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Theme I: Aging
Group A: Bernardi, Ilie, Colonnelli, Bastianelli
Charcot marie tooth – pmp22
Group B: Hazrati, Bartolini, Glaudo, Montrone, Pourali 
Werner syndrome

Theme II: Cancer
Group C: Belvedere, Jeong, Majaliwa, Virgilio 
dCAS9 as a treatment for thyroid cancer

Group D: Santacroce, Pace, Serra, Fanelli, Duarte
Hepatic cancer – RACGAP1

Gene therapy project



Charcot Marie Tooth 1A 

Silencing of PMP22 promoter 2 using a CRISPR/dCas9 
combined with DNMT3A 

Bastianelli, Bernardi, Colonnelli, Ilie



Background

PMP22 aggregates Dys and Demyelination

Onion Bulb formation
Secondary axonal 
degeneration

Duplication of PMP22
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Overload of the Endoplasmic Reticulum (ER)

Peripheral Nervous 
System Disease Weakness in lower leg muscles, foot deformities ecc

Incidence of CMT 1/2500 → 80% of which are type 1A

Development Ageing related

No resolutive 
treatment available Only palliative

Huxley et al, Human Molecular Genetics, 1998.

Uncompacted myelin Hypomyelination large axons

Thin  myelin or lack (arrows) Macrophage-demyelination



Aim of the project

CRISPR-dCas9-DNMT3A
→ 2 sgRNA 

AAV 2/9
→ MPZ promoter-SC specific
→ Intrathecal lumbar injection

C61 heterozygotic mice
PMP22* Schwann cells
→ Copy number of PMP22: 4
→ MCV: 25 m/s
→ Histology: mid demyelination

Use of CRISPR-dCas9 associated with DNMT3A to perform an epigenetic silencing of the 
Promoter 2 of PMP22

Adapted from Vojta et al. Nucleic acids research, 2016.



sgRNA 34

sgRNA 121

S: Specificity score 
A: Annotation score 
E: Efficiency score

sgRNA



DAY 0 DAY 1 DAY 4

CRISPR-dCas9/DNMT3A through AAV 
2/9 vector

Schwann cells PMP22*

cell seeding

CELL TREATMENT

CONFOCAL ACQUISITION

C61 mouse

qPCR PMP22 expression 

Western blot PMP22 and 
MPZ

Immunocytochemical 
analysis

In vitro

DAY 8

COBRA



RESULTS: in vitro
Does Methylation downregulate expression?
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Accumulation of PMP22

→ ER stress 

→ increase ASB7 expression

→ PMP22 
aggregates
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In vivo

In vitro
Immunofluorescence assay

DAY 1                                                                DA  DAY 3 up to 12 weeks  

Histological Western blot                                     EMG
onion bulb on axon

CMT1A PMP22 
CMT1A

Treated                                            MPZ                                                     
Treated 

comparison                                                
WT

physiological
pathological



How to test AAV2/9 efficiency in vitro ?
Immunofluorescence assay

WT-SCs

PMP22*-SCs

non-INJECTEDeGFP AAV2/9-eGFP AAV2/9-eGFP-dCAS9-DMT3A

How to test the non-cytotoxicity of the 
treatment in vitro?

AAV2/9 → high tropism for Schwann cells
What is the system of delivery?

CRISPR-dCAS9-DMT3A

CRISPR-dCAS9-DMT3A

Therapeutic vector

mock vector

AAV2/9 → high tropism for Schwann cells

Encapsidated AAV

Transgene

CRISPR-dCAS9-DMT3A

eGFP
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MTT assay



In vivo
Biodistribution of the mock AAV2/9-EGFP in PNS 

5 weeks following lumbar intrathecal injection
Biodistribution of the therapeutic vector AAV2/9-dCas9-

DMT3A in PNS 5 weeks following lumbar intrathecal 
injection
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Adapted from  Georgiou E. et al.,  2023 Molecular Therapy 



How to check the treatments efficiency ? 

Myelin protein zero (MPZ): 
→ expressed by Schwann cells
→ main structural component of the myelin sheath.

Pmp22  was upregulated relative to the myelin marker Mpz in 
CMT1A, resulting in higher expression of Pmp22

WESTERN BLOT

High NPX value equals a high protein concentration. 
Circulating Biomarker:

- Nf-L (marker for axonal degeneration) ;  
- TMPRSS5 (biomarker for myelinating). 

