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The cytoplasm of prokaryotes contains many molecular machines interacting directly with
the chromosome. These vital interactions depend on the chromosome structure, as a mole-
cule, and on the genome organization, as a unit of genetic information. Strong selection for
the organization of the genetic elements implicated in these interactions drives replicon
ploidy, gene distribution, operon conservation, and the formation of replication-associated
traits. The genomes of prokaryotes are also very plastic with high rates of horizontal gene
transfer and gene loss. The evolutionary conflicts between plasticity and organization lead to
the formation of regions with high genetic diversity whose impact on chromosome structure
is poorly understood. Prokaryotic genomes are remarkable documents of natural history
because they carry the imprint of all of these selective and mutational forces. Their study
allows a better understanding of molecular mechanisms, their impact on microbial evolu-
tion, and how they can be tinkered in synthetic biology.

Prokaryotic cells typically lack a clear physi-
cal separation between DNA and the cyto-

plasm. The cell is therefore a complex network
of genetic and biochemical interactions involv-
ing the DNA molecules and many cellular pro-
cesses. The complexity of such interactions is
well illustrated by the functioning of Escherichia
coli. In fast growing E. coli cells, the replication
forks advance bidirectionally and very rapidly
from the single origin of replication to the ter-
minus. The cell doubles in 20 min, which is less
than the time required to replicate the chro-
mosome (45 to 60 min). This is made possible
by up to three simultaneous replication rounds,
resulting in the presence of eight replication
forks and eight origins of replication per termi-

nus in the cell. As replication proceeds, DNA
regions are under different states of replication
and are being segregated in function of the
growing multiple division septa. Hence, repli-
cation, segregation, and cell doubling are tightly
linked. In prokaryotes, nascent transcripts are
immediately translated by multiple ribosomes
and, for certain membrane proteins, integration
in the membrane takes place before the end
of transcription and translation. Hence, tran-
scription, translation, and protein localization
are tightly linked. Exponentially growing cells
endure intense gene expression and collisions
between the rapid replication fork and the rela-
tively slower RNA polymerases are frequent.
These collisions may disrupt both transcription
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and replication, thereby potentially affecting all
of the other above-mentioned cellular process-
es. Collisions between the replication fork and
RNA polymerases may result in the fork’s col-
lapse. Ensuing SOS or SOS-like responses may
kick off the transfer of mobile genetic elements
to other cells, thereby changing their gene rep-
ertoires. The associations between all of these
cellular processes through their interactions
with the chromosome result in natural selection
for genome organization. The strength of selec-
tion on a given organizational trait that is as
strong as the efficiency of the interaction with
the chromosome is important. Because many of
the above-mentioned processes are essential,
the organization of genomes is under strong
selection and the study of genome organization
informs about natural history and about cell
functioning.

Prokaryotes endure high rates of rearrange-
ment, mutation, deletion, and accretion of ge-
netic material. This leads to trade-offs between
selection for genome organization and selection
for genetic diversification that drive the evolu-
tion of the genome. A full understanding of the
organization of genetic elements in the genome
(genome organization) and of the structure
of DNA molecules in the cell (chromosome
structure) therefore requires multidisciplinary
approaches, bridging genetics, genomics, bio-
chemistry, and biophysics against a backdrop
of evolutionary biology. Several aspects of this
topic were reviewed before (Abby and Daubin
2007; Rocha 2008; Kuo and Ochman 2009b;
Boussau and Daubin 2010; Touzain et al. 2011;
Ptacin and Shapiro 2013). We will focus on re-
cent findings and on aspects for which the evo-
lutionary scope has, in our view, been insuffi-
ciently emphasized.

VARIATIONS IN GENOME STRUCTURE

The size of prokaryotic genomes ranges from
around 50 kb to more than 13 Mb (Schneiker
et al. 2007; Ishii et al. 2013; Tatusova et al. 2015).
These genomes are also very compact, with gene
density typically approaching 85% (Mira et al.
2001). There is, therefore, a direct proportion-
ality between the size of the genome and the

