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NF-κB signaling in inflammation
Ting Liu1, Lingyun Zhang1, Donghyun Joo1 and Shao-Cong Sun1,2

The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator
of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines
and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival,
activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation
contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function
of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB
inhibition.
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INTRODUCTION
Nuclear factor-κB (NF-κB) represents a family of inducible
transcription factors, which regulates a large array of genes
involved in different processes of the immune and inflammatory
responses.1 This family is composed of five structurally related
members, including NF-κB1 (also named p50), NF-κB2 (also named
p52), RelA (also named p65), RelB and c-Rel, which mediates
transcription of target genes by binding to a specific DNA
element, κB enhancer, as various hetero- or homo-dimers.2 The
NF-κB proteins are normally sequestered in the cytoplasm by a
family of inhibitory proteins, including IκB family members and
related proteins characterized by the presence of ankyrin repeats.3

To date, the best studied and most important IκB family member
is IκBα. In addition, the precursor proteins of NF-κB1 and NF-κB2,
p105 and p100, serve as IκB-like proteins, because their C-terminal
potion resembles the structure of IκB and has NF-κB inhibitory
functions.4

The activation of NF-κB involves two major signaling pathways,
the canonical and noncanonical (or alternative) pathways, both
being important for regulating immune and inflammatory
responses despite their differences in signaling mechanism.3,5

The canonical NF-κB pathway responds to diverse stimuli,
including ligands of various cytokine receptors, pattern-
recognition receptors (PRRs), TNF receptor (TNFR) superfamily
members, as well as T-cell receptor (TCR) and B-cell receptor.6 The
primary mechanism for canonical NF-κB activation is the inducible
degradation of IκBα triggered through its site-specific phosphor-
ylation by a multi-subunit IκB kinase (IKK) complex.1,7 IKK is
composed of two catalytic subunits, IKKα and IKKβ, and a
regulatory subunit named NF-κB essential modulator (NEMO) or
IKKγ.8 IKK can be activated by different stimuli, including
cytokines, growth factors, mitogens, microbial components and
stress agents.9 Upon activation, IKK phosphorylates IκBα at two
N-terminal serines and, thereby, triggers ubiquitin-dependent IκBα
degradation in the proteasome, resulting in rapid and transient
nuclear translocation of canonical NF-κB members predominantly
the p50/RelA and p50/c-Rel dimers.4,7,10

In contrast to the canonical NF-κB pathway, the noncanonical
NF-κB pathway selectively responds to a specific group of stimuli,
including ligands of a subset of TNFR superfamily members such
as LTβR, BAFFR, CD40 and RANK.11,12 In addition, the noncanonical
NF-κB activation does not involve IκBα degradation but rather
relies on processing of the NF-κB2 precursor protein, p100.3,11 A
central signaling molecule for this pathway is NF-κB-inducing
kinase (NIK), which activates and functionally cooperates with IKKα
to mediate p100 phosphorylation, which in turn induces p100
ubiquitination and processing.13,14 The processing of p100
involves degradation of its C-terminal IκB-like structure, resulting
in generation of mature NF-κB2 p52 and nuclear translocation of
the noncanonical NF-κB complex p52/RelB.3,6,11 Functionally,
canonical NF-κB is involved in almost all aspects of immune
responses, whereas the noncanonical NF-κB pathway appears to
be evolved as a supplementary signaling axis that cooperates with
canonical NF-κB pathway in the regulation of specific functions of
the adaptive immune system.12

A well-recognized function of NF-κB is regulation of inflamma-
tory responses. In addition to mediating induction of various pro-
inflammatory genes in innate immune cells, NF-κB regulates the
activation, differentiation and effector function of inflammatory T
cells.15,16 Recent evidence suggests that NF-κB also has a role in
regulating the activation of inflammasomes.17 Not surprisingly,
deregulated NF-κB activation is a hallmark of chronic inflamma-
tory diseases. Therefore, a better understanding of the mechanism
that underlies NF-κB activation and pro-inflammatory function is
of great significance for therapeutic strategies in the treatment of
inflammatory diseases.

NF-κB AS A MEDIATOR OF PRO-INFLAMMATORY GENE
INDUCTION
Inflammation is a protective response of the host to infections and
tissue damages, characterized by a series of reactions, including
vasodilation and recruitment of immune cells and plasma proteins
to the site of infection or tissue injury.6,15 Normally, inflammation
is beneficial to the host and can be resolved in a timely manner;
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however, deregulated inflammatory responses can cause exces-
sive or long-lasting tissue damages, contributing to the develop-
ment of acute or chronic inflammatory diseases. NF-κB is a central
mediator of pro-inflammatory gene induction and functions in
both innate and adaptive immune cells.

