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The PHOSPHOINOSITIDE 3-KINASES (PI3Ks) are a family of
enzymes that regulate diverse biological functions in
every cell type by generating lipid second messengers
(for a general review of the PI3K family of enzymes, see
REF. 1). On the basis of structural similarities, the PI3K
family can be subdivided into three classes — class I,
class II and class III (REF. 2). The class IA PI3Ks are
involved in signalling by antigen and co-stimulatory
receptors, and they are the focus of this review.

Class I PI3Ks
The class I PI3Ks are subdivided into two groups —
the class IA and class IB PI3Ks. The class IA PI3Ks are
activated by tyrosine-kinase-associated receptors,
including antigen, co-stimulatory and cytokine recep-
tors. Class IA PI3Ks are heterodimeric enzymes con-
sisting of a regulatory subunit (p85α, p85β or p55γ)
and a catalytic subunit (p110α, p110β or p110δ). Each
of the catalytic subunits can associate with all of the
regulatory subunits (BOX 1). The class IB PI3K, PI3Kγ, is
activated by G-protein-coupled receptors (GPCRs) —
a large family of receptor proteins that includes the
chemokine receptors. There is only one catalytic sub-
unit and one regulatory subunit for class IB, which are
known as p110γ and p101, respectively. The expression

of the catalytic p110δ and p110γ subunits is mainly
restricted to leukocytes, whereas p110α and p110β are
expressed by all cell types.

The function of class I PI3Ks is to convert PHOS-

PHATIDYLINOSITOL-(4,5)-BISPHOSPHATE (PtdInsP
2
) to phos-

phatidylinositol-(3,4,5)-trisphosphate (PtdInsP
3
) at the

inner leaflet of the plasma membrane. PtdInsP
3

acts as a
binding site for numerous intracellular enzymes that
contain PLECKSTRIN-HOMOLOGY DOMAINS (PH domains)
with selectivity for this lipid. Perhaps the most impor-
tant of these is the serine/threonine kinase AKT/PKB,
which has an important role in cell proliferation,
growth, survival and metabolism in many cell types,
and the role of which is conserved through evolution3,4.
In B and T cells, the PH-domain-containing tyrosine
kinases of the TEC family — Bruton agammaglobulin-
aemia tyrosine kinase (BTK) in B cells and interleukin-2
(IL-2)-inducible T-cell kinase (ITK) in T cells — are
also important mediators of PI3K signalling5.

Class II and class III PI3Ks
Little is known about the role of class II and class III
PI3Ks in lymphocytes. Class II PI3Ks can use both
PtdIns and PtdIns(4)P as substrates in vitro, but their
preferred substrate in vivo is not known1. The class III
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PHOSPHATIDYLINOSITOL-(4,5)-

BISPHOSPHATE

(PtdInsP
2
). Note that

phosphatidylinositol-(3,4)-
bisphosphate (resulting from the
hydrolysis of PtdInsP

3
by SHIP)

is sometimes also referred to as
PtdInsP

2
, but this can lead to

confusion and should be avoided.
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function of this signalling system in an intact organism,
and recent progress using this approach is the focus of
this review.

Wortmannin and the structurally unrelated
inhibitor LY294002 have high selectivity for PI3Ks8,9.
The first in vivo evidence for the role of PI3Ks in the
immune system came from studies in which rats were
exposed to wortmannin. These studies indicated that
wortmannin is a potent immune suppressor, but that
it is also highly toxic10,11. Neither wortmannin nor
LY294002 discriminate between the different iso-
forms of PI3K, and as PI3Ks are crucial for all organ
systems, other approaches were required to investi-
gate the PI3K subunits that regulate immune function
in vivo.

PI3K, Vps34 (PIK3C3), preferentially phosphorylates
PtdIns to yield PtdIns(3)P, which recruits a distinct
group of effector proteins with so-called FYVE or Phox
(PX) domains1. Class II and class III PI3Ks have been
shown to regulate various aspects of vesicle trafficking6,
and as such, there is an obvious potential for their
involvement in activities such as antigen processing and
cytotoxic responses that involve the directed subcellular
transport of intracellular vesicles and their cargo.

Dissection of PI3K function
Studies of PI3K signalling in B and T cells using
immortalized cell lines have often yielded conflicting
results, particularly with respect to T-cell activation and
co-stimulation7. It is, therefore, essential to study the

Box 1 | Class I phosphoinositide 3-kinases  

Class IA phosphoinositide 3-kinases (PI3Ks) are
heterodimeric enzymes consisting of a regulatory and a
catalytic subunit. Three genes encode five regulatory
subunits — p85α, p55α, p50α, p85β and p55γ. p55α and
p50α are derived from alternatively spliced messenger
RNAs from the same gene that encodes p85α. There are
also three genes encoding the class IA catalytic subunits
p110α, p110β and p110δ. Potential for redundancy exists
among the class IA PI3Ks, because each of the catalytic
p110 subunits can bind each of the p85, p55 and p50
regulatory subunits, and the different heterodimers seem
to be recruited to the same receptors. Class IA PI3Ks are
regulated by tyrosine kinases that phosphorylate
membrane proteins in Tyr-Xaa-Xaa-Met (YXXM) motifs.
In B cells, Tyr-Xaa-Xaa-Met motifs are found in the
cytoplasmic domains of CD19 and B-cell PI3K adaptor
protein (BCAP). In T cells, Tyr-Xaa-Xaa-Met motifs are
found in the cytoplasmic domains of CD28 and T-cell-
receptor-interacting molecule (TRIM). Adaptor proteins,
such as members of the IRS (insulin-receptor substrate)
and GAB (GRB2-associated binding protein) families, can
also contain Tyr-Xaa-Xaa-Met motifs. pTyr-Xaa-Xaa-Met
(where pTyr = phosphotyrosine) sequences provide the
docking sites for the SRC-homology 2 (SH2) domains of
the regulatory subunit of PI3K, which brings the p110
catalytic subunit to the membrane, where it catalyses the
conversion of phosphatidylinositol-(4,5)-bisphosphate
(PtdInsP

