, validated, and
considered “gold-standard” technologies for subtyping bacterial
pathogens; however, they use only a minuscule fraction of the
information available in the typical bacterial genome. For some
highly clonal, slowly evolving organisms such as Mycobacterium
tuberculosis, Bacillus anthracis, or Salmonella enterica serovar En-
teritidis, the diversity captured by these techniques is often insuf-
ficient to discriminate between an outbreak-implicated isolate
and a sporadic, unrelated isolate. In contrast, HTS can (in theory)
discriminate between isolates differing by a single nucleotide out
of the several million contained in most bacterial genomes. Thus,
genome-based molecular epidemiology, termed genomic epide-
miology, represents a powerful new method with vastly improved
resolution over current gold-standard techniques.

Bacterial pathogen genomic epidemiology established itself as a
bona fide approach for public health investigations during the
high-profile Haiti cholera outbreak which began in 2010. It was
hypothesized to have been imported to Haiti with arriving United
Nations (UN) peacekeepers from Nepal. The current, standard
typing technology for V. cholerae, namely, PFGE, had inadequate
discriminatory power to distinguish environmental isolates from
outbreak-related strains in Southeast Asia. Through multiple, in-
dependent genomic epidemiological investigations (197, 198,
211), the source of the outbreak was conclusively determined to be
imported to Haiti by the Nepalese UN peacekeepers, thereby solv-
ing an important epidemiological controversy that prior methods
could not. The application of genomic epidemiology to other
high-profile events, such as the 2011 German E. coli O104:H4
outbreak (212), has cemented the reputation of genomic epidemi-
ology as a powerful new method for outbreak investigation, and it
is currently positioned to replace the existing gold-standard meth-
ods as the main tool for both surveillance and outbreak response
by public health laboratories around the world. Indeed, some
early adopters, such as the CDC and the FDA, are already using
HTS to assist in their real-time foodborne disease detection, sur-
veillance, and outbreak response activities via the GenomeTrakr
network (21). Bacterial pathogen genomics employs the methods
described under “Phylogenomics.” k-mer trees can be used to
quickly assess the evolutionary relationship of a group of genomes
within the context of a larger population of genomes, which can be
useful, for example, in selecting a reference genome for subse-
quent SNV-based phylogenomics or for identifying and removing
outliers that may be derived from contamination or isolate mis-
classification. For routine surveillance, both the SNV-based ap-
proach and gene-by-gene-based approaches have found applica-
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tion. The selection of approach can depend on several factors.
For example, for low-diversity organisms, an SNV-based ap-
proach, such as the CFSAN pipeline adopted by the FDA’s
GenomeTrakr project, may be desired. However, the current
SNV-based approaches do not allow the set of discovered SNVs
for an organism to be collapsed into a simple categorical sub-
type. In contrast to SNV-based phylogenies, a set of reported
alleles can be easily assigned to a simple subtype category;
therefore, for organisms with more inherent variation, such as
Listeria monocytogenes, the gene-by-gene approach has been ad-
opted by PulseNet International (C. Nadon, personal commu-
nication). The main shortcoming with gene-by-gene-based ap-
proaches is the requirement to generate and curate large
schemata consisting of the loci and alleles for each organism,
many of which remain works in progress.

Routine surveillance with genomic epidemiology may require
the sequencing and analysis of voluminous bacterial genomes; the
large-scale GenomeTrakr project, for example, sequences over
1,000 isolates each month. Surveillance at such a scale requires
thousands of CPU cores and petabytes of storage. Sequencing and
computing requirements for single outbreak investigations are
not as computationally onerous as routine surveillance; however,
the generation and analysis of the sequence data may need to be
performed under extreme time pressures, and thus, the available
resources will need to provide this “surge capacity.” Acute out-
breaks can vary in scale from international foodborne disease in-
vestigations (212) to nosocomial outbreaks where the threat of
frequent transmission events and antimicrobial resistance is a ma-
jor concern for immunocompromised hospital patients (213–
215). For both routine surveillance and outbreak investigation,
draft genome data with short-read technologies appear to be suf-
ficient for genomic epidemiological investigation of most patho-
gens (144, 216).