number of encoded proteins. The smallest ge-
nomes (,500 kb) correspond to obligatory en-
dosymbionts that have arisen by reduction of
larger genomes of free-living bacteria. Some of
these genomes have fewer genes than those
strictly required for autonomous life in E. coli
(McCutcheon and Moran 2012). Larger ge-
nomes encode complex metabolic and genetic
networks, some of them allowing bacteria to
differentiate or regroup into multicellular bod-
ies (Guieysse and Wuertz 2012). Variations in
genome size affect cellular functions in different
ways. The gene repertoires associated with some
housekeeping functions, like translation, show
little variation in the known range of genome
size. Gene repertoires for other functions are
much more variable: smaller genomes are near-
ly depleted of sensory, transport, communi-
cation, and regulatory functions, reflecting nar-
row environmental ranges (Boussau et al. 2004;
Konstantinidis and Tiedje 2004). Importantly,
larger genomes are thought to engage much
more frequently in horizontal gene transfer
(Cordero and Hogeweg 2009) and encode
more transposable elements (Touchon and Ro-
cha 2007). Genome size is also positively cor-
related with the strength of purifying selection
acting on protein coding sequences (Kuo et al.
2009). This suggests that natural selection is
more efficient in larger genomes, possibly as a
result of larger effective population sizes. Very
large gene repertoires might in fact require effi-
cient natural selection derived from large effec-
tive population sizes, otherwise genes would
be rapidly lost by genetic drift. It is thus gener-
ally thought that larger genomes correspond to
more versatile prokaryotes that are less sexually
isolated and in which selection is more efficient.

Prokaryotes are often polyploid, with cer-
tain species carrying more than 100 copies of
the chromosome per cell (Fig. 1). Polyploidy
might increase gene dosage in very large cells,
in which demand for transcription is very high
(Mendell et al. 2008), and facilitate gene ex-
pression regulation in endosymbionts (Vinuelas
et al. 2011), which have few other means of
regulating the rate of gene expression. A large
number of identical chromosomes might also
diminish the stochastic effects of gene expres-
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sion, which are exacerbated when there is a sin-
gle DNA molecule (Soppa 2013). Because sister
chromosomes can recombine efficiently by
homologous recombination, polyploidy allows
transient genetic diversification by reversible
heterozygosity (Griese et al. 2011), antigenic
variation by recombination (Tobiason and Sei-
fert 2006), and DNA repair (Zahradka et al.
2006). Gene conversion between variants in
different chromosomes might also facilitate pu-
rifying selection of deleterious alleles (Komaki
and Ishikawa 1999; Hildenbrand et al. 2011).
Hence, polyploidy might be linked with gene
expression, DNA repair, or the efficiency of nat-
ural selection. It might also serve to store phos-
phate for later use (Zerulla et al. 2014). The rel-
ative importance of each of these effects remains
to be investigated.

Around 5% of the complete genomes in
GenBank/EMBL/DDBJ contain more than one

type of chromosome (not to be confounded
with polyploidy). Such genomes typically have
chromosomes of very different sizes. The larger
chromosome encodes most essential and highly
expressed genes. Smaller chromosomes are also
called secondary chromosomes or chromids
(Harrison et al. 2010), and vary widely in size
and persistence in bacterial lineages. Genomes
of the genus Burkholderia carry one, two, or
three chromosomes suggesting rapid changes
in genome architecture (Mahenthiralingam et
al. 2005). On the other hand, Vibrio and closely
related genera systematically carry two chromo-
somes of very different size (Okada et al. 2005),
showing that multiple chromosomes can be
stably kept for hundreds of millions of years.
The reasons for the existence of multiple chro-
mosomes are unclear. Genes on secondary
chromosomes are gained and lost at higher
rates, and their sequences also evolve slightly
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Figure 1. Traits associated with polyploidy in prokaryotes. The presence of multiple copies of replicons, and
particularly chromosomes, has been proposed to confer several advantages. (A) It allows distributing gene
expression through the entire cytoplasm in very large cells. It allows heterozygosity. In the presence of several
replicons, the ratio between replicons allows gene expression regulation. (B) It allows repair by homologous
recombination with other similar replicons. (C) Recombination between similar replicons also allows gene
conversion and allelic exchange. Heterozygosity is indicated using distinct colors (red and black).
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faster relative to homologs in the larger chro-
mosome. This has led to suggestions that sec-
ondary replicons might favor evolvability
(Cooper et al. 2010). Additionally, it has been
observed that replicon fusions in Vibrio lead to
lower growth rates and more frequent dimer
formation (Val et al. 2012). The systematic pres-
ence of two chromosomes in the genus of Vib-
rio, typically very fast-growing bacteria, led to
suggestions that multiple chromosomes facili-
tate rapid bacterial growth and the management
of chromosome dimerization in large genomes.
Yet, some of fastest growing bacteria do not have
multiple chromosomes and the largest genomes
only have one chromosome. The reason(s) be-
hind the existence of multiple chromosomes is
therefore still an open subject of research.