2
) to phosphatidylinositol-(3,4,5)-trisphosphate

(PtdInsP
3
). p85α and p85β also contain proline-rich

regions and SH3 domains that can facilitate additional
protein–protein interactions, and a RHO-GAP domain
that might interact with small GTPases and harbour
GTPase-activating protein (GAP) activity. p85 has been
reported to bind CDC42 and RAC137,138, but this
apparently did not correlate with GAP activity for these
small GTPases. A direct interaction between p110 and
activated RAS might also contribute to PI3K activation139.
The class IB PI3K catalytic subunit p110γ is similar in
structure to the class IA catalytic subunits, but it
associates with a p101 regulatory subunit and not 
with p85. The p101 regulatory subunit facilitates the
interaction between p110γ and the βγ subunits of the
heterotrimeric G proteins that are activated by G-protein-
coupled receptors (GPCRs)140.
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and p50α13. Not surprisingly, the phenotype of the
p85α, p55α and p50α triple-knockout mice is generally
more severe than that of the p85α single-knockout
mice. Importantly, the triple knockouts die shortly after
birth and, therefore, B- and T-cell analysis was carried
out by RAG COMPLEMENTATION. For simplicity, where the two
phenotypes are comparable, we refer to the single- and
triple-knockout mice collectively as p85α-deficient mice.
The rationale behind targeting the p85α subunit, which
is thought to be the most abundant of the class IA regu-
latory subunits, was to interfere with the recruitment of
the p110 catalytic subunit to tyrosine-phosphorylated
receptor complexes. However, there was also a marked
reduction in the level of expression of each of the class
IA catalytic subunits, which is in keeping with an
important role for p85 in protecting the p110 subunits
from proteolysis12–16. Surprisingly though, in the context
of insulin signalling, PI3K-dependent responses were
found to be enhanced, rather than abrogated, in p85α-
deficient mice, for reasons that are not fully clear16–18.
This was also observed for p85β-deficient mice19 (the
lymphocyte phenotype of which has not been reported
yet). Therefore, although there is little doubt that PI3K

The analysis of transgenic and gene-targeted mice
that have modifications that interfere with or enhance
PI3K activation has shed considerable new light on the
role of PI3Ks in the development, differentiation and
activation of B and T cells, which is the focus of this
review. The different approaches that have been taken
are outlined in BOX 2. To investigate the role of class I
PI3Ks in B and T cells directly, the various PI3K sub-
units have been targeted by homologous recombination
by several groups. Because of the potential for redun-
dancy between the different subunits and because of the
complexities involved in the regulation of p110 subunits
by p85 subunits, it is worth detailing the different gene-
targeting strategies before describing the resulting 
B- and T-cell phenotypes.

Dissecting PI3K function by gene targeting. The p85α
locus (Pik3r1) encodes at least three regulatory PI3K
subunits (p85α, p55α and p50α) by alternative splicing
of a common messenger-RNA precursor. The Pik3r1
gene was targeted by homologous recombination to
either eliminate all three isoforms12 or eliminate only the
long form (p85α) and still allow the expression of p55α

PLECKSTRIN-HOMOLOGY

DOMAIN

(PH domain). A non-catalytic
modular domain present in
more than 180 signalling
proteins. Some, but far from 
all, PH domains bind
phosphatidylinositols. Of the
proteins described in this review,
PDK1, AKT/PKB, BTK, ITK,
TEC, BAM32 and the TAPPs
contain a signature motif that
facilitates binding to PtdInsP

3

and/or PtdIns(3,4)P
2
.

RAG COMPLEMENTATION

Gene-targeted embryonic stem
(ES) cells are injected into
blastocysts from recombination-
activating gene (Rag)-knockout
mice and implanted into a
pseudopregnant female. Any 
B or T cells in the resulting
chimaeric mouse are derived
from the injected ES cells.

Box 2 | Genetic dissection of PI3K signalling 

Several genetic approaches have been taken to investigate the functional role of phosphoinositide 3-kinase (PI3K)
signalling during B- and T-cell development, maturation and function. These can be divided conceptually into the
following categories on the basis of the aspect of PI3K signalling that they affect (molecules to which this strategy has 
been applied are given in parentheses): mutations in upstream regulators of PI3K (CD19, CD28 and B-cell PI3K adaptor
protein, BCAP), PI3K regulatory subunits (p85α), PI3K catalytic subunits (p110α, p110β, p110δ and p110γ), PI3K
effectors (AKT/PKB, BTK and ITK) and phosphatidylinositol-(3,4,5)-trisphosphate (PtdInsP

3
) phosphatases (SH2-

domain-containing inositol polyphosphate 5′ phosphatase, SHIP, and phosphatase and tensin homologue, PTEN).
There are pros and cons to each of these strategies. Mutating upstream regulators of PI3K, such as CD19 and CD28, is a
good way to investigate the contribution of PI3K to the biological function of a receptor. However, these experiments can
be difficult to interpret, as the receptors might have alternative means to couple to PI3K. Targeting the regulatory and
catalytic subunits of PI3K is perhaps the most direct approach, but it is complicated by the number of different isoforms,
the complex regulation of p110 by p85 and the early embryonic lethality that results from mutations of p110α and p110β.
Because PI3Ks have pleiotropic roles in development, tissue-specific mutations might be required. In the absence of p85,
p110 might also still be activated by RAS. Targeting downstream effectors of PI3K reveals important information
regarding specific aspects of PI3K signalling only. Eliminating the PtdInsP

3
phosphatases SHIP and PTEN indicates what

happens if PI3K signalling is allowed to proceed without restraint, but this might not always correspond to how PI3K
signals under normal circumstances.
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triple-knockout mice)12,13. p110δ-mutant mice have a
similar phenotype, although variations occur between
the mouse lines that have been generated24–26,34. For
example, Okkenhaug et al.24 and Jou et al.26 found a
block in B-cell differentiation at the bone-marrow stage,
as well as reduced B-cell numbers in the spleens of adult
mice. By contrast, Clayton et al.25 did not find any
defects in B-cell development in the bone marrow. They
observed that 21-day-old mice had a reduced number of
B cells in the spleen, but in adult mice, the number of
B cells was normal. The reason for these discrepancies is
not clear, but they could be due to differences in the tar-
geting strategies used, as well as in genetic background
and animal-housing conditions, for example. However,
all three groups found that p110δ is required for the
development of marginal-zone (MZ) B cells and peri-
toneal B1 cells. The lack of MZ and B1 cells was of par-
ticular interest, as this phenotype is also observed in
Cd19–/– mice35,36 (FIG. 1). CD19 is one of the main regula-
tors of PI3K activity in B cells37 (FIG. 2), and mice express-
ing a tyrosine-to-phenylalanine mutant of CD19 that
cannot bind PI3K also lack B1 and MZ B cells38. These
results indicate that a PI3K-transmitted signal from
CD19 drives the differentiation of B1 and MZ B cells.
Alternatively, MZ B cells might develop independently
of CD19 and PI3K, but then die rapidly if CD19 and
PI3K are lacking and hence escape detection39. Although
CD19 can act downstream of the complement receptor
CD21, this is unlikely to promote the development of
MZ B cells as Cd21–/– mice have an increased number of
MZ B cells40. So, it is possible that CD19 interacts with
an as-yet-unidentified ligand to promote MZ B-cell
development. The importance of CD19 for B1-cell and
MZ B-cell development might be related to the ability of
CD19 to lower the threshold for activation through the
BCR by a factor of as great as 100 (REF. 41), which might
somehow favour B1-cell and MZ B-cell development.
CD19 is not absolutely required for PI3K activation by
the BCR42,43, but it seems to be required for sustained
PI3K activation after BCR stimulation42. In the context
of insulin signalling, Tengholm et al.44 have recently
shown that transient versus sustained PI3K signalling
can lead to qualitatively distinct responses by the cell.
One possibility, therefore, is that sustained PI3K sig-
nalling is required for the development of MZ B cells,
and that this depends on both CD19 and p110δ. This
conclusion is supported by the observation that phos-
phatase and tensin homologue (PTEN) deficiency can
rescue the development of MZ B cells and B1 cells in
Cd19 –/– mice45. PTEN is a lipid phosphatase that
removes the D3 phosphate from PtdInsP