Blood concentration values 
NPX 

(Normalized Protein eXpression)

Adapted from Gautier  et al. nature communications, 2021

0                   1                    2                    3                    4  0                   1                   2                  3                   4  

CMT1AWT Treated CMT1AWT Treated

Adapted from  Hongge Wang, et al. 2020



WT

PMP22*

Treated

The loss of myelin in CMT1A causes a delay in impulse 
transmission

After the treatment we can see an axonal recovery of the 
impulse, due to  the correct reformation of the myelin

In CMT1A the PMP22 overexpression causes decreased myelination,
recovery of axon myelination after treatment

In

Histological EMG

time (weeks)

Adapted from Gautier  et al. nature communications, 2021 Adapted from Gautier  et al. nature communications, 2021



Budget
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Background: panoramic on Hepatocellular Carcinoma (HCC) 

Liver cancer is the third most lethal cancer globally. Infection by hepatitis B\C viruses is
the main risk factor for HCC development

The median age: > 60 years

HCC recurrence is significantly associated with RACGAP1 upregulation: activation of
RACGAP1/Rho/ERK signaling axis 

RACGAP1Hepatocarcinoma
tissue





In silico

Aim of the project

In vitro

In vivo

Induce a competitive inhibition of RACGAP1 by mutating its phosphorylation sites
Leading to a reduced activation of RhoA 
Inhibition of self proliferation 

Sequence analysis
Mutation of 4 serines
into cysteins
Sequence alignment
Structure analysis

Cloning of mRNA seq
Transfection into HCCLM3 cells
mRNA expression
Co-ChIP for complex formation
Levels of phosphorylation
RhoA activation
Apoptosis and cell cycle analysis

Tumor mass analysis
Tumorigenesis assay 

Experimental plan



RACGAP1
RACGAP and ANLN location on the cell during division:

https://www.sciencedirect.com/science/article/pii/S0960982207023354

Cysteine Serine

Where are RACGAP1 and ANLN located?  

Intracellular proteins: Aminoacid
effect changes on serine
Neutral-->  Cys ( 0) Asp ( 0) Glu ( 0) Lys ( 0)
Gly ( 0) His ( 0) Asn ( 0) Pro ( 0)
Gln ( 0) Arg ( 0) Ala ( 0) Thr ( 0)
http://www.russelllab.org/aas/Ser.html

Does the amino acidic change cause
any effects on the protein?



MSA using T-coffe via Jalview

MSA using ClustalW from ebi
https://www.ebi.ac.uk

AMINOACID MODIFICATIONS - sequence

RACGAP1_HUMAN_MODIFIED_SEQUENCE
sp|Q9H0H5|RGAP1_HUMAN

Number of conserved physico-chemical
properties /10 

https://www.jalview.org/help/html/calculations/conservation.ht
ml



Structure prediction via SwissprotStructure prediction via alphaphold 

Aminoacid modifications - structural predictions

3D structure superposition via DALI 

Legend: Structure conservation
Dark blue regions are structurally aligned
http://ekhidna2.biocenter.helsinki.fi/dali/DaliTutorial.pdf

Z-score=46.8
Significant similarities' have a Z-score above 2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639270/

A CB

https://www.uniprot.org/uniprotkb/Q9H0H5/feature-viewer

https://swissmodel.expasy.org/interactive/Xk9YBQ/models/https://www.uniprot.org/uniprotkb/Q9H0H5/feature-viewer

WT RACGAP1 RACGAP1(UGU)  Serra et al. WT RACGAP1/RACGAP1(UGU)



mutated cDNA 

E. Coli DH5α

plasmid with mutated
RACGAP1(UGU) seqplasmid

Transfection into 
HCCLM3 cells

mutated mRNA 

+

Cloning and transfection of RACGAP(UGU) mRNA 

Onyx - 015 vector

+



Onyx - 015 vector
+ plasmid

pUC19/RACGAP1(UGU)

Healthy liver cells p53 wt and no alpha-feto
protein receptor. The vector doesn’t enter the
cells and no healthy liver cells are killed

HCC cells p53 wt and with alpha-feto protein
receptor on the cell surface. The vector enters
the cells and delivers the RACGAP1(UGU)
mRNA. The cells die by cytokinetic failure

HCC cells Δp53 and with alpha-feto protein
receptor on the cell surface. The vector enters
the cells, delivers the RACGAP1(UGU) mRNA
and activates the Δp53 onyx pathway. The cells 
die by both cytokinetic failure and cell lysis

What happens to the cells using ONYX-015?