FUNCTION OF NF-κB IN INNATE IMMUNE CELLS
Innate immune cells, including macrophages, dendritic cells and
neutrophils, are important players of innate immunity and
inflammation. These cells express PRRs that detect various
microbial components, the so-called pathogen-associated mole-
cular patterns (PAMPs).18,19 PRRs also recognize damage-
associated molecular patterns (DAMPs), which are molecules
released by necrotic cells and damaged tissues. Mammalian cells
express five families of PRRs, including toll-like receptors (TLRs),
RIG-I-like receptors, NOD-like receptors (NLRs), C-type lectin-like
receptors and cytosolic DNA sensors.18,20,21 The different families
of PRRs have distinct structural properties and respond to different
PAMPs and DAMPs, but they share many similarities in the
downstream signal transduction pathways.
A common signaling event of the PRRs is activation of the

canonical NF-κB pathway, which is responsible for transcriptional
induction of pro-inflammatory cytokines, chemokines and addi-
tional inflammatory mediators in different types of innate immune
cells (Figure 1).2,22,23 These inflammatory mediators can both
directly engage in the induction of inflammation and act indirectly
through promoting the differentiation of inflammatory T cells. A
signaling component that integrates the different PRR pathways
for NF-κB activation is transforming growth factor-β-activated
kinase 1 (TAK1).24–26 TAK1 has two regulatory subunits, TAB1 and
TAB2, the latter of which is capable of binding poly-ubiquitin
chains, which is required for TAK1 activation. Upon activation,
TAK1 activates the downstream kinase IKK, thereby mediating
IκBα phosphorylation and NF-κB activation.27

The pro-inflammatory function of NF-κB has been extensively
studied in macrophages, a large family of innate immune cells that
reside in different tissues and function in the front line of an
immune response against infections.28 In response to diverse
PAMPs and DAMPs, macrophages become rapidly activated and

secrete a large array of cytokines and chemokines. Under different
pathophysiologic conditions, activated macrophages are capable
of differentiating into phenotypically different states, including the
classically activated (M1) and the alternatively activated (M2)
macrophages.29,30 M1 macrophages are characterized by the
production of pro-inflammatory cytokines, such as IL-1, IL-6, IL-12,
TNF-α and chemokines, involved in various inflammatory pro-
cesses. The M1 macrophages also promote the differentiation of
inflammatory T cells, including Th1 and Th17 cells, which in turn
mediate inflammation.30,31 In contrast, M2 macrophages produce
anti-inflammatory cytokines, such as IL-10 and IL-13, and are
important for resolution of inflammation and mediating wound
healing.32 TLR signals have an important role in regulating
macrophage polarization.30 In particular, the TLR4 ligand lipopo-
lysaccharide (LPS) promotes macrophage differentiation toward
M1 phenotype.24 LPS stimulates macrophage signaling via two
different TLR adapters, MyD88 and TRIF.24 Genetic evidence
suggests that the MyD88-dependent TLR pathway is crucial for M1
macrophage polarization and inducible expression of pro-
inflammatory cytokines.33 The MyD88-dependent TLR signaling
involves activation of IRAK family of kinases, which in turn
stimulate the E3 ubiquitin ligase activity of TRAF6, allowing TRAF6
to undergo self-ubiquitination and to conjugate ubiquitin chains
onto other signaling molecules that are involved in the activation
of a ubiquitin-dependent kinase, TAK1.24,25 Upon activation, TAK1
activates the downstream kinase IKK, which in turn phosphorylate
the NF-κB inhibitor IκBα, leading to ubiquitin-dependent IκBα
degradation and NF-κB activation.27 NF-κB is a key transcription
factor of M1 macrophages and is required for induction of a large
number of inflammatory genes, including those encoding TNF-α,
IL-1β, IL-6, IL-12p40 and cyclooxygenase-2.30

A major function of the TRIF-dependent TLR signaling pathway
is to mediate the induction of Type I IFNs and IFN-inducible
genes.34 This pathway involves recruitment of TRAF proteins,
particularly TRAF3, to TRIF and subsequent activation of TANK-
binding kinase 1 (TBK1) and IKKɛ in a mechanism that is thought
to involve TRAF3 ubiquitination and ubiquitin-dependent recruit-
ment of TBK1 and IKKɛ.34,35 Activated TBK1 and IKKɛ then
phosphorylate the transcription factor IRF3 and, thereby, induce
IRF3 dimerization, leading to transcriptional induction of type I