3
, which means

that its absence leads to the accumulation of PtdInsP
3

and hence sustained PI3K signalling (BOX 2).
Consistent with defects in B-cell activation and devel-

opment, p85α-deficient and p110δ-deficient mice have
reduced antibody concentrations in serum. The p85α
single-knockout mice were shown to raise a normal
immune response against THYMUS-DEPENDENT ANTIGENS (TD
antigens), but failed to respond to THYMUS-INDEPENDENT

TYPE-2 ANTIGEN (TI-2 antigens)13. By contrast, the p110δ-
mutant mice had impaired responses to both TD and

activation is affected in one way or another in p85-
deficient mice, it is not always clear how. To add an addi-
tional element of complexity, some studies have also
indicated that p85 might be a signalling protein in its
own right, independent of p110, by interacting with
small GTPases such as RAC (through its RHO-GAP DOMAIN;
also known as a B-cell receptor (BCR)-homology, BH,
domain)20,21, and so it remains possible that p85-deficient
cells have phenotypes that are not entirely a consequence
of modulated p110 lipid-kinase signalling.

It was, therefore, of interest to investigate the immune
system in mice lacking the catalytic PI3K subunits. Bi 
et al.22,23 have generated p110α- and p110β-deficient
mice, both of which die as embryos, after embryonic day
(E)9.5 or shortly after implantation, respectively. So,
determining a role for p110α and p110β in B and T cells
awaits analysis of RAG-complementation studies or 
tissue-specific knockouts. In contrast to p110α and
p110β, p110δ is expressed mainly by leukocytes, and
p110δ-deficient mice survive without any gross abnor-
malities24–26. Clayton et al.25 and Jou et al.26 eliminated the
expression of p110δ, whereas we24 introduced a mutation
in the p110δ locus that allows the continued expression of
a catalytically inactive subunit, p110δD910A. Retaining the
expression of a catalytically inactive form of p110δ might
reduce compensation by p110α and p110β, if each of
these catalytic subunits, in association with p85, competes
for limited access to tyrosine-phosphorylated complexes
or RAS.Assuming redundant function and equal expres-
sion of the different catalytic subunits, eliminating p110δ
would be predicted to eliminate one third of the total
tyrosine-kinase-associated PI3K activity in B and T cells,
as p110δ is only one of three class IA catalytic subunits
that are expressed by lymphocytes. As will be discussed
later, p110δ seems to carry out more than this share of
PI3K signalling in B and T cells, particularly downstream
of antigen receptors.

Mice deficient for p110γ have been reported by three
groups27–29. The lack of potential redundancy for the cat-
alytic p110γ subunit and the regulatory p101 subunit
makes the interpretation of these experiments more
straightforward than those involving class IA PI3Ks.
These studies have indicated an important role for p110γ
in regulating the chemotactic responses of macrophages
and neutrophils27–29. Important roles for p110γ in mast
cells30, platelets31 and cardiac myocytes32 have also been
described. Sasaki et al.29 also showed that T-cell develop-
ment and function were impaired, whereas B cells were
unaffected, in p110γ-deficient mice. The role of p110γ in
T-cell signalling has recently been reviewed elsewhere33,34,
and is not covered further in this review.

Numerous roles for PI3K in B cells
PI3Ks in B-cell development. B-cell development occurs
through defined stages, resulting in at least three distinct
lineages of mature B cells (FIG. 1). p85α-deficient mice
have a partial block at the pro-B-cell stage and have a
reduced number of B cells in the spleen12,13. In addi-
tion, p85α-deficient mice lack CD5+ B1 cells in the
peritoneum (50% reduction in p85α single-knockout
mice, and a complete absence in p85α, p55α and p50α

RHO-GAP DOMAIN

A protein domain of ~200
residues that encodes GTPase-
activating protein (GAP) activity
for RHO-family members. In
p85, this domain is also known
as a breakpoint cluster region-
homology (BH) domain. It is
not clear yet if this domain has
RHO-GAP activity in p85.

THYMUS-DEPENDENT

ANTIGENS

Antigenic stimuli that require
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Antigenic stimuli that promote
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stimulated AKT/PKB phosphorylation is reduced, indi-
cating that CD19 has an important, but not indispens-
able, role in PI3K activation42,43. However, PI3K signalling
seems to be important for the function of CD19, as the
expression of a mutant form of CD19 that can no
longer bind PI3K, expressed on the Cd19–/– background,
fails to rescue the CD19-deficient phenotype38. The role
of BCAP in PI3K activation is less clear. Although the
production of PtdInsP

3
and AKT/PKB phosphorylation

are impaired in Bcap–/– chicken DT40 B cells48,49, IgM-
specific antibody-stimulated AKT/PKB phosphorylation
is unaffected in Bcap–/– mouse B cells50. One possibility
is that BCAP is only required for PI3K signalling in par-
ticular B-cell subsets. It is also possible that additional
isoforms of BCAP are expressed by mouse B cells50.
More recently, the guanine nucleotide-exchange factor
(GEF) VAV3 has been proposed to contribute to PI3K
activation in B cells by a mechanism that might involve

TI-2 antigens24–26. However, immune responses have not
been reported for the p85α, p55α and p50α triple-
knockout mice, which, given their generally more severe
phenotype than p85α single-knockout mice, might
have attenuated TD and TI responses also. Again, it is of
interest to consider the link between CD19 and PI3K in
B cells in the context of B-cell responsiveness. TD
humoral immune responses are deficient in Cd19–/–

mice35. Moreover, as for MZ B-cell development, the
capacity of CD19 to promote TD immune responses is
linked to its capacity to recruit and activate PI3K38.