Plasmids are the most common extra-
chromosomal replicons and some genomes car-
ry more than 20 such elements (Casjens et al.
2000). A few prophages are also extrachromo-
somal (Ravin 2011). Plasmids carry genes for
their propagation and maintenance in the cell,
but also host-adaptive genetic information (de
la Cruz and Davies 2000; Rankin et al. 2011).
There is no very clear distinction between large
plasmids (megaplasmids) and secondary chro-
mosomes. In principle, replicons should only be
named plasmids when they lack essential genes.
However, gene essentiality is rarely known
experimentally at the moment of labeling a
replicon as a plasmid or a chromosome. Fur-
thermore, the definition of essentiality is con-
troversial because some plasmid-encoded key
traits, like nitrogen fixation in rhizobiales (Mas-
son-Boivin et al. 2009) and virulence in many
pathogens (Rankin et al. 2011), are not essential
for growth in the laboratory but are effectively
essential for the ecology of the bacterium in the
environment. For example, the deletion of two
megaplasmids encompassing .3 Mb (45%) of
the Sinorhizobium meliloti genome produces a
viable mutant that is highly impaired in terms
of metabolic and mutualistism-associated func-
tions (diCenzo et al. 2014). The largest plasmids
known to encode homologs of E. coli essential
genes are not conjugative and have nucleotide
and codon compositions close to the chromo-
some, suggesting they are becoming domesti-

cated as secondary chromosomes (Harrison
et al. 2010; Smillie et al. 2010). The process of
domestication has been poorly studied. It might
involve a first step of plasmid stabilization (e.g.,
because of the presence of highly adaptive traits
preventing plasmid segregation). Plasmid car-
riage can be costly and one might expect selec-
tion for translocation of the adaptive genes from
the plasmid to the chromosome ultimately lead-
ing to plasmid loss. However, experimental evo-
lution shows that plasmids and hosts can rapidly
evolve to decrease and even erase this cost
(Bourma and Lenski 1988). The long-term co-
evolution of the plasmid and the chromosome
inevitably results in occasional translocation of
chromosomal genes to the plasmid (and vice
versa). As a result, certain traits start requiring
the presence of both replicons to be expressed,
further tightening the genetic link between the
plasmids and the chromosome. As the number
of exchanges between replicons accumulates,
plasmids may acquire essential genes and effec-
tively become fixed in the bacterial lineage.
Hence, plasmids under selection for long peri-
ods of time are potential targets for domesti-
cation into secondary chromosomes (Touchon
et al. 2014). This might explain why some sec-
ondary chromosomes replicate and segregate
using plasmid-like mechanisms (Egan et al.
2005).

THE MAP OF THE CELL IS IN THE
CHROMOSOME

The observation of nonrandom gene-distribu-
tion patterns suggests that the organization of
genetic elements in the chromosome and the
structure of the chromosome are intimately
linked with cell organization (Fig. 2) (Danchin
and Henaut 1997; Ptacin and Shapiro 2013).
In E. coli, intrachromosomal recombination
assays revealed a chromosome organized into
four macrodomains and two large unstructured
regions (Valens et al. 2004). In newly replicated
cells, the macrodomains around the origin
(Ori) and terminus (Ter) of replication are lo-
calized near opposite cell poles leading to a lin-
ear arrangement of the genetic information
in the cell (Niki et al. 2000). The sequence
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determinants of the macrodomains are un-
known, with the exception of the Ter macrodo-
main that is organized by one DNA-binding
protein (MatP) (Mercier et al. 2008), and insu-
lated from the neighboring chromosomal re-
gions by another (YfbV) (Thiel et al. 2012).
The DNA sequence-specific association of pro-
teins, like MatP, FtsK (Stouf et al. 2013), and
SlmA (Tonthat et al. 2013), facilitate chromo-
some orientation in the function of replication
and segregation in the cell. Macrodomains
differ in the types of genes they encode and
are associated with clusters of functionally
neighbor genes that respond in concert, from
a transcriptional point of view, to nucleoid per-
turbations (Scolari et al. 2011). The link be-
tween genome organization and chromosome
structure might also drive the evolutionary rate
of genes, because the density of point mutations
is higher in the regions of higher superhelicity
of the E. coli chromosome (Foster et al. 2013),
and horizontally transferred genes accumulate
in Ter-proximal macrodomains.

Genome organization linked to chromo-
some structure can drive developmental pro-
cesses. Sporulation in Bacillus subtilis is regulat-
ed by the differential expression of twos factors,
one in the forespore (sF) and one in the mother
cell (sK). The expression ofsK is restricted to the
mother cell because its expression requires the

excision of a phage-like element from the ge-
nome, which occurs only in the mother-cell
chromosome (Stragier et al. 1989). The sporu-
lation septum bisects the B. subtilis cell asym-
metrically, and initially only 30% of the chro-
mosome is in the forespore compartment. At
this stage, Ter-proximal regions are in two copies
in the mother cell and absent from the forespore,
thereby resulting in the absence of asF repressor
in the forespore. This allows expression of sF

specifically in the forespore and further differ-
entiation between the two cells (Frandsen et al.
1999). Translocation of the repressor to Ori-
proximal regions abolishes the expression of
the sF factor. Hence, regulatory dependencies
can, in some cases, be traced from the order of
genes in the chromosome.

