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The Sommerfeld Half-Plane Problem:
Generalities



The Sommerfeld Half-Plane Problem
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A uniform plane wave impinges normally on a PEC half plane with the electric
field parallel to its rim:

Problem:
find the total (incident + scattered) field everywhere
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Some History

• A. Sommerfeld provided the exact solution to the problem of plane-wave
diffraction by a PEC half plane in 1896.

[A. Sommerfeld, "Mathematische theorie der diffraction," Math. Ann., vol. 47, no. 2, pp. 317–374, 1896.]

Such a solution, although obtained with an elaborate approach not
amenable to be used in different problems, was historically important as it
was the first exact solution to a diffraction problem.



Some History

• It was realized in the 1940s that the powerful Wiener-Hopf approach could
be used to solve the problem.

[E. T. Copson, "On an integral equation arising in the theory of diffraction," Quart. J. Math., vol. 17, pp. 19-
34, 1946.]

The Wiener-Hopf/dual-integral-equation method employ crucially complex
analysis and can be used to solve many different diffraction problems (e.g.,
half planes and junctions with impedance boundary or transition
conditions).

[J. F. Carlson and A. E. Heins, "The reflection of an electromagnetic plane wave by an infinite set of plates,"
Quart. Appl. Math., vol. 4, pp. 313–329, 1947.]

• In 1951 P. C. Clemmow proposed an alternative approach (based on dual
integral equations) that works directly with the spectra of the field
quantities.
[P. C. Clemmow, "A method for the exact solution of a class of two-dimensional diffraction problems,"
Proc. Roy. Soc. London, Ser. A, vol. 205, pp. 286–308, 1951.]



Some History

• Much later, in 1983, F. Gori found that an elementary solution to the
Sommerfeld half-plane problem could be obtained by employing cylindrical
functions of half-integer order.

This elementary solution will be illustrated first, after discussing some
generalities in the next slides.

[F. Gori, "Diffraction from a half plane. A new derivation of the Sommerfeld solution," Optics Commun., vol.
48, no. 2, pp. 67–70, Nov. 1983.]



Translational Invariance and TM Polarization

• The PEC half plane is translationally invariant w.r.t. the y direction

• The incident field is independent of the y coordinate and TMy

• The scattered (and hence the total) field is also
independent of the y coordinate and TMy

• The only nonzero components of the fields are
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• From the Maxwell equations we may express the magnetic field in terms of
the electric field as



Electric Current Density on the PEC Half Plane
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The normal derivative of the scattered electric field is discontinuous across the
PEC half plane.

Such a discontinuity is related to the existence of an electric current density,
which flows parallel to the rim of the PEC half plane

the incident field and its derivatives are
continuous in the entire space



Scalar Nature of the Problem

The problem can thus be reduced to a scalar one in terms of the scattered
electric field.
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Edge Condition

To ensure the uniqueness of the solution, the correct behavior of the field
quantities in the vicinity of the geometrical singularities (edges, vertices) of the
boundary must be specified.

Consider for instance a PEC wedge with internal angle a placed inside a
uniform dielectric medium:

asymmetry axis
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Generally, the behavior of an electromagnetic field in the neighborhood of the
common edge of angular dielectric or conducting regions is determined from
the condition that the energy density must be integrable over any finite
domain (the so-called edge condition).
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[J. Meixner, “Die Kantenbedingung in der Theorie der Beugung electromagnetischer Wellen an vollkommen
leitenden ebenen Schirmen," Ann. Phys., vol. 6, pp. 1-9, 1949.]

z
x

y



Edge Condition

By further enforcing the boundary conditions on the faces of the PEC wedge,
the exponent  can be determined as
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Therefore, in the case of a PEC half plane, equivalent to a PEC wedge with zero
internal angle, it results  = 1/2:
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Symmetry of the Scattered Field

• The scattered field is produced by the current density on the PEC half plane,
which is purely tangential.

• The plane z = 0 is a symmetry plane for the scattered field.
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hence it is sufficient to find the scattered field in the half space 0z 

The scattered field is even-symmetric w.r.t. the z=0 plane:



Diffraction = Interaction + Propagation

As any problem of diffraction by a screen, also the present one can be
decomposed into two steps:

1) Interaction problem
Find the scattered field on the plane z = 0. In the present case, since the
scattered field is known on the PEC half plane, this reduces to determining
the scattered field on the half plane z = 0, x < 0.

2) Propagation Problem
Determine the field in the half space z > 0 from knowledge of the field on
the plane z = 0 (the so-called 'aperture field')

Note: the difficult part is 1); in fact, 2) can be solved by expressing the field in
the half space z > 0 through standard radiation integrals in terms of the
aperture field.