PI3Ks in B-cell signalling. In B cells, PI3K is activated
within seconds of antigen-receptor triggering46,47. The
tyrosine kinase SYK becomes activated and phospho-
rylates the co-receptors CD19 and B-cell PI3K adap-
tor (BCAP), which provide binding sites for PI3Ks37,48

(FIG. 2). In Cd19–/– mouse B cells, IgM-specific antibody-
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Figure 1 | Genetic dissection of PI3K signalling in B-cell development. B-cell development occurs through several discrete
stages, at many anatomical locations (reviewed in REF. 141). In adult mice, B-cell development starts in the bone marrow, where
recombination-activating gene (Rag)-mediated rearrangement of the µ locus results in the expression of the µ heavy chain, which
associates with the surrogate light chain (SLC) and with Igα and Igβ (which transmit signals inside the cell) to form the pre-B-cell
receptor (pre-BCR). Signalling through the pre-BCR promotes a proliferative burst, followed by progression stage to the pre-B-cell
stage, where Rag-mediated recombination yields the κ and λ light chains. This transition is partially dependent on p85α and p110δ,
as well as the downstream effectors BTK (Bruton agammaglobulinaemia tyrosine kinase) and TEC. The rearranged λ or κ light chain
replaces the SLC to form the BCR. The BCR signals further development of the immature B cells, which migrate to the spleen (and
possibly other locations). There are at least three distinguishable subsets of mature B cells: conventional follicular B2 cells, marginal-
zone (MZ) B cells and B1 cells. MZ B-cell and B1-cell development depend on CD19 and p110δ. Whether these subsets follow a
common progressive developmental pathway or parallel developmental pathways is not entirely clear, but the strength and quality 
of BCR signals are thought to influence the lineage decision. After exposure to antigen, B cells undergo terminal differentiation to
antibody-secreting plasma cells. PI3K signalling seems to be involved at each of these stages, and is antagonized by phosphatase
and tensin homologue (PTEN; shown in a yellow box), as described in the text. BCAP, B-cell PI3K adaptor protein; PI3K,
phosphoinositide 3-kinase; TD, thymus dependent; TI-2, thymus independent type 2.



© 2003        Nature  Publishing Group

322 | APRIL 2003 | VOLUME 3 www.nature.com/reviews/immunol

R E V I EW S

primary, unlabelled cells, Clayton et al.25 documented
complete loss of PtdInsP

3
production in p110δ-deficient

B cells in response to IgM-specific antibody-mediated
stimulation. Furthermore, antibody-stimulated calcium
flux was attenuated in p110δ-deficient B cells24–26.
Antibody-stimulated proliferation was also markedly
attenuated in p85α- and p110δ-deficient mice. B-cell
proliferation stimulated by IL-4, lipopolysaccharide or a
CD40-specific antibody was reduced, but not as markedly
as that stimulated by an IgM-specific antibody12,13,24–26.

the activation of RAC, which then binds to p85α
through its RHO-GAP domain. This places VAV
upstream of PI3K signalling, rather than downstream as
had previously been suggested51,52.

IgM-specific antibody-stimulated AKT/PKB phos-
phorylation was nearly abolished in p85α- and p110δ-
deficient B cells, which indicates that these are the
main class IA regulatory and catalytic isoforms acting
downstream of the BCR24,25,53. Indeed, using a new
approach54 to measure the production of PtdInsP

3
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Figure 2 | PI3K activation and signalling in B cells. The molecular details of the recruitment and activation of phosphoinositide 
3-kinases (PI3Ks) by the B-cell receptor (BCR) is not completely understood, but is at least in part regulated by BCR- and 
SYK-dependent phosphorylation of CD19 and B-cell PI3K adaptor protein (BCAP), which contain Tyr-Xaa-Xaa-Met (YXXM)
sequences37,48. More recently, VAV has been proposed to contribute to the activation of PI3K, possibly as a consequence of the
capacity of VAV to activate RAC52. The interleukin-4 receptor (IL-4R) recruits and activates PI3K through insulin-receptor substrate
(IRS) proteins, which have Tyr-Xaa-Xaa-Met motifs142. Lipopolysaccharide (LPS)-stimulated activation of PI3K might involve Toll-like
receptor 4 (TLR4) and RAC, although the precise mechanism through which LPS stimulation leads to PI3K activation remains to be
determined143,144. CD40-mediated regulation of PI3K seems to be mediated by CBL145,146. B-cell linker (BLNK) is an adaptor protein
that becomes tyrosine phosphorylated by SYK and binds to the SRC-homology 2 (SH2) domains of phospholipase Cγ (PLCγ) 
and BTK, and hence coordinates the activation of these enzymes147. BTK contributes to BCR-stimulated calcium signalling by
phosphorylating and activating PLCγ. More recently, the adaptor protein BAM32 (B-cell adaptor molecule of 32 kDa) has also been
shown to be involved in PI3K-dependent calcium regulation62,63. The inhibitory receptor FcγRIIB binds to SH2-domain-containing
inositol polyphosphate 5′ phosphatase (SHIP) and stimulates the hydrolysis of phosphatidylinositol-(3,4,5)-trisphosphate (PtdInsP3)
to yield PtdIns(3,4)P2. TAPP1 (tandem PH-domain-containing protein 1) and TAPP2 bind preferentially to PtdIns(3,4)P2, but their
downstream targets remain undefined77. AKT/PKB regulates numerous signalling pathways that promote cell survival, cell-cycle
progression and growth3. BTK, Bruton agammaglobulinaemia tyrosine kinase; DAG, diacylglycerol; GPCR, G-protein-coupled
receptor; PDK1, phosphatidylinositol-dependent kinase 1; PKCβ, protein kinase Cβ; PTEN, phosphatase and tensin homologue.
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32 kDa (BAM32) is an adaptor protein with a high-
affinity PtdInsP

3
-binding PH domain that seems to

have a role in BCR-dependent calcium flux, although
the mechanism by which this occurs is unknown62,63.
A role for other PI3K effectors, including AKT/PKB, in
B-cell signalling is also anticipated64, but has yet to be
shown in vivo.VAV might be regulated, in part, by PI3K
activation, as PtdInsP

3
can regulate VAV GEF activity 

in vitro51,65. Moreover, BCR-stimulated calcium flux
depends on VAV, which indicates that VAV could pro-
vide a link between PI3K and PLCγ activation. However,
in contrast to the PH domains of BTK, AKT/PKB and
BAM32, the VAV PH domain does not contain crucial
residues required to bind PtdInsP

3
with sufficient affin-

ity to lead to the membrane recruitment of VAV66,67. In
this context, it is of interest to note that T-cell lymphoma
invasion and metastasis 1 (TIAM1), a VAV-related GEF,
has been proposed to be regulated by PtdIns(3)P, rather
than by PtdInsP

3
(REF. 68). The precise role of the VAV PH

domain, however, remains unknown65. For an excellent
review on PH domains, see REF. 69.

Co-clustering of the BCR and FcγRIIB by antigen–
antibody complexes inhibits B-cell activation. This inhi-
bition is mediated by FcγRIIB, which uses the lipid phos-
phatase SH2-DOMAIN-CONTAINING INOSITOL POLYPHOSPHATE D5

PHOSPHATASE (SHIP) to convert PtdInsP
3

to PtdIns(3,4)P
2
,

thereby modulating PI3K signalling. Co-ligation of
FcγRIIB inhibits both AKT/PKB70,71 and BTK72,73 phos-
phorylation, which indicates that both of these kinases
require PtdInsP

3
for activation in vivo. In Ship–/– mice,

the lack of inhibition of B-cell signalling contributes to
the development of autoimmune disease (note that
abnormal activation of myeloid cells also contributes
to autoimmune disease in this model)74–76. The ampli-
tude of the sustained phase of IgM-specific antibody-
stimulated calcium flux in B cells from these mice is
markedly increased, and this cannot be inhibited by
FcγRIIB signalling73,74. It is worth pointing out, how-
ever, that although the conversion of PtdInsP

3
to

PtdIns(3,4)P
2

can terminate BTK- and AKT/PKB-
dependent signalling, the PI3K signal might then be
‘taken over’ by the recently discovered tandem PH-
domain-containing protein 1 (TAPP1) and TAPP2
adaptor proteins, which have binding specificity for
PtdIns(3,4)P

2
(REFS 77,78). Whether these proteins

propagate negative signalling pathways, or have other
functions, remains to be determined.