Bacterial Pathogenomics

Pathogenomics is a field of study that uses genomic sequence data
to understand how genomic variation influences microbial diver-
sity and how this diversity influences host-microbial interactions
and other bacterial behaviors that result in the development or
inheritance of virulence factors involved in disease. The introduc-
tion of HTS and related comparative genomics approaches has
vastly improved our ability to conduct bacterial pathogenomics
studies and has revealed new insights into bacterial genome struc-
ture and dynamics. Perhaps most surprising is the observation
that the gene contents of some species such as E. coli can differ
from each other by as much as 30% (217). Such “open pan-ge-
nomes” in turn have important implications for the variety and
complexity of virulence factors that can influence disease, requir-
ing investigators to sample and sequence large populations of
bacteria in order to understand pathogenicity even within a
single species. In this section, we outline the main methods for
bacterial pathogenomics research using HTS. Obviously, a se-
quence-plus-bioinformatics analysis can only give rise to hy-
potheses about the mechanisms of pathogenesis; follow-up
studies involving forward and reverse genetic screens that sat-
isfy molecular Koch’s postulates are necessary to unambigu-
ously assign causality for a genomic feature’s contribution to
bacterial pathogenicity.

Three main forces govern bacterial genome evolution: gene
loss, gene gain, and genome rearrangement. The interaction of

these forces results in a variety of bacterial genome dynamics,
including SNV, gene duplication, gene shedding/loss (gene con-
tent is lost in entirety), gene decay (in which gene sequence or
function is changed through partial loss), recombination, and
horizontal gene transfer (leading to gene acquisition and/or allelic
diversification). Different bacterial pathogens have adopted vari-
ous evolutionary strategies that are manifest in their genome dy-
namics, and knowledge of a specific organism’s genome dynamics
is important for its proper contextual analysis.

The smallest-scale variation is the SNV. Organisms that employ
SNV changes as their primary method of evolution include intra-
cellular obligate parasites such as Chlamydia trachomatis and My-
cobacterium tuberculosis (218, 219). SNV discovery and SNV an-
notation methods, such as those described under “Reference
Mapping and Variant Calling,” are appropriate for the analysis of
these genomically monomorphic organisms, and examples of
such studies abound. For example, SNV-based methods were used
to identify a critical virulence gene, CT135 in C. trachomatis (218).
Certain SNV mutations in this gene led to considerably long clear-
ance times and increased virulence, with further studies showing
that the CT135 virulence gene is stable in vivo but quickly mutates
in vitro (220). SNV methods also can be used for the analysis of the
pathogenicity of clonally related organisms, one notable example
being the study of the accumulation over time of pathogenicity in
Burkholderia dolosa in chronically infected cystic fibrosis patients
(221).

Other organisms, such as Streptococcus pneumoniae and Neisse-
ria spp., can take up and recombine homologous chromosomal
DNA, resulting in the generation of allelic diversity. Analysis of
recombination can be important for the pathogenomics study of
highly recombinant organisms; illustrative examples include vac-
cine escape analysis of S. pneumoniae (149, 165, 222) and the
adaptive evolution of outbreak-associated Legionella pneumophila
(223).

Horizontal gene transfer is by far the most effective means of
acquisition of genomic variation that can influence microbial vir-
ulence. Indeed, many organisms employ horizontal gene transfer
to acquire and share virulence factors that enable colonization,
immune suppression or aberration, immune evasion, host cell
invasion, and other genomic features involved in persistence and
infection. Pathogenomics investigations focusing on horizontal
gene transfer involve the tools and methods already described un-
der “Mobile genetic elements.” In addition, it can be valuable to
partition the genes from pathogenic bacteria into core and acces-
sory genes using ortholog analysis programs such as OrthoMCL
(169). Genes in the accessory genome and contained within mo-
bile elements can be mined for virulence factors by searching
against virulence factor databases such as VFDB (224), MvirDB
(225), VirulenceFinder (199), and the PATRIC virulence factor
library (226). It is important to use caution in this type of investi-
gation, however, since the factors that impart virulence can be
highly organism specific; thus, it is important to have a strong
understanding of the biology as well as the molecular genetics
associated with a given organism in order to properly conduct a
pathogenomic investigation.