Generalizations: TE Incidence

It is important to observe that, once a solution has been found, it can be
immediately generalized in different directions.

First, the case of TE incidence can be obtained by using the Babinet principle in
its full electromagnetic form:
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Generalizations: Oblique Incidence

Let us now consider an incident plane wave propagating at an angle yi w.r.t.
the y axis:
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Since this is an eigenfunction of any translation operator along the y axis and
since the structure is translationally invariant along the same axis, we conclude
that the scattered field must be of the form:

(the case of normal incidence being recovered by letting yi = p/2).



Generalizations: Oblique Incidence
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The Sommerfeld Half-Plane Problem:
Elementary Solution



Cylindrical Waves of Half-Integer Order

The interaction problem can be solved using a superposition of elementary
solutions of the Helmholtz equation which correspond to fields that could be
generated by currents flowing only in the half plane x ≥ 0, z = 0.

Consider the electric field
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This is the electric field of an anisotropic
cylindrical wave of order n = 1/2.

[F. Gori, "Diffraction from a half plane. A new derivation of the Sommerfeld solution,"
Optics Commun., vol. 48, no. 2, pp. 67–70, Nov. 1983.]
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Cylindrical Waves of Half-Integer Order

The relevant magnetic field is:
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Cylindrical Waves of Half-Integer Order

We deduce that the field of this cylindrical wave is produced by a y-directed
surface current which is nonzero only on the half plane  = 0:
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In order to solve the interaction problem, we will look for a superposition of
such cylindrical waves, with their axes (parallel to one another and to the y-
plane) lying on the half-plane x ≥ 0, z = 0.



Enforcing the Boundary Condition

Since Ey vanishes for  = 0, the electric field at any point on the x-axis
depends only on the waves originating on the right of that point.

Therefore, we may write:

The function p(x) must be such that the scattered field be equal and opposite
to the incident field for any x ≥ 0. This allows us for obtaining an integral
equation with the function p(x) as an unknown…

   
 

 
0

s

0

, 0 d ,

0

jk x

y
x

eE x z p
k x

x

x

x x
x

  

 








Enforcing the Boundary Condition

By a simple change of variable we have:
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whose solution is found by inspection to simply be an exponential function:

   i i i
0 0 0sin sin sini i

0 0
jk jk x jkp CE e p x CE e e x   xx x       

 
 

 
0 i

0 sini
0

0

d , 0
jk x

jk x

x

ep E e x
k x

x
x x

x

  
  






Enforcing the Boundary Condition

whence, by letting 2=k0x'(1+sini)
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Solution of the Interaction Problem
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The scattered field on the entire aperture plane z = 0 is finally
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Solution of the Propagation Problem

The scattered field in the half space z > 0 can be calculated with any
propagation formula like the Rayleigh-Sommerfeld or the plane-wave
expansion formulas.

Alternatively, the scattered field at any point can be evaluated directly as a
superposition of the half-integer cylindrical waves employed to solve the
interaction problem:
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The Sommerfeld Half-Plane Problem:
Dual Integral Equations/Wiener-Hopf Method



The Wiener-Hopf Method

The analysis of the half-plane diffraction problem is generally carried out with
the Wiener-Hopf method, which allows for generalizing the solution to

- half planes with impedance boundary/transition conditions:

- two-part impedance planes:
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The Wiener-Hopf Method

The analytical solution of the integral equation that results from the application
of the boundary conditions is obtained in the Wiener-Hopf method by:

1) taking the Fourier transform of the integral equation, thereby

2) reducing it to a functional equation, which is in turn solved by invoking
properties of analytic functions (crucially, the generalized Liouville theorem
for entire functions).

Since the crucial (and most difficult) step of the method consists in factorizing a
given function into the product of functions analytic (and without zeroes) in
the upper and lower halves of the complex plane, the method is also known
(especially in the Soviet literature) as the Factorization Method.

[https://en.wikipedia.org/wiki/Liouville%27s_theorem_(complex_analysis)]



Wiener-Hopf Method vs. Dual Integral Equations

A mathematically equivalent but more direct approach, that works directly with
the spectra of the field quantities, was proposed in 1951 by Clemmow and is
based on the so-called dual integral equations.

Since this requires fewer steps to arrive at the solution, it will be adopted here
to illustrate the solution for the case of a PEC half plane, TM polarization:
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[T. B. A. Senior and J. L. Volakis, Approximate boundary conditions in electromagnetics.
London, UK: The IEE, 1995, ch. 3.]