Numerous roles for PI3Ks in T cells
T-cell development takes place in the thymus, where
thymocyte precursors are selected by self-peptides pre-
sented by MHC molecules. CD4+ and CD8+ T cells that
avoid being eliminated by reacting too strongly with
self-peptides migrate to the lymph nodes and the
spleen, where peptides are presented by dendritic cells
(DCs). Recognition of self-peptides in the spleen and
lymph nodes is thought to keep the T cells in an alert
state through sub-optimal T-cell receptor (TCR) sig-
nalling79. After presentation of a foreign peptide antigen
by an activated DC, T cells start to secrete IL-2, undergo
rapid proliferation and differentiate. T cells exposed to

It is of interest to note, however, that whereas p85α-
deficient B cells proliferate normally in response to
co-stimulation with IL-4 and a CD40-specific anti-
body12, p110δ-deficient B cells do not24,25. This raises
the possibility that IL-4 and CD40 together can
engage p110δ independently of p85α, perhaps by
engaging p85β-associated p110δ.

PI3K-mediated regulation of BTK
The TEC-family kinases are thought to link PI3K activa-
tion to calcium signalling. BTK, a TEC-family kinase
expressed by B cells, has a PH domain that binds
PtdInsP

3
with high affinity. A mutation in the BTK PH

domain that disrupts binding of PtdInsP
3

is the cause of
the mouse Xid phenotype, which is as severe as the
Btk–/– phenotype and is similar to the p85α- and p110δ-
deficient phenotypes, indicating that PI3K-dependent
regulation of BTK translocation to the plasma mem-
brane is essential for BTK function55,56. The phosphory-
lation of phospholipase Cγ (PLCγ) by BTK is thought to
be required to yield the threshold levels of InsP

3
that

allow calcium flux from extracellular stores into the
cytosol, which is required for a sustained calcium
response57. After recruitment of BTK to the cell mem-
brane mediated by the association of the PH domain of
BTK with PtdInsP

3
, tyrosines 551 and 223 (Tyr551 and

Tyr223) of BTK are thought to be phosphorylated
sequentially by LYN and by autophosphorylation,
respectively58,59. Indeed, Clayton et al.25 reported attenu-
ated phosphorylation of Tyr551 and Tyr223 of BTK in
IgM-specific antibody-stimulated p110δ-deficient 
B cells using site-specific phosphopeptide-specific anti-
bodies, confirming a role for PI3K in regulating the acti-
vation of BTK. However, Jou et al.26 found no effect of
p110δ deficiency on BTK phosphorylation using the gen-
eral phosphotyrosine-specific antibody 4G10. Similarly,
BTK phosphorylation as detected using 4G10 was nor-
mal in p85α-deficient B cells, as well as in wild-type 
B cells inhibited by wortmannin or LY294002 (REF. 53).
Moreover, the kinase activity of BTK seemed to be unaf-
fected by PI3K inhibition53, and PLCγ2 phosphorylation
was unaffected in p110δ-deficient cells25,26. These results
might be reconciled, at least in part, by the observation
that the phosphorylation of Tyr551 of BTK is partially
inhibited by pre-treatment of the cells with wortman-
nin, whereas phosphorylation detected using 4G10 is
not inhibited, which indicates that sites other than Y233
and Y551 might be dominantly recognized by 4G10
(REF. 60). Nevertheless, the phenotype of BTK and p85α
double-deficient mice was more severe than that of
either knockout alone53, and BTK is required for the
transcription of a small subset of genes that are not reg-
ulated by PI3K61. Therefore, although there is over-
whelming evidence of a role for PI3K in the regulation
of BTK, PI3K-independent functions of BTK need to be
considered also.

In contrast to p110δ-deficient mice, Btk–/– mice still
develop MZ B cells, and their TD immune responses are
less affected than in p110δ-deficient mice36. It is, there-
fore, pertinent to consider the role of additional PI3K
effectors in BCR signalling. B-cell adaptor molecule of

SH2-DOMAIN-CONTAINING

INOSITOL POLYPHOSPHATE D5

PHOSPHATASE

(SHIP). A lipid phosphatase that
removes the D5 phosphate from
PtdInsP

3
to yield PtdIns(3,4)P

2
.
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these studies are an important technical breakthrough, as
PI3K activity has previously been difficult to measure
using limited numbers of primary T cells, especially as
activated by APCs.

There are several possible mechanisms for the activa-
tion of PI3K in T cells92. TCR-interacting molecule
(TRIM) is a transmembrane protein that has a short
extracellular domain that is unlikely to bind any ligand,
but that has a cytoplasmic domain containing Tyr-Xaa-
Xaa-Met motifs that might be phosphorylated after
TCR stimulation93 (FIG. 3). The transmembrane adaptor
linker for activation of T cells (LAT) might also couple
to PI3K, although probably indirectly as it does not
contain a Tyr-Xaa-Xaa-Met motif94. Analogous to the
situation in B cells, VAV1 has recently been proposed to
regulate PI3K activation in thymocytes, placing VAV
upstream, rather than downstream, of PI3K signalling95.
The co-stimulatory receptors CD28 and inducible T-cell
co-stimulator (ICOS) also contain a Tyr-Xaa-Xaa-Met
motif that can function as a docking site for the SRC-

HOMOLOGY 2 DOMAINS (SH2 domains) of p85 and can also
contribute to PI3K activation83.

p85α-deficient T cells develop normally, and show
no defects in proliferation in response to stimulation
with a CD3-specific antibody12. CD3-specific antibody-
stimulated proliferation was nevertheless inhibited by
LY294002, which indicates that PI3Ks have a role in
TCR-dependent proliferation12. In fact, no evidence was
presented to indicate that TCR-coupled PI3K activation
was impaired in p85α-deficient T cells; therefore, a com-
pensatory role of p85β, for example, could not be
excluded. In p110δD910A/D910A T cells,AKT/PKB phospho-
rylation was nearly abrogated in response to TCR stimu-
lation24. CD3-specific antibody-stimulated proliferation
of purified p110δD910A/D910A CD4+ T cells was reduced by
about 50% (REF. 24). Curiously, p110δD910A/D910A T cells
stimulated with CD3-specific and CD28-specific anti-
bodies showed normal, or even enhanced, proliferation
and secreted normal levels of IL-2. Therefore, these
results supported previous studies indicating an impor-
tant role for PI3K in TCR signalling independently of
CD28 (REFS 96,97). Jou et al.26 observed a less marked
reduction in proliferation in response to stimulation
through CD3 in p110δ-deficient T cells compared with
p110δD910A/D910A T cells. This observation might reflect a
greater capacity for p110α and p110β to compensate in
the absence of p110δ expression compared with when
the ‘kinase-dead’ p110δ is expressed. However, differ-
ences in the experimental protocols could also be of
importance. Jou et al. used cultures of unfractionated
spleen cells in their assay, in which co-stimulation is pro-
vided by B7 ligands expressed by B cells, macrophages
and DCs26. Under these conditions, p110δD910A/D910A

T cells are also only mildly affected (K.O., unpublished
observations), which is consistent with a non-essential
role for p110δ in CD3-dependent proliferation in the
presence of co-stimulation.