Figure 1. NF-κB target genes involved in inflammation development and progression. NF-κB is an inducible transcription factor. After its
activation, it can activate transcription of various genes and thereby regulate inflammation. NF-κB target inflammation not only directly by
increasing the production of inflammatory cytokines, chemokines and adhesion molecules, but also regulating the cell proliferation,
apoptosis, morphogenesis and differentiation.
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IFNs, IFN-α and IFN-β.30,34 In addition to IRF3 activation, the TRIF-
dependent TLR pathway activates NF-κB though stimulation of the
adapter kinase receptor-interacting protein 1 (RIP1).19,24 This latter
function of TRIF signaling involves activation of an E3 ubiquitin
ligase, Peli1, which conjugates lysine 63-linked ubiquitin chains to
RIP1, thereby facilitating the recruitment and activation of IKK.36

As seen in the MyD88 pathway, TRIF-stimulated NF-κB mediates
induction of inflammatory cytokine genes. Therefore, NF-κB is a
critical mediator of macrophage inflammatory responses triggered
by both the MyD88- and TRIF-dependent pathways. In addition,
NF-κB also mediates the pro-inflammatory signaling functions of
various other PRRs.

NF-κB FUNCTION IN T CELLS
Inflammation also involves adaptive immune components,
particularly CD4+ T-helper (Th) cells.37 The activation of naive
T cells is initiated upon engagement of the TCR by a specific
antigen presented on antigen-presenting cells, mostly dendritic
cells. Canonical NF-κB members, RelA and c-Rel, have a central role
in mediating TCR signaling and naive T-cell activation.38 Deregu-
lated NF-κB activation can cause aberrant T-cell activation, which
is associated with autoimmune and inflammatory responses.39 NF-
κB also plays a role in regulating T-cell differentiation and effector
function. Upon activation, CD4+ T cells differentiate into different
subsets of effector T cells, including Th1, Th2, Th17 and T follicular
(Tfh) cells, which secrete distinct cytokines and mediate different
aspects of immune responses.37 Th1 and Th17 cells are generally
considered as inflammatory T cells, since they mediate inflamma-
tory responses against both infections and self-triggers, and are
associated with various autoimmune and inflammatory
conditions.2 Th1 cells are characterized by the secretion of IFN-γ,
a cytokine that both promotes cellular immunity and participate in
inflammatory processes. NF-κB promotes Th1 cell differentiation
by regulating TCR signaling as well as functioning in innate
immune cells to mediate induction of cytokines, such as IL-12,
which promote Th1 differentiation.38 Th17 cells are characterized
by the secretion of IL-17, an inflammatory cytokine that recruits
monocytes and neutrophils to the site of inflammation in
response to invasion by pathogens or self-antigens. The differ-
entiation of CD4+ T cells is regulated by both cytokines secreted
by the antigen-presenting cells and other innate immune cells and
T-cell intrinsic factors.
Canonical NF-κB regulates CD4+ T-cell differentiation via both

regulation of cytokine production in innate immune cells and
T-cell intrinsic mechanisms. Inhibition of NF-κB in T cells by
transgenic expression of a degradation-resistant form of IκBα
lacking its N-terminal sequence impairs Th1 responses.40 The Th1
cell generation also requires c-Rel, which mainly functions by
mediating induction of the Th1-polarizing cytokine in antigen-
presenting cells.41 NF-κB1 p50, on the other hand, is important for
Th2 responses and allergic airway inflammation, which appears to
involve induction of the lineage transcription factor Gata3.42

Several NF-κB members have been shown to promote Th17
responses. Nfkb1 knockin mice that express p50 but not its
precursor, the IκB-like molecule p105, display aberrant NF-κB
activation and spontaneously develop colitis characterized by
hyperproduction of Th17 cells.43 Although p105 deficiency has no
T-cell intrinsic effect on Th17 cell differentiation, the aberrant
activation of NF-κB renders innate immune cells hyperresponsive
to TLR stimulation for production of IL-6, a major cytokine-
promoting Th17 differentiation.43 A T-cell intrinsic role of NF-κB in
regulating Th17 responses was initially indicated by a finding that
mice with T-cell-specific IKKβ deletion have impaired T-cell
activation and are refractory to the induction of a Th17-
dependent autoimmune disease, experimental autoimmune
encephalomyelitis (EAE).44 Subsequent work has definitively
demonstrated a crucial role for c-Rel and RelA in mediating

induction of the Th17 lineage transcription factor RORγt and the
generation of Th17 cells.40,41 In CD4+ T cells, c-Rel also mediates
TCR-stimulated expression of IL-21, a γc family cytokine important
for the differentiation Th17 and Tfh cells.45 Consistently, the c-Rel-
deficient mice have a defect in both Th17 and Tfh responses.45