The association between asymmetric divi-
sion and chromosome structure has been thor-
oughly studied in Caulobacter crescentus. This
chromosome is organized longitudinally along
the cell following the Ori–Ter axis (Viollier et al.
2004), as it seems to be the case for other bac-
teria (Wang and Rudner 2014). The chromo-
some of C. crescentus shows 23 chromosomal
interaction domains whose boundaries are as-
sociated with highly expressed genes (Le et al.
2013). Hence, the cellular organization of the
C. crescentus chromosome recapitulates the ge-
nome map, and its chromosomal domains are
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Figure 2. Elements of genome organization. The cellular processes that interact with the chromosome shape its
organization.
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determined by the order of genes in the genome.
The transcripts of C. crescentus tend to remain
physically close to the respective genes in the
chromosome even after transcription termi-
nation (Montero Llopis et al. 2010). Proximal
translation of these transcripts could facilitate
the folding of heteromeric protein complexes
encoded in neighboring operons. The close spa-
tial association between protein complexes and
the corresponding transcription units might re-
sult in the functional compartmentalization of
bacterial cells, especially for large machineries
that do not diffuse freely in the cytoplasm (Par-
ry et al. 2013).

REPLICATION, RECOMBINATION, AND
SEGREGATION

Bacterial chromosomes endure selection for
replication symmetry, with origin and terminus
separated by �180˚ in circular replicons, so that
both forks complete replication synchronously.
Chromosomal inversions lead to poorly grow-
ing bacteria that require the presence of specific
recombination and segregation functions (Es-
nault et al. 2007; Lesterlin et al. 2008; Matthews
and Maloy 2010). Replication forks advance
rapidly on the chromosome displacing attached
molecules, changing DNA modifications, and
perturbing local and global nucleoid structures.
As DNA replication is the key mechanism allow-
ing transmission of heritability, the interactions
of the molecules involved in this process with
the chromosome are expected to be under very
strong selection. This and the mechanistic
asymmetries of replication drive large-scale or-
ganization of the genome (Fig. 2).

Presence of multiple replication forks in
fast-growing bacteria produces a transient rep-
lication-associated gene dosage effect that
leads to selection of highly expressed genes
near the origin of replication (Couturier and
Rocha 2006). Atypical genome configurations
are not exception. Highly expressed genes con-
centrate near the multiple origins of replication
of certain archaeal chromosomes (Andersson
et al. 2010). The larger Vibrio chromosome en-
joys stronger replication-associated gene dosage
effects than the secondary chromosome and

accumulates most highly expressed genes near
its origin of replication (Dryselius et al. 2008).
Replication-associated gene dosage effects can
be efficiently counteracted by genetic regula-
tion, so that lowly expressed genes can still be
accommodated near the origin of replication
(Block et al. 2012). Interestingly, the temporal
pattern of gene expression in E. coli corresponds
to the order of genes in the Ori–Ter axis of the
genome (Couturier and Rocha 2006; Sobetzko
et al. 2012).

The asymmetric functioning of the replica-
tion fork, producing a leading and a lagging
strand, drives two broad organizational traits:
GC skews and gene strand bias. The two DNA
strands are replicated asymmetrically leading
to different nucleotide composition in each
strand (GC skews reviewed in Frank and Lobry
1999 and Touchon and Rocha 2008). Genes
downstream from the replication fork may be
transcribed by RNA polymerases in the same
direction as the fork, leading eventually to co-
oriented collisions, or in the opposite direction,
leading to head-on collisions. The latter are
much more deleterious and present a challenge
to the integrity of the chromosome (Pomerantz
and O’Donnell 2010; Srivatsan et al. 2010), and
natural selection favors genes transcribed co-
directionally with the replication fork (leading
strand genes). This effect is very strong for es-
sential genes, but also significant for highly ex-
pressed genes and large operons (Rocha and
Danchin 2003; Omont and Kepes 2004; Price
et al. 2005a). Intriguingly, certain categories
of weakly expressed or even silent genes, such
as prophages and other horizontally transferred
genes, are highly abundant in the leading strand
(Campbell 2002; Hao and Golding 2009). On
the other hand, regulatory functions are more
frequent in the lagging strand than expected
(Mao et al. 2012). A number of models have
been proposed to explain why selection against
head-on collisions causes gene strand bias. They
explain the deleterious effects of head-on colli-
sions based on their effect on replication stalling
(Mirkin and Mirkin 2007), mutagenesis (Sri-
vatsan et al. 2010; Paul et al. 2013), production
of truncated transcripts (Rocha and Danchin
2003), and induction of genome rearrange-
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ments (reviewed in Bermejo et al. 2012; Merrikh
et al. 2012). It was suggested that bacterial genes
under positive or diversifying selection might
be in the lagging strand to enjoy increased mu-
tagenesis associated with head-on collisions
(Paul et al. 2013), but this has been contended
on empirical and theoretical grounds (Chen
and Zhang 2013).