Similar to BTK in B cells, the related tyrosine kinase
ITK connects TCR signalling to calcium flux in T cells98.
Interestingly, Itk–/– mice are refractory to stimulation by
CD3-specific antibody, but hyperproliferate in response

IL-12 tend to differentiate to interferon-γ-secreting 
T helper 1 (T

H
1) cells, whereas T cells exposed to IL-4

tend to differentiate to T
H
2 cells, which can secrete IL-4,

IL-5 and, in some cases, IL-10 (REF. 80). Subsequent to the
proliferative burst, most of the T cells die by apoptosis,
but some survive as long-lived memory T cells81. CD28
has a crucial role during T-cell activation, by associating
closely with the TCR at the interface between the T cell
and the antigen-presenting cell (APC)82. APCs express
B7 molecules (including CD80 and CD86), which are
ligands for CD28, and the capacity of an APC to activate
a T cell depends, to a large extent, on its expression of B7
(or related co-stimulatory) ligands83.

PI3Ks in T-cell development and differentiation. T-cell
development in the thymus does not seem to be affected
in p85α-deficient, p110δ-deficient or p110δD910A/D910A

mice, although positive and negative selection were not
specifically examined24,26,84. When compared with T cells
from wild-type littermates, peripheral p110δD910A/D910A

T cells express lower levels of CD44 and higher levels of
CD62L, which is consistent with a more naive pheno-
type24 (K.O., unpublished observations). Moreover,
p110δD910A/D910A mice develop a mild form of inflamma-
tory bowel disease, characterized by infiltration of
leukocytes in segments of the large intestine. As the
intestinal flora, from the point of view of the immune
system, is foreign, mechanisms need to be in place to
suppress unnecessary inflammation of the intestine.
This is mediated, in part, by regulatory T cells that
secrete IL-10 or transforming growth factor-β (TGF-β),
which suppress immune responses against the harmless
intestinal flora85. In p110δD910A/D910A mice, it is possible
that IL-10- or TGF-β-secreting regulatory T cells do not
become activated, thereby allowing infiltration of the
large intestine by leukocytes to occur unchecked. In
terms of T-cell differentiation, it is also of interest to
note that two PI3K effector proteins, AKT/PKB and
ITK, have been proposed to regulate differentiation
along the T

H
1- and T

H
2-cell lineages, respectively86–88.

Together, these results indicate possible roles for PI3K in
the differentiation of naive T cells to effector, regulatory
and memory T cells.

PI3Ks in T-cell signalling. PI3K activation occurs within
seconds of T-cell activation89,90, even preceding calcium
flux91. One study, in which the PtdInsP

3
reporter con-

struct green fluorescent protein (GFP)–AKT/PKB-PH
was expressed in the T cells of TCR-transgenic mice90,
yielded some surprising results: after encounter of a 
T cell with an APC, PI3K remained active for nine hours
or more90. Moreover, using the PI3K inhibitor LY294002,
it was shown that PI3K activation during the first nine
hours of T-cell stimulation is essential for T-cell prolifer-
ation, after which time PI3K is no longer strictly
required. As might be predicted, the accumulation of
PtdInsP

3
was localized to the contact area between the 

T cell and APC90,91. An unanticipated result was that
PtdInsP

3
also accumulated at the rear of the T cell, away

from the APC90. The mechanism or significance of this
posterior accumulation of PtdInsP

3
is not clear. However,

SRC-HOMOLOGY 2 DOMAIN

(SH2 domain). A non-catalytic
modular protein domain that
binds to phosphotyrosines in
specific sequence motifs.
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Shi et al.102 showed that IL-2 production by T cells is
sensitive to wortmannin in response to antigen stimula-
tion by APCs, regardless of whether co-stimulatory sig-
nals through CD28 are provided, but is independent of
PI3K when induced by antibodies specific for CD3.

They proposed that PI3K is required to form APC–
T-cell conjugates. More recent evidence, however, indi-
cates that the formation of such complexes does not
depend on PI3K90. Nevertheless, TCR-transgenic
p110δD910A/D910A T cells stimulated with a peptide ligand

to co-stimulation through CD28 (REF. 99), which is con-
sistent with results obtained for p110δ-deficient mice24.
T cells also express a second TEC-family kinase, RLK
(resting lymphocyte kinase; also known as TXK), which
lacks a PH domain and is uncoupled from regulation by
PI3K100. The capacity of RLK to be activated indepen-
dently of PI3K could be one reason that T-cell prolifer-
ation in response to antigen-receptor stimulation is less
affected in p85α- and p110δ-mutant mice than the
proliferation of B cells101.
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Figure 3 | PI3K activation and signalling in T cells. As for the B-cell receptor, signalling through the T-cell receptor (TCR) is known
to involve phosphoinositide 3-kinase (PI3K), but the molecular mechanism by which the TCR is coupled to PI3K remains unclear.
The co-stimulatory receptors CD28 and inducible T-cell co-stimulator (ICOS) contain consensus PI3K-binding motifs (YXXM), and
might either contribute to or complement TCR-dependent PI3K signalling. The transmembrane adaptor protein TCR-interacting
molecule (TRIM) also contains Tyr-Xaa-Xaa-Met motifs that might facilitate the coupling of the TCR to PI3K signalling. In addition,
VAV might regulate PI3K signalling upstream of RAC95,148. Phospholipase Cγ (PLCγ) is regulated by a pathway involving
LAT–GADS–SLP76 and VAV. PI3K, through the membrane recruitment of interleukin-2-inducible T-cell kinase (ITK), contributes to
calcium signalling downstream of the TCR98. In contrast to B cells, it is at present speculative whether inhibitory receptors signal
through SH2-domain-containing inositol polyphosphate D5 phosphatase (SHIP) in T cells131,132. AKT/PKB connects PI3K to
signalling pathways that promote cytokine transcription, survival, cell-cycle entry and growth3,149,150. DAG, diacylglycerol; GAB2,
GRB2-associated binding protein 2; GPCR, G-protein-coupled receptor; ITK, interleukin-2-inducible T-cell kinase; LAT, linker for
activation of T cells; PDK1, phosphatidylinositol-dependent kinase 1; PKC, protein kinase C; PtdIns, phosphatidylinositol; PTEN,
phosphatase and tensin homologue; SLP76, SH2-domain-containing leukocyte protein of 76 kDa; TAPP, tandem PH-domain-
containing protein; ZAP70; ζ-chain-associated protein kinase 70 kDa.
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independently of signals from the TCR and CD28. In
addition, transformed T-cell lines cannot be used to
investigate the role of CD28 in the prevention of anergy.