Regulatory T (Treg) cells, generated along with thymocyte
development or through CD4+ T-cell differentiation, are instru-
mental for controlling immune responses to prevent autoimmu-
nity and chronic inflammation.46 Although NF-κB is known as a
factor that promotes T-cell activation and effector T-cell differ-
entiation, it is increasingly clear that the function of NF-κB in T-cell
responses is paradoxical, since it is also involved in the generation
of Treg cells. Mice deficient in various signaling components of the
canonical NF-κB pathway, such as TAK1, IKK and the T-cell-specific
TAK1/IKK-activating factors CARMA1 and Bcl10, have reduced
production of Treg cells, whereas expression of a constitutive
active IKKβ or deletion of the IKK-negative regulator CYLD
promotes Treg development.47 The NF-κB member c-Rel is
particularly important for mediating Treg development, and
c-Rel acts by participating in the induction of Treg master
transcription factor Foxp3.48,49 The canonical NF-κB signaling
pathway is also required for maintaining the immunosuppressive
function of Treg cells, since deletion of IKKβ or its upstream
activator Ubc13 in Treg cells impairs the in vivo function of Treg
cells and sensitizes Treg cells for acquiring Th1 and Th17
inflammatory effector functions under lymphopenic conditions.50

Although noncanonical NF-κB pathway is dispensable for naive
T-cell activation, this pathway is required for both the differentia-
tion and effector/memory functions of T cells, as demonstrated
using different in vivo models of immune and autoimmune
responses.51–54 Mutant mice harboring NIK gene deletion or
expressing a non-processible p100 displays impaired generation
of Th1 and Th17 subsets of CD4+ effector T cells. NIK and
noncanonical NF-κB are also required for the recall responses of
antigen-specific effector and memory T cells.51–54 Moreover,
noncanonical NF-κB is required for the pathological effector
function of Th17 cells in mediating neuroinflammation, which
involves induction of the inflammatory cytokine GM-CSF.53 Of
note, in contrast to its in vivo role in regulating Th1 and Th17
effector T-cell generation, noncanonical NF-κB pathway is
dispensable for CD4+ T-cell differentiation in an in vitro system
involving naive T-cell activation with anti-CD3/anti-CD28 in the
presence of polarizing cytokines.52,53 This difference is likely due
to the requirement of in vivo conditions for optimal activation of
noncanonical NF-κB. As indicated above, noncanonical NF-κB
activation is primarily mediated by a subset of TNFR superfamily
members. T-cell activation is associated with inducible expression
of several TNFRs, including CD27, CD30, OX40 and 4-1BB, which
are engaged by their ligands on antigen-presenting cells.55

Although some of the TNFR ligands are also expressed on
activated T cells, the T cell–T cell interaction, especially under
in vitro conditions, only trigger weak activation of noncanonical
NF-κB, which can be greatly enhanced by cross-linking the TNFR
OX40.51,53 Collectively, these findings suggest that both canonical
and noncanonical NF-κB pathways are involved in the generation
and effector functions of inflammatory T cells, although they differ
in mechanisms of activation and function.

NF-κB IN INFLAMMASOME REGULATION
Inflammasomes are a group of intracellular multi-protein com-
plexes assembled in response to PAMPs and DAMPs, and
characterized by the activation of inflammatory caspases.21

Canonical inflammasomes are composed of a ligand-sensing
receptor, which includes members of the NLR family as well as
AIM2 (absent in melanoma 2), the adapter protein ASC (apoptosis-
associated speck-like protein containing CARD) and pro-caspase
1.56 Among the well-characterized inflammasome receptors are
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NLRP1, NLRP3, NLRC4 and AIM2. Upon stimulation, the inflamma-
some receptors oligomerize and recruit pro-caspase 1 via ASC,
thereby stimulating pro-caspase 1 processing and conversion to
active caspase 1. Activated caspase 1 then cleaves pro-IL-1b and
pro-IL-18 into their mature forms, leading to the secretion of these
pro-inflammatory cytokines.57 Inflammasomes form an integral
part of the innate immunity against pathogenic infections and
also play an important role in regulating the composition of
intestinal microbiota.58 However, deregulated inflammasome
activation contributes to various autoimmune and inflammatory
diseases.59 It is now clear that NF-κB signaling pathway is involved
in the regulation of inflammasome, contributing to the initiation
and development of inflammatory diseases (Figure 2).59