The intimate link between replication and
recombination (Michel et al. 2004) and segre-
gation (Niki et al. 2000) also drives strand bias of
motifs associated with these processes (reviewed
in Touzain et al. 2011). Notably, leading strands
are enriched in Chi motifs, which in a number of
bacteria are involved in regulating the activity of
RecBCD or the analogous AddAB complex in
the early stages of homologous recombination
(Halpern et al. 2007). FtsK-orienting polar se-
quence (KOPS) motifs are involved in chromo-
some segregation by FtsK. Their frequency in-
creases regularly with the proximity to the
terminus of replication and their strong over-
representation in the leading strand provides
information on the chromosome polarity to
the segregation machinery (Bigot et al. 2005).
The localization of motifs in certain regions of
the chromosome is likely to constraint genome
rearrangements and horizontal gene transfer
(Hendrickson and Lawrence 2006).

OPERONS AND BEYOND

The majority of genes in prokaryotes are ex-
pressed under the form of polycistronic units
called operons (Jacob and Monod 1961), in-
cluding from two to dozens of genes (average
�3–4 genes) (Zheng et al. 2002). The organi-
zation of genes in operons is a compact way of
regulating gene expression because genes in the
same operon are expressed at more similar rates
than random pairs of genes (Sabatti et al. 2002;
Price et al. 2006). Pairs of contiguous genes
in operons are highly conserved showing re-
arrangement rates orders of magnitude lower
than other interoperonic pairs (de Daruvar et
al. 2002; Rocha 2006; Moreno-Hagelsieb and
Janga 2008). Larger genomes tend to have fewer
genes in operons, shorter and less conserved
operons, and many more transcription factors

(Cherry 2003; Minezaki et al. 2005; Nunez et al.
2013). Importantly, the number of transcrip-
tion factors in a genome, once controlled for
genome size, is negatively associated with oper-
on conservation (Nunez et al. 2013). These ob-
servations could be explained by the existence of
a trade-off between the advantages of individual
gene regulation, requiring transcription factors,
and coregulation of several genes by a single
operon, constraining the expression of each in-
dividual gene. Large genomes have more com-
plex genetic networks and many more different
transcription factors than small genomes. This
might explain increased selection for operons in
small genomes.

Genes in operons often encode physically
interacting proteins (Mushegian and Koonin
1996; Huynen et al. 2000) or functional neigh-
bors (Rogozin et al. 2002). For example, oper-
ons often encode enzymes of consecutive steps
in metabolic pathways (Zaslaver et al. 2006),
which has been proposed to reduce stochastic
stalling of metabolism at low-expression levels
(Kovacs et al. 2009). Transcription factors tend
to be encoded at the edges of operons, and au-
torepressors are often the first genes in an oper-
on (Rubinstein et al. 2011). The systematic
association between functionally related genes
in operons allows the use of guilt-by-association
methods to characterize unknown function
genes (Overbeek et al. 1999; Moreno-Hagelsieb
and Janga 2008). Genomic colocalization of
genes expressed at the same moment further
contributes to link the organization of genet-
ic loci with the subcellular location of certain
physiological processes by way of chromosome
structure. For example, colocalization of highly
expressed genes leads to transcription foci in
the cell with a high concentration of active RNA
polymerases (Cagliero et al. 2013).

Despite the impact of operons in the regu-
lation of gene expression and of the constraints
they impose on the organization of the bacte-
rial chromosome, there is no consensus yet on
why operons are formed and conserved. A num-
ber of models have been proposed to explain
operon formation based on the effects of genet-
ic linkage, stochastic gene expression, and gene
regulation (Fig. 3). Genetic linkage could favor
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physical clustering of coevolving genes to avoid
breaking coadaptive changes by recombina-
tion (recombination model) (Stahl and Murray
1966) or to lower the cost of large genetic dele-
tions (persistence model) (Fang et al. 2008).
Operons could also facilitate the horizontal