AFP receptor Ab
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In vitro: Is RACGAP1(UGU) expressed?

Luciferase essay- Expression of RACGAP1
and RACGAP1(UGU) in wt HCCLM3 cells
and HCCLM3 cells after transfection with
RACGAP1(UGU) mRNA
Adapted from https://www.nature.com/articles/s41419-019-
1666-2 

RT-PCR- Relative RACGAP1 and RACGAP1(UGU)
mRNA level in  HCCLM3.  The expression of
RACGAP1 and RACGAP1(UGU) is not influeced
by the presence of the other
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Transfected HCCLM3
Cells  with GST-
RACGAP1(UGU)

Homogenization

PLK1 antibodies
and magnetic beads

Binding

Wash, mild elution 

Precipitated ANLN-PLK1-
RACGAP1/RACGAP1(UGU) 

 complexes

Analysis

Pull down: RACGAP1(UGU)-ANLN-PLK1
complex formation

In vitro: Does the RACGAP1(UGU)/ANLN/PLK1 complex form?



In vitro: Is RACGAP1(UGU) phosphorylated?

Phosphorylation assay - ELISA and Western Blot -
Normal levels of RACGAP1P in healthy cells,
elevetated levels of RACGAP1P in HCCLM3,
reduced levels of RACGAP1P(UGU) in HCCLM3



In vitro: Is RohA activity decreased? 

Western blot- Detection of RhoA activity and also ECT2 and
RACGAP1 expression in HCCLM3 after trasfection of RACGAP1(UGU)
Adapted from (Yang et al., 2018)

Clonogenic assay:
1. Healthy Hepatic cells, 
2. Healthy Hepatic cells with transfection of empty Onyx-015,
3. Healthy Hepatic cells with transfection of RACGAP1(UGU)
mutated protein,
4. Hepatocarcinoma HCCLM3 cells, 
5. Hepatocarcinoma HCCLM3 with transfection of empty Onyx-
015,
6. Hepatocarcinoma HCCLM3 with transfection of
RACGAP1(UGU) mutated protein,



In vitro: Does RACGAP1(UGU) cause apoptosis?

TUNEL assay - A. HCCLM3 non treated and no apoptotic cells are
detected. B. HCCLM3 treated with emptyvector, no apoptotic cells
are detected C. HCCLM3 treated with the mutated RACGAP1(UGU),
incresead levels of apoptotic cells

Adapted from https://www.researchgate.net/publication/335679404_In_Vivo_Anti-
Tumor_Effects_of_Citral_on_4T1_Breast_Cancer_Cells_via_Induction_of_Apoptosis_and_Downregulation_of_Aldehyde_Dehyd
rogenase Activity

 Flow cytometry analysis- Staining cells with the
apoptosis marker Annexin V (FITC) and propidium
iodide allows the discrimination of intact cells (FITC-
PI-), early apoptotic (FITC+PI-) and late apoptotic or
necrotic cells (FITC+PI+).
Adapted from  (Yang et al., 2018)



In vitro: Does RACGAP1(UGU) cause cytokinesis failure?

Cell cycle analysis - 1. Cell count
in different cell cycle phases,
RACGAP1(UGU) vs control
HCCLM3 cells.
2. Cell percentage in different cell
cycle pahses, RACGAP1(UGU) vs
control HCCLM3 cells.

Cytokinesis analysis - Selected frames from time-lapse
imaging of RACGAP1(UGU) and control HCCLM3 cells.

Statistics of bi- and multi-nucleated
HCCLM3 cells after trasfection 

Adaptedfrom (Yang et al., 2018)

1.

2.



1. 

2. 
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In vivo: Is there a tumor mass decrease?

1. Decrease of tumor mass during weeks
with the treatment of RACGAP1(UGU) on
BALB/c nude mice
2.  Representative images of tumors
removed from mice
https://www.hindawi.com/journals/omcl/2022/3034150/

A. Nude mouse injected with
HCCLM3 cells. Evident tumor mass.
B. Nude mouse injected with
HCCLM3 cells transfected with empty
vector, smaller tumor mass
C. Nude mouse injected with
HCCLM3 cells transfected with
RACGAP1(UGU) vector. No evidence
of tumor growth.