More recently, transgenic approaches have been used
to investigate the role of PI3K signalling downstream of
CD28 in primary T cells. Replacing the tyrosine of the
Tyr-Xaa-Xaa-Met motif with phenylalanine abrogates
PI3K binding to CD28 (REF. 106). Transgenic mice were
generated expressing such mutant CD28(Tyr170Phe)
on the Cd28–/– background107,108. Alternatively, retroviral
transduction was used to express CD28(Tyr170Phe)
proteins in Cd28–/– primary T cells in vitro109. These
experiments showed that CD28 can co-stimulate T-cell
proliferation and IL-2 production independently of its
association with PI3K107–109, although one group argued
that proliferation and IL-2 production were delayed in
the mutant mice108. However, the capacity of CD28 to
provide co-stimulation in vivo was not affected, as deter-
mined by the ability of CD28(Tyr170Phe)-expressing 
T cells to provide help for B cells during an antiviral
immune response and to prevent the induction of
anergy107. In contrast to IL-2 production, the capacity 
of CD28 to promote survival through the expression of
BCL-X

L
was abrogated in CD28(Tyr170Phe)-expressing

T cells107,109, which might have led to the failure of
CD28(Tyr170Phe)-expressing T cells to survive after
engraftment into a non-irradiated host108. These results
are in line with the important role of AKT/PKB in pro-
moting the expression of BCL-X

L
downstream of PI3K

activation in T cells110. Although the capacity of CD28 to
upregulate BCL-X

L 
expression helps to promote T-cell

survival107,108,111,112, CD28 clearly engages additional sig-
nals to promote T-cell proliferation and to prevent the
induction of anergy.

Overexpression of an activated form of AKT/PKB in
Cd28–/– CD4+ primary T cells recovered their capacity to
secrete IL-2 in response to peptide antigen86. This study
seems to be in conflict with the observation that
CD28(Tyr170Phe)-expressing CD4+ T cells, which can-
not stimulate AKT/PKB phosphorylation24, produce
normal levels of IL-2 in response to stimulation with
peptide antigen109. However, although the capacity of
CD28 to recruit PI3K might be dispensable for the regu-
lation of IL-2 production, it is still possible that CD28
could influence the capacity of the TCR to couple to
PI3K and AKT/PKB activation independently of the
Tyr170 site. In the cytoplasmic domain of CD28, there
are two proline-rich regions distal to the Tyr-Xaa-Xaa-
Met PI3K-binding site that can bind proteins with SRC-

HOMOLOGY 3 DOMAINS (SH3 domains)113–116 (FIG. 4). The
most carboxy-terminal of these is essential for the capac-
ity of CD28 to co-stimulate proliferation of and IL-2
production by primary CD4+ T cells109. Although it has
been proposed that this proline-rich region facilitates the
recruitment of p85 through its SH3 domain117, this is
inconsistent with the complete loss of CD28-associated
PI3K activity in CD28(Tyr170Phe) mutants106,118–120, with
the failure of the Tyr170Phe mutant to activate
AKT/PKB107 and with the lack of interaction between
a recombinant p85 SH3 domain and the CD28 pro-
tein in vitro114. However, the CD28 carboxy-terminal

presented by wild-type B cells acting as APCs had
markedly reduced proliferative responses and a reduced
capacity to produce IL-2, even though under these con-
ditions, co-stimulation would be provided by the APCs24.
Together, these results show that T cells probably depend
on p110δ to amplify signals stimulated by peptide anti-
gen, but that the strong stimulus provided by CD3-
specific antibody in conjunction with co-stimulation
through CD28 can bypass this requirement.

One mechanism whereby signals through the TCR
are thought to be amplified involves the accumulation
of lipid rafts at the T-cell–APC interface103. Lipid rafts
are sphingolipid- and cholesterol-rich microdomains in
the plasma membrane. Lipid rafts are enriched in SRC-
family kinases and small GTPases, and therefore, their
accumulation at the T-cell–APC interface might provide
a high local concentration of crucial signalling mole-
cules that lead to either amplified or sustained
signalling104. The accumulation of lipid rafts can also be
induced by CD3-specific and CD28-specific antibodies
bound to cell-sized polystyrene beads, and can be visu-
alized using fluorescently labelled cholera toxin protein,
which binds to the GM1-glycosphingolipid that is found
in rafts103. Interestingly, p110δD910A/D910A T cells had a
reduced capacity to form such lipid rafts in response to
stimulation with CD3-specific and CD28-specific anti-
bodies24. Although this defect did not affect the capacity
of the T cells to proliferate or produce IL-2 in response
to antibody stimulation (which involves high-affinity
receptor interactions), low-affinity interactions formed
between the TCR and peptide–MHC on the APC might
be crucially dependent on raft recruitment for signalling
to take place or to be sustained. Consistent with this
notion, p110δ-deficient T cells respond poorly to pep-
tide antigen presented by APCs24 or to stimulation with
phytohaemagglutinin, which is a relatively weak TCR
agonist for mouse T cells26.

PI3K and CD28 co-stimulation
CD28 provides an essential co-stimulatory signal during
T-cell activation, which augments the production of
IL-2, increases T-cell proliferation and prevents the
induction of anergy and cell death. Much attention has
been devoted to the potential of CD28 to stimulate PI3K
in T cells. The observations that CD28 can activate PI3K
independently of the TCR89 and that CD28 contains a
Tyr-Xaa-Xaa-Met motif in its cytoplasmic domain that
can bind the SH2 domains of p85 led several groups to
consider whether co-stimulation through CD28
involves PI3K activation105. Initial experiments, using
various T-cell lines transfected with mutant forms of
CD28, yielded conflicting results with respect to the role
of PI3K downstream of CD28 (REF. 105). Some of these
studies are difficult to interpret because transformed 
T-cell lines were used, many of which have been recog-
nized since to be transformed, in part, because they
no longer express the PtdInsP

3
phosphatase PTEN7.