transfer of coregulated functional modules (self-
ish operon model) (Lawrence and Roth 1996).
Most prokaryotic cells are small and most genes
in the genome are expressed at relatively low
levels. These conditions lead to important sto-
chasticity in gene expression (Elowitz et al.
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Figure 3. The genetic organization of gene expression. (A) Schematic representation of the transcription factory
model, in which multiple active RNA polymerases are concentrated at discrete sites in the nucleoid. (B) Bacterial
genes are organized into operons, which group in superoperons. In addition to being physically close in the
genome, genes in operons are cotranscribed, coregulated, and encode proteins involved in the same functional
pathway or protein complex. Superoperons are not cotranscribed, but may share regulatory regions. (C)
Schematic representation of three models aiming at explaining the formation and conservation of operons
based on genetic linkage. (D) Transcription of genes in a single transcript is expected to diminish gene expres-
sion noise and ensure more precise stoichiometry. It also allows responding optimally to demand for a given
pathway when the first genes to be transcribed are those starting the functional pathway. (E) Operons place
several genes under the same regulatory region that is thus subject to more efficient selection.
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2002). Operons could minimize shortfall or
waste in gene expression because cotranscrip-
tion and translational coupling synchronize
the expression of the different components of
the same functional module (stochastic expres-
sion models) (Swain 2004; Lovdok et al. 2009;
Sneppen et al. 2010; Ray and Igoshin 2012).
By definition, operons are sets of genes under
the control of a single transcription start site.
This arrangement concentrates selection pres-
sure for regulatory sequences in a single region.
This could favor the optimization of the associ-
ated DNA motifs and protect them against mu-
tation pressure (regulatory models) (Price et al.
2005b; Lynch 2006).

Comparative studies have presented argu-
ments against some of these models. Notably,
both the recombination and the persistence
model explain gene clustering but not cotran-
scription, and the former may not be compati-
ble with the small size of recombination tracts
typically observed in bacteria (Kennemann et al.
2011). The selfish operon model may explain
the formation of operons of frequently trans-
ferred genes, but fails to explain why essential
genes are more often found in both ancient
and recent operons (Pal and Hurst 2004; Price
et al. 2005b) and why larger genomes enduring
more horizontal transfer have fewer and less
conserved operons. Models based on minimi-
zation of gene expression noise fail to explain
why operons of highly expressed genes, the ones
for which gene expression noise is less impor-
tant, are the most highly conserved (Nunez et al.
2013). Regulatory models seem more in accor-
dance with the available data. Nevertheless, oth-
er models might contribute to explain the for-
mation and conservation of certain kinds of
operons (e.g., the selfish model for frequently
transferred genes, the persistence model for es-
sential genes, and models invoking gene expres-
sion stochasticity for lowly expressed genes).

Recent data suggests that the organization of
transcription at the genomic level is more plas-
tic than previously thought because of frequent
alternative transcription start sites (Cho et al.
2009), chromosome structure (Bryant et al.
2014), and supraoperonic organization (Lathe
et al. 2000; Warren and ten Wolde 2004; Hersh-

berg et al. 2005). It is therefore possible that
intraoperonic, operonic, and supraoperonic
gene organization represent a continuum of
scales of transcriptional organization. Indeed,
gene clustering in prokaryotic genomes extends
beyond operons. Functionally neighbor oper-
ons are often encoded in neighboring regions
of the genome, leading to strong patterns of
operon pairs conservation (Korbel et al. 2004).
There is also evidence of large-scale clustering
(Bailly-Bechet et al. 2006; Fritsche et al. 2012)
and of periodic organization (Junier et al. 2012)
of genes encoding neighboring housekeeping
functions or genes expressed at similar levels.
Several hypotheses were proposed to explain
supraoperonic gene organization. These involve
horizontal gene transfer, chromosome struc-
ture, gene regulation, and mRNA management.
The selfish operon model is based on the idea
that the success of horizontal gene transfer is
higher when it includes neighboring functions
that can constitute functional modules. When
functional modules are very large, they require
multiple contiguous operons, and this might
explain the clustering of genes encoding viru-
lence factors or antibiotic resistance in genomic
islands of pathogens (Dobrindt et al. 2004; Ju-
has et al. 2009). Operons encoding closely asso-
ciated functions are expressed at the same time.
If these operons are encoded close in the ge-
nome, they are likely to be close in the nucleoid.
Genomic colocalization of coexpressed operons
might be favored because their expression
would require opening the same nucleoid re-
gion (Jin et al. 2013). Proteins often participate
in different cellular processes and, therefore,
are functional neighbors of many different pro-
teins. Distances between operons might reflect
a compromise between the gene expression re-
quirements of these different processes, leading
to complex patterns of gene clustering at supra-
operonic levels (Yin et al. 2010). The presence
of different functionalities in different species
might thus produce a variety of genetic archi-
tectures of functionally related genes. Finally,
operons physically close in the chromosome
show correlated patterns of mRNA degrada-
tion (Selinger et al. 2003; Montero Llopis et al.
2010). The genomic colocalization of operons
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with similar patterns of mRNA demand and
degradation might also favor supraoperonic
gene organization. Further studies will be need-
ed to understand how organizational traits
beyond the operon reflect or constrain the evo-
lution of genetic networks and chromosome
structure.