Angular Spectrum Representation of the Fields

A key feature of the dual-integral-equation method is the a-priori introduction
of the angular spectrum Pe(cosa) of the scattered field:
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valid for fields due to a z-directed electric current distribution in the y = 0 plane:



Angular Spectrum Representation of the Fields

To prove the validity of the angular-spectrum representation let us consider the
field radiated by the surface current:
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By letting y = 0:

(Green's function for the 2D scalar Helmholtz equation)
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Angular Spectrum Representation of the Fields

By Fourier-transforming w.r.t. x :    s
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and finally, by inverse Fourier-transforming:



Angular Spectrum Representation of the Fields

We now make the change of variable:
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Angular Spectrum Representation of the Fields

This leads to the postulated angular-spectrum representation:
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Spectral Representation of the Fields

Alternatively, using the normalized spectral variable , we have the spectral
representation of the fields:
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Boundary Condition for the Electric Field

Let us write the electric field on the plane y= 0 using the  variable:
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Boundary Condition for the Magnetic Field

From the spectral representation of the magnetic field we find that it is an odd
function of y (as expected, by symmetry). In particular, on the plane y = 0 we
have:
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On the other hand, from the boundary condition for the magnetic field:
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and the fact that the electric current density exists only on y = 0 , x > 0 :
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Support of the Electric Current Density

We may arrive at the same integral equation by recalling that the spectrum
Pe() is proportional to the spectral electric surface current density:

  0
e d 0, 0jk xP e x 






 

   0
e s 0i

04 zP J k
E


 


  

hence by inverse Fourier-transforming:
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and, since the electric current density is nonzero only on the PEC half plane y =
0 , x > 0 , we again find:



Dual Integral Equations

Let us collect the two equations thus obtained:
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Integral equations of this kind, sharing the same unknown but having different
kernels and different domains of validity (in this case, the half lines x < 0, x >
0) are commonly referred to as dual integral equations.

In what follows, they will be solved analytically by means of complex analysis…



Analiticity of the Spectrum in the Upper Plane

Let us recall the connection of the spectrum Pe() to the spectral electric
current density:
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and let us integrate this along an arbitrary closed contour G in the upper -
plane:
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Thanks to the fact that the inner integral is esponentially convergent at infinity
when  is in the upper half plane, we can invoke the Fubini-Tonelli theorem and
change the order of integrations:



Analiticity of the Spectrum in the Upper Plane

We can now make use of Morera's theorem to deduce that the spectrum is
analytic in the upper half plane.
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We will indicate this by setting it equal to an (unknown) "upper" half-plane
function, namely:

   eP U 

(note that this is only a temporary change in the name of the function Pe)



Closing the Contour at Infinity

Note that, by closing the integration path by an infinite semicircular contour in
the upper half plane (which is possible when x < 0), the analyticity of the
spectrum and Cauchy's Theorem allow for concluding that the second integral
equation is satisfied, i.e.,
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In order to solve the other integral equation, i.e.,
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we will again close the integration path by an infinite semicircular contour, but
this time in the lower half plane, since x > 0.



Closing the Contour at Infinity

To recover the right hand side of the latter integral equation by means of the
Residue Theorem we write the integrand in the form
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where L1,2() are unknown "lower" functions (i.e., functions analytic in the
lower half -plane) and

0 0cos  ('optical pole')

Despite the presence of three unknown functions, the above functional
equation is sufficient to determine U()…



Splitting Procedure

The standard approach is to decompose all functions into functions that are
analytic as well free of zeros in either the upper or lower half-plane.

     F F F   

where F+() is the "upper split" function and F-() is the "lower split" function.
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In this case, the function can be decomposed as

This procedure is commonly referred to as the factorization or splitting of a
complex function as

21 



Separating the Upper and Lower Functions

By inserting the split form into the functional equation we have:
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In order to remove the optical pole (which lies in the lower half plane) from the
right-hand side we may rewrite the previous equation as
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so that now the left hand side is an "upper function", whereas the right hand
side is a "lower function"…



Behavior at Infinity

From the edge condition for the surface current density and Watson's lemma
we have
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We deduce that the left hand side of the modified functional equation is
infinitesimal at infinity (with order 1):
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The Crucial Step

• Since the left and right hand sides of the modified functional equations are
upper and lower functions, respectively, they must both be entire functions.

• Furthermore, since they are infinitesimal at infinity, they are bounded
entire functions and hence, by Liouville Theorem, they must be equal to a
constant.

• Finally, since they are infinitesimal at infinity, such a constant must be equal
to zero:
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The Solution for the Angular Spectrum

Hence

       0 0
e

0 0

1 11 1
2 2

K K
P U

j j
   

 
     

   
  

 

The angular spectrum of the scattered field has thus been found in a closed
analytical form.
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