Adapted from
https://bmccancer.biomedcentral.com/articles/10.
1186/1471-2407-11-425/figures/7

HCC histological samples from BALB/c
nude mouse
1. HCC tissue
2. Tissue sample injected with empty vecotr 
3. Tissue sample injected with
RACGAP1(UGU) vector
4. Healthy liver tissue
https://translational-
medicine.biomedcentral.com/articles/10.1186/s12967-017-1247-
z/figures/4

.
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3               4
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Gabriele Virgilio, Alessandro Belvedere, Emanuela Unhe Jeong, Nashon Majaliwa

CRISPRi: A THERAPEUTIC APPROACH IN MANAGING 
ANAPLASTIC THYROID CANCER



BACKGROUND

• BRAF is a proto-oncogene involved in the activation of the 
MAPK pathways;

• The BRAFV600E point mutation is a common early molecular 
event and is detected in 45% of ATC cases;

• Cancer cells expressing BRAF V600E are less responsive to 
radioactive iodine therapy due to downregulation of the 
sodium iodide symporter (NIS);

• BRAF chemical inhibitors can cause paradoxical BRAF 
activation, leading to the formation of secondary cancers.

Anaplastic thyroid cancers (ATCs) are highly aggressive 
tumors and account for 30% of US thyroid cancer deaths. 

ATC 1%

https://www.researchgate.net/publication/320341777_PIK3CAH1047R-
induced_paradoxical_ERK_activation_results_in_resistance_to_BRAFV600E_specif
ic_inhibitors_in_BRAFV600E_PIK3CAH1047R_double_mutant_thyroid_tumors

https://www.researchgate.net/publication/320341777_PIK3CAH1047R-induced_paradoxical_ERK_activation_results_in_resistance_to_BRAFV600E_specific_inhibitors_in_BRAFV600E_PIK3CAH1047R_double_mutant_thyroid_tumors
https://www.researchgate.net/publication/320341777_PIK3CAH1047R-induced_paradoxical_ERK_activation_results_in_resistance_to_BRAFV600E_specific_inhibitors_in_BRAFV600E_PIK3CAH1047R_double_mutant_thyroid_tumors
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AIM OF THE PROJECT AND STRATEGY 

Suppress braf 
transcription through 

CRISPRi 

Slowing down
proliferation

Avoiding 
secondary cancers

Restoring 
sensitivity to radiotherapy



REDUCING SIDE EFFECTS
Off-Target Regulatory Sequence (OTRS) 

braf promoter (target)

RNAP
construct

dCAS9

off-targets

dCAS9

RNAP

OTRS

dCAS9 is produced and binds to the 
target and off-target sites

dCAS9 is produced and binds to the target 
and the OTRS, preventing further dCas9 

transcription and off target binding



IN VITRO EXPERIMENTAL PLAN

8505c transduction 
with adenovector, 

start selection

DAY 1, 2, 3 DAY 4, 5

Cell count, Western 
blot, qRT-PCR 

Cell count

DAY 0

Human thyroid cell lines 
carrying BRAFV600E (8505c)
 



Mouse NOD.Cg-Prkdcscid B2mtm1Unc/J
 injected with 8505c cells

IN VIVO EXPERIMENTAL PLAN 

DAY 0

DAY 14 DAY 28

Tumor size 60 mm3
Mouse under treatment and 

radiotherapy

Ultrasound Ultrasound

Tumor size 60 mm3
Mouse under treatment

Ultrasound,
Surgery, immunofluorescence, 

qRT-PCR and Western blot

DAY 0

DAY 42



braf

sgRNA1

Cas9

sgRNA2

Cas9

sgRNA DESIGN

OTRS CATGGCGGCGCGGGACACGG GCCATTTTGTGTGTTTGGGT



ADENOVECTOR DESIGN & PRODUCTION

Construct: dCas9 + sgRNA

Transfection and selection of HEK293 cell with Ampicillin

CMV 
promoterU6 sgRNA Cas95’ITR pA 3’ITR



ChIP-seq: targeting dCAS9

PROOF THAT THE SYSTEM WORKS

Construct OTRS- 

Construct OTRS+ 

INPUT

braf peak
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Materials 
• HEK293T cell

• 8505c cell 

• 4 mice

• Empty vector

• Vector with dCAS9 with the off-target 

• Vector with dCAS9 without the off-target 

• sgRNA1

• sgRNA2