VARIATIONS IN GENE REPERTOIRES IN THE
LIGHT OF GENOME ORGANIZATION

The previous sections showed that a large num-
ber of organizational traits are under selection
in the genomes of prokaryotes. Organizational
traits are strongly affected by genome rearrange-
ments, because a single rearrangement can ren-
der chromosomes asymmetric, break operons,
and disrupt chromosome domains. Spontane-
ous rearrangement rates are high, often of the
order of genomic mutation rates (Sun et al.
2012), but divergent genomes show remarkably
few fixed large rearrangements (Rocha 2006).
This is consistent with the view that most large
rearrangements are deleterious and removed
by purifying selection. Because replication and
associated mechanisms are responsible for the
organization of the chromosome at very large
scales, rearrangements breaking chromosome
symmetry or gene strand biases are highly coun-
terselected (Eisen et al. 2000; Tillier and Collins
2000; Mackiewicz et al. 2001; Liu et al. 2006;
Darling et al. 2008). Genetic elements favoring
rearrangements, such as DNA repeats, are also
counterselected, especially when their location
leads to particularly deleterious changes (Achaz
et al. 2003). This suggests a trade-off between
selection for the organization of genomes and
selection for their diversification by intrachro-
mosomal recombination.

The gene repertoires of prokaryotes evolve
extremely fast (Tettelin et al. 2008; Kuo and
Ochman 2009b; Polz et al. 2013), and acquisi-
tions of new genes occur mostly by horizontal
gene transfer (Treangen and Rocha 2011). Most
incoming DNA is rapidly lost as it corresponds
to genetic information that is either deleterious
or of no adaptive value (Kuo and Ochman
2009a; Koskiniemi et al. 2012; Lee and Marx
2012). The size of the bacterial genome results

from the equilibrium between the rates of ac-
quisition and deletion of genetic material.
Mobile genetic elements have a key role in hor-
izontal transfer (Frost et al. 2005). For example,
the E. coli O157:H7 strain encodes 25% more
genes than the standard MG1655 strain and
includes 18 prophages and several plasmids en-
coding most of the strain’s virulence factors
(Perna et al. 2001; Ogura et al. 2007). An anal-
ysis of 20 complete E. coli strains showed that
the pangenome is four times larger and the core
genome two times smaller than the average ge-
nome of the species (Touchon et al. 2009). How
can such massive influx of genetic material be
compatible with the above-mentioned princi-
ples of genomic organization?

Although systematic studies of this question
are still unavailable, a number of different pat-
terns have been observed. Most of the accessory
E. coli genome is found in a very small number
of loci—integration hotspots—that are con-
served among strains and even among species
(Touchon et al. 2009). The origin and mainte-
nance of these hotspots is probably the com-
bined result of integration biases and natural
selection (Fig. 4). Some hotspots are located
next to genetic elements that are frequently tar-
geted by mobile genetic elements for integra-
tion in the chromosome, like tRNAs (Williams
2002). Yet, the lack of such genes in many hot-
spots suggests the presence of other evolution-
ary mechanisms, possibly involving selection.
For example, large integrations might provide
a neutral ground for further insertions and
deletions, thereby promoting the creation of
hotspots. Hotspots might be subsequently
transferred to other cells and incorporated in
the chromosome by double homologous re-
combination at the flanking core genes (Schu-
bert et al. 2009). Interestingly, hotspots are not
randomly distributed in genomes. They are typ-
ically intergenic and tend to accumulate in re-
gions closer to the terminus of replication and
in secondary chromosomes (Okada et al. 2005;
Andersson et al. 2010; Flynn et al. 2010). Some
genomes have only a few very large regions that
accommodate most of the accessory genomes
(Fig. 4). The two chromosome arms of Strepto-
myces make up half of the genome and accumu-
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late most of gene gain and loss in the species
(Bentleyet al. 2002; Choulet et al. 2006). In other
genomes, most gene flux is confined to extra-
chromosomal mobile genetic elements. In Bor-
relia burgdorferi, the chromosome is very stable,
whereas a large plasmid pool accommodates
most of the repeats involved in antigenic varia-
tion (Casjens et al. 2000; Qiu et al. 2004). There
are, therefore, different ways of reconciling
strong selection for genome organization and
for sequence diversification. Usually, they in-

volve the confinement of genetic plasticity to
certain regions of the genome, inside or outside
the main chromosome, which preserves the or-
ganization of the regions encoding essential and
highly expressed genes.