Horizontal gene transfer allows organisms to gain potentially
large amounts of genes, especially those with open pan-genomes,
such as E. coli (217) and Campylobacter spp. (227). Despite this,
the average genome size remains approximately the same, imply-
ing that genes are lost at about the same rate at which they are

Infectious Disease Bacterial Genomics

October 2016 Volume 29 Number 4 cmr.asm.org 903Clinical Microbiology Reviews

http://cmr.asm.org


gained. The evolutionary mechanisms that drive gene loss include
large segmental deletions of genomic regions that no longer
provide a selective advantage (228) and the creation and sub-
sequent deletion of pseudogenes. The latter mechanism is often
observed in recently emerged pathogens that have evolved to
live in a new host. Salmonella enterica serovar Typhi, for exam-
ple, has been observed to contain many hundreds of pseudo-
genes (229) that once generated are rapidly shed from the ge-
nome, suggesting that these pseudogenes are under selection
(230). This gene shedding serves to modulate pathogenicity,
making these pseudogenes interesting targets for pathog-
enomic studies. Automated systems for bacterial pseudogene
detection exist but are typically tuned to the detection of pseu-
dogenes of a given species (231); most pseudogene detection
involves the manual alignment and inspection of orthologous
genes and their pseudogene counterparts.

Methods for genome-wide association studies (GWAS) of bac-
teria also have been developed (232). Thorough GWAS require
the tools and techniques developed for nearly all the main meth-
ods of analyzing genomic variation and correlating these varia-
tions with biological traits. Pipelines such as PhenoLink (233) can
assist in this effort, although they can be cumbersome and still
require large amounts of manual analysis. Newer programs like
Neptune (234), although not a replacement for true GWAS, are
automated and have been demonstrated to quickly find genomic
loci that are associated with biological traits.

In addition to GWAS, pathogenomic results can fuel extension
projects to further characterize the novel strains or genomic fea-
tures identified within earlier tertiary analysis. As illustrated in Fig.
1, extension projects may include complementary methods such
as proteomics, transcriptomics, metabolomics, gene knockout ex-
periments, or animal models, etc.; however, finding expertise in
such a broad spectrum of scientific disciplines may not be possible
within the scope of a single project. However, sharing of the raw
data in addition to the publication of significant findings can ben-
efit the larger scientific community and make such extension
studies possible.

GLOBAL ACCESSIBILITY OF GENOMICS DATA

Data sharing is increasingly being recognized as a major benefit to
the scientific and medical communities at large as it allows data to
be fully vetted by other researchers and collated for reuse and
further evaluations, thereby achieving even greater global impact.
As modern science produces data at ever increasing rates, open
data offer the best opportunity to ensure that the data remain
transparent (available) and fully supported (credible) into the
foreseeable future. Open data also provide researchers with data to
develop, enhance, and benchmark analytical methods. Conse-
quently, there is increasing pressure to provide open data through
initiatives such as the STROME-ID (Strengthening the Reporting
of Molecular Epidemiology for Infectious Diseases) statement
(235). Many journals have adopted mandatory open data policies,
meaning that all supporting data must be submitted to a relevant
publicly accessible depository. Many science funding bodies have
similarly followed suit, requiring that all data generated as a result
of funding must be made publicly available within a reasonable
time frame.

Data sharing within the context of infectious disease genomics
from cultured bacteria may never reach the same heightened level
of privacy concerns as human sequence data; however, the impact

of timely data sharing on public health and the scientific commu-
nity is comparable. Infectious disease outbreaks have already led
to adoption of HTS and warrant timely data generation, analysis,
and sharing to intervene in order to stop the spread of infection
and save lives (236, 237). There are an increasing number of global
outbreaks where accessible genomics data were vital to the inves-
tigation, due not only to the speed of data production but to the
global-scale collaboration that was sparked by the data release.
Recent examples include the 2011 German E. coli O104:H4 out-
break, in which the open-access data and crowd-sourced analysis
resulted in valuable epidemiological results in less than 1 week
(238). Other recent examples of globally collaborative outbreak
investigations attributable to data sharing include the H1N1 in-
fluenza A (swine flu) virus outbreak of 2009 (239), the Haitian V.
cholerae outbreak in 2010 (240, 241), and the West African Ebola
outbreak in 2014 (242).