Without PTEN, cells accumulate high levels of PtdInsP
3
,

even in the absence of stimulation, and as such, PI3K
signalling is constitutively switched on. Also, in contrast
to primary T cells, transformed T-cell lines proliferate

SRC-HOMOLOGY 3 DOMAIN

(SH3 domain). A non-catalytic
modular protein domain that
binds to proline-rich sequences.
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from other co-stimulatory receptors and cytokine recep-
tors at different stages of the immune response92. In par-
ticular, PI3Ks are thought to be important for regulation
of the cell cycle and cell survival by the IL-2 receptor92

(FIG. 3), although the specific PI3K subunits that are
required for IL-2-receptor signalling in vivo remain to be
identified. Recently, Frauwirth et al.125 have proposed that
PI3K could have an important role downstream of CD28
in regulating glucose metabolism in a manner analogous
to how the insulin receptor uses the PI3K signalling path-
way.Whether this function is unique to CD28 remains to
be determined, but these studies do reveal an often-
neglected aspect of T-cell activation in which PI3K might
have an important role. There is clearly much yet to be
learned about PI3K activation in T cells.

Consequences of unrestrained PI3K signalling
PTEN, a PtdInsP

3
phosphatase that removes the phos-

phate group from the D3 position of the inositol ring, is
frequently mutated in tumours126,127. Pten–/– mice die as
embryos, and Pten+/– heterozygous mice survive and
develop autoimmunity, which is thought to result, in
part, from increased resistance to Fas-mediated apopto-
sis128. Cre-mediated deletion of PTEN restricted to 
T cells results in a fatal lymphoproliferative disease, with
100% mortality by 17 weeks of age129. These mice also
suffer autoimmunity as a consequence of impaired
negative selection in the thymus129. Although PTEN
was deleted in both CD4+ and CD8+ T cells, it was
mainly the CD4+ T cells that underwent uncontrolled
proliferation129. These studies indicate that constitutive
PI3K activation protects T cells from apoptosis, both in
the thymus during negative selection and in the periph-
ery, by resulting in their failure to undergo activation-
induced cell death. Consistent with these conclusions is
the phenotype of mice with T-cell-restricted transgenic
expression of a p85α-deletion mutant that lacks nega-
tive regulatory sequences130. These mice have a milder
lymphoproliferative disease that develops with age, and
they are predisposed to developing leukaemia. In con-
trast to the profound effects of PTEN deficiency on 
T cells, T cells from mice that lack SHIP, another
PtdInsP

3
phosphatase (but which, in contrast to PTEN,

removes the D5-phosphate from the inositol ring),
seem to be normal, with the exception of a slight
increase in the number of CD4+ T cells74. It is neverthe-
less possible that SHIP could regulate T-cell activation
to some extent131,132.

Concluding remarks
In summary, PI3Ks are important regulators of adaptive
immunity. Too little PI3K activity leads to immunodefi-
ciency, whereas too much activity leads to autoimmunity
and leukaemia. The molecular basis for the preferential
requirement for p110δ in B and T cells is not known.
Possible explanations include distinct subcellular
localization, different capacities to interact with RAS
or other small GTPases, and different kinetics of acti-
vation compared with p110α and p110β. The molecu-
lar basis for PI3K activation in B and T cells needs to
be further elucidated before such questions can be

proline-rich region does seem to be required to prolong
the activation of LCK in response to TCR stimulation121,
possibly by binding to the LCK SH3 domain, and hence
relieving the inhibitory effect that the LCK SH3 domain
imposes on the LCK kinase domain121,122. Indeed, this
mechanism of activation of tyrosine kinases had previ-
ously been shown for CD28-mediated regulation of
ITK, which depends on the membrane-proximal proline-
rich motif of CD28 and the ITK SH3 domain116,123.
Sustained activation of LCK and/or ITK could thereby
contribute to sustained tyrosine-kinase-dependent
activation of PI3K by the TCR, for example by phos-
phorylating TRIM or another protein containing Tyr-
Xaa-Xaa-Met motif(s). Therefore, expressing AKT/PKB
in Cd28–/– T cells does not necessarily bypass the require-
ment for CD28 to recruit and activate PI3K directly, but
might instead bypass the requirement for CD28 to pro-
mote TCR-dependent PI3K activation by maintaining
LCK or ITK in an active configuration (FIG. 4). In support
of this model, PI3K does seem to have an integral role in
TCR signalling24,96,97. Moreover, the requirement for co-
stimulation through CD28 is circumvented in motheaten
T cells (which have defects in the gene that encodes SH2-
domain-containing protein tyrosine phosphatase 1,
SHP1), in which the lack of SHP1-associated tyrosine-
phosphatase activity led to sustained tyrosine-kinase
activity independent of CD28 (REF. 124).

The relative contributions of the TCR and CD28 to
PI3K signalling remain to be determined. In addition,
PI3K might have important roles in transmitting signals
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Figure 4 | Two modes of CD28-dependent activation of PI3K. In the direct mode, the p85
SRC-homology 2 (SH2) domains bind the phosphorylated Tyr-Met-Asn-Met (YMNM) motif in the
cytoplasmic domain of CD28 (REF. 106). This is analogous to the manner in which growth-factor
receptors, such as platelet-derived growth factor receptor and c-KIT, recruit and activate class IA
phosphoinositide 3-kinases (PI3Ks). The second mode of activation is more speculative at this
time, and is based on the observation that the proline-rich region of CD28 (PYAP) is required for
CD28 to sustain LCK in its activated state (the initial activation is controlled by the TCR and
CD4)115,121. The link between LCK and PI3K could involve the phosphorylation of TCR-interacting
molecule (TRIM; a transmembrane adaptor protein with Tyr-Xaa-Xaa-Met, YXXM, motifs), linker
for activation of T cells (LAT; which lacks Tyr-Xaa-Xaa-Met motifs, but which might couple to 
PI3K indirectly through GAB) or other linker proteins with Tyr-Xaa-Xaa-Met motifs. LCK could
phosphorylate these targets directly or through its activation of ζ-chain-associated protein kinase
70 kDa (ZAP70). Either way, CD28 could contribute to T-cell-receptor-dependent PI3K activation
by virtue of its capacity to influence the kinetics of LCK activation.
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ago133. It is hoped that, in the next 15 years, this knowl-
edge will contribute to the development of treatments
for immune-related diseases, including autoimmunity,
leukaemia and graft rejection. Indeed, the development
of PI3K isoform-selective inhibitors is currently being
pursued by several pharmaceutical companies134. In this
context, it is particularly encouraging to note the recent
development of p110δ-specific inhibitors135,136.

Note added in proof
Since the submission of this manuscript, Suzuki et al.151

have shown enhanced B1 and marginal-zone B-cell
production in mice lacking PTEN expression in B cells.

answered. In addition, tissue-specific knockouts will
probably provide information about any roles for
p110α and p110β in the regulation of adaptive immu-
nity, as the phenotype of p110δ-deficient mice does not
exclude compensatory or complementary functions for
these kinases. The precise role of p110γ in B and T cells
has also yet to be carefully examined, particularly in the
context of chemotactic responses, which involve
GPCRs. Finally, virtually nothing is known about the
function, if any, of the class II and class III PI3Ks in lym-
phocyte biology. Considerable progress has been made
in understanding the contributions of PI3Ks to lympho-
cyte biology since their initial description nearly 15 years
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