CONCLUDING REMARKS

Recent advances have provided a much clearer
view of genome organization and chromosome
structure. The latter, given experimental hur-

1-Permissive regions are rare

2-Integrated elements offer large neutral targets

C    Regionalization 

D    Delocalization

B    Scattered hotspots A    Hotspot model
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S
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Figure 4. Balancing between genome organization and diversification. (A) Schematic representation of a model
for the formation and evolution of integration hotspots. (B) Hotspots can be scattered in the chromosome. (C)
Some chromosomes show very large regions in which most genetic diversification takes place. (D) Some
chromosomes are very stable and most genetic diversification takes place in plasmids.
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dles, has for the moment concerned only a few
model species. It would be most interesting
to understand the evolution of chromosome
structure and its coevolution with genome
organization. This would help to identify the
chromosome structural features that constrain
and are constrained by genome organization.
These studies might facilitate the identification
of chromosomal domains and the mechanisms
underlying their formation.

Some integrative mobile elements are hun-
dreds of kilobases long and this must have some
effect on the chromosome structure and on
genome organization. Prophages are more fre-
quent closer to the terminus of replication and
they encode DNA motifs that match the local
concentration of these motifs in the bacterial
chromosome (Bobay et al. 2013). This suggests
that mobile elements select for motifs that allow
their seamless integration in the bacterial ge-
nome. Future work will hopefully unravel how
the chromosome accommodates these and oth-
er mobile elements with little or no impact on
fitness.

Many compositional patterns have been
observed in genomes, including variations in
intra- and intergenomic GþC composition
(Muto and Osawa 1987; Daubin and Perriere
2003), GC skews (Lobry 1996), or the pervasive
AT richness of horizontally transferred genes
(Lawrence and Ochman 1997; Daubin et al.
2003). So far, the precise molecular mecha-
nisms behind these patterns have remained elu-
sive (Rocha et al. 2006; Hershberg and Petrov
2010; Hildebrand et al. 2010; Raghavan et al.
2012). Yet, these mechanisms have a very im-
portant impact in sequence evolution, because
they affect substitution rates (Lee et al. 2012),
codon usage bias (Novembre 2002), mobility
and expression of mobile elements (Dorman
2014), horizontal transfer (Doyle et al. 2007),
and amino acid composition (Lobry 1997).
Shifts in compositional patterns are also likely
to complicate evolutionary analyses (Galtier
and Gouy 1995).

Statistical approaches to bacterial popula-
tion genomics have focused on the study of nu-
cleotide substitutions in the core genome. This
allows understanding phylogenetic and epide-

miological patterns (Parkhill and Wren 2011).
However, to understand how bacteria adapt,
one must also study the population patterns
of gene gain and loss. Some recent works have
started to put forward population genetics tech-
niques to study genetic mobility (Baumdicker
et al. 2012; Collins and Higgs 2012; Lobkovsky
et al. 2013). Further work is required to mod-
el the dynamics of gene repertoires, compare it
with neutral processes, and highlight which new
genes are effectively adaptive.

Organizational patterns can be used to pre-
dict genetic features, like origins of replication
(Lobry 1996) or transcription units (Salgado
et al. 2000), and physiological traits, such as
optimal growth temperature (Zeldovich et al.
2007) or minimal doubling times (Vieira-Silva
and Rocha 2010). Large-scale engineering proj-
ects of bacterial genomes benefit from using
known genome organization rules (Kepes et al.
2012). Such projects have already provided im-
portant clues on the constraints acting on the
evolution of prokaryotic genomes, sometimes
with surprising results. For example, although
natural linear E. coli chromosomes have not
been observed, E. coli’s chromosome can be ar-
tificially linearized with no effect on growth
(Cui et al. 2007) and even split into two linear
chromosomes with only a slight growth defect
(Liang et al. 2013). Linear chromosomes can
also be circularized (Volff et al. 1997). Labora-
tory manipulations have shown that chromo-
somes can double in size in a small number
of events (Itaya et al. 2005), be split in multiple
chromosomes (Itaya and Tanaka 1997), and
multiple chromosomes can be merged into
one (Val et al. 2012). The effects of these dra-
matic structural modifications are as small as
the rules of genome organization are respected.
This opens the possibility of developing syn-
thetic bacteria that can be made to evolve under
new sets of physiological or ecological con-
straints to unravel how chromosome structure
and genome organization coevolve.
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