Although these listed scenarios exemplify the benefits of shar-
ing data, there are risks and barriers that can potentially have
detrimental consequences on many levels. These risks are gener-
ally tied to the associated metadata describing the characteristics
of the isolate source. The inferred/suspected infectious source and
transmission routes may prematurely prompt trade embargos and
travel bans, stigmatizing specific geographic areas, countries, or
individuals before appropriate source attribution vetting has oc-
curred. In addition to the ethical challenges, there are also signif-
icant logistical challenges that require, for example, infrastructure
decisions to be made and mutually agreed upon between research-
ers and multiple levels of government in order to effectively share
and retain data while protecting the privacy rights of individual
parties (be they persons, corporations, or countries) (236, 243,
244). The ideal of freely sharing data for scientific advancement
and public health (i.e., monitoring and control of infectious dis-
eases) is admirable and in many cases a reality, and yet there re-
main many challenges to which there are likely no quick solutions.
Therefore, details regarding the release of project data should be
addressed in the planning stage, including timing and the selec-
tion of data repository and necessary agreement among project
partners.

CONCLUSIONS

The adoption of HTS methods for applications such as bacterial
typing, molecular epidemiology, and pathogenomics is growing
in frequency and magnitude. These new technologies pose new
challenges for researchers as the growing scale of HTS projects
require a paradigm shift in experimental design and resource
planning due to the quickly produced, large amounts of data gen-
erated and the requirement for enhanced computational infra-
structure and bioinformatic support for meaningful interpreta-
tion. This review was intended to highlight these new challenges
and provide a foundational understanding of the terminology and
concepts for nonbioinformatician investigators to explore before
venturing into the use of HTS technologies for infectious disease
research and potential mainstream usage in the areas of public
health and clinical microbiology.

APPENDIX

Glossary

antimicrobial resistance gene (ARG) An acquired gene or gene variant
encoding an antimicrobial resistance phenotype.

BAM Binary version of a SAM file that contains sequence alignment data.
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CCS Circular consensus reads produced by PacBio sequencing, shorter
and more accurate than CLR.

core genome MLST (cgMLST) An extension of traditional MLST to in-
clude genes from the core genome of a group of bacteria.

cloud computing A computing model where scalable computational re-
sources are provided on demand from large data centers.

CLR Continuous long reads produced by PacBio sequencing, longer but
more error prone than CCS reads.

contig Contiguous consensus sequence.
de novo assembly The process of combining sequence reads to recon-

struct a sequenced genome without the aid of a reference genome.
FASTQ FASTQ files are text files containing sequence data with a quality

(Phred) score for each base represented as an ASCII character.
gigabyte (GB) 1,024 megabytes.
Infrastructure as a Service (IaaS) A cloud computing model that pro-

vides only the low-level physical computing resources.
indel Insertion/deletion.
k-mer A short fragment of sequence data of length “k” produced and

used by many bioinformatics algorithms.
mate-pair (MP) sequencing Also called “long-insert paired-end.” A se-

quencing process where a DNA fragment is sequenced from both ends
but has been constructed such that each end is further apart.

megabyte (MB) 1,024 kilobytes.
overlap-layout-consensus (OLC) A method of sequence assembly.
Platform as a Service (PaaS) A cloud computing model that provides a

computing environment with a suite of standard software.
paired-end (PE) sequencing A sequencing process where a DNA frag-

ment is read from both ends.
Phred Phred or Q score is an integer representing the estimated proba-

bility of an error (probability that the base is incorrect).
reference mapping The process of aligning sequence reads to a reference

genome.
ribosomal MLST (rMLST) A variation on MLST making use of the genes

encoding the ribosomal protein subunits.
Software as a Service (SaaS) A cloud computing model that provides

access to specific software applications.
Sequence Alignment/Map (SAM) A text-based format used to store se-

quence reads aligned to a reference genome.
scaffold The result of ordering and possibly merging contigs into larger

sequences with additional data such as mate-pair or long-read se-
quencing.

single-end (SE) sequencing A sequencing process where a DNA frag-
ment is read from only one end.

single nucleotide variant (SNV) Any single nucleotide variation within a
population.

Sequence Read Archive (SRA) An archive of publicly available biological
sequence read data. Can also refer to the file format for storing such
data.

terabyte (TB) 1,024 gigabytes.
variant call format (VCF) Compact text file to store variations in se-

quence data with respect to a reference.
whole-genome MLST (wgMLST) An extension of traditional MLST to

include genes from an entire bacterial genome for typing.
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