NLRP3 inflammasome is currently the most extensively studied
inflammasome, which is composed of NLRP3, ASC and pro-
caspase 1, as well as an essential regulatory protein, NIMA-related
kinase 7 (NEK7). Activation of the NLRP3 inflammasome usually
requires both a priming signal (signal 1) and an activation signal
(signal 2). A major role of the priming signal is to induce the
transcriptional expression of NLRP3 and pro-IL, since most cell
types have insufficient levels of NLRP3 for inflammasome
activation and do not constitutively express pro-IL-1β.60,61 In
addition, emerging evidence suggests that signal 1 may also
prime NLRP3 via post-translational mechanisms, such as NLRP3
deubiquitination.62,63 Typical inducers of signal 1 include microbial
components, such as TLR ligands, and cytokines like TNF-α and
IL-1β, which are known to activate NF-κB, a transcriptional
activator of both NLRP3 and pro-IL-1β genes. The second signal
of inflammasome activation is triggered by various PAMPs and
DAMPs, such as pore-forming toxins, viral RNAs, ATP and
crystalline substances.60,64 These diverse stimuli are thought to
activate NLRP3 via inducing different cellular events, including K+

efflux, Ca2+ signaling, mitochondrial and lysosomal damages that
release substances such as reactive oxygen species, oxidized
mitochondrial DNA and lysosomal proteases.61

NF-κB is a central mediator of the priming signal of NLRP3
inflammasome activation and acts by inducing the transcriptional

expression of NLRP3 and pro-IL-1β in response to various PRR
ligands and cytokines.3,17 Like the pro-IL-1β gene, the NLRP3 gene
is a direct target of NF-κB and contains NF-κB-binding sites in its
promoter region.65 Thus, incubation of LPS-stimulated macro-
phages with an IKK inhibitor, Bay11-7082, blocks NLRP3 induction
and caspase 1 activation by ATP.57,66 However, the role of NF-κB
signaling pathway in inflammasome regulation appears to be
complex, since IKKβ-deficient macrophages display hyper-
activation of caspase 1 and enhanced secretion of IL-1β upon
LPS stimulation, and myeloid cell-conditional IKKβ knockout mice
are more sensitive to endotoxin shock.67 The negative role of IKKβ
in inflammasome activation appears to involve induction of
autophagy, an intracellular degradation system that maintains
cellular homeostasis through degradation of abnormal proteins
and damaged organelles like mitochondria.68 Earlier studies
suggest that IKK is important for induction of autophagy, which
in turn negatively regulates inflammasome activation by main-
taining healthy mitochondria to prevent release of reactive
oxygen species mitochondrial DNA and possibly also by degrad-
ing major components of the inflammasome complex.69–72 IKK/
NF-κB facilitates autophagy induction by inducing the expression
of an autophagy receptor, p62 (also called SQSTM1), mediating
recruitment of damaged mitochondria for autophagic clearance
via a ubiquitin-dependent mechanism.68 Myeloid cell-specific p62
ablation results in aberrant accumulation of damaged mitochon-
dria and excessive production of IL-1β, associated with hyper-
sensitivity to endotoxin-induced shock. Collectively, these findings
suggest although NF-κB mediates the priming signal of NLRP3
inflammasome activation, induction of p62 expression and
mitophagy by NF-κB may serve as an autoregulatory mechanism
to restrain its pro-inflammatory function.

NF-κB IN INFLAMMATORY DISEASES
NF-κB has been implicated in the pathogenesis of a number of
inflammatory diseases, such as rheumatoid arthritis (RA), inflam-
matory bowel disease (IBD), multiple sclerosis, atherosclerosis,

Figure 2. NF-κB in the regulation of NLRP3 inflammasome. The activation of NLRP3 inflammasome requires two signals, priming and
activation. A prototypical example of priming is bacterial LPS binding to TLR4, leading to the activation of NF-κB signaling. In the nucleus, the
active NF-κB promotes the transcription of NF-κB-dependent genes, such as NLRP3, Pro-IL-1β and Pro-IL-18, which are necessary for
inflammasome activation. The second signal of inflammasome activation is provided by NLRP3 agonists that activates NLRP3 to trigger
inflammasome assembly and mature IL-1β secretion. To date, mitochondrial damage is the most widely studied activating stimuli for NLRP3
pathway in terms of its connection to diverse inflammatory, metabolic and malignant diseases. NF-κB induces delayed accumulation of the
autophagy receptor p62, which can specifically bind to mitochondrial poly-ubiquitin chains though E3 ubiquitin ligase Parkin, and thereby,
negatively regulate inflammasome activation via mitophagic elimination.
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systemic lupus erythematosus, type I diabetes, chronic obstructive
pulmonary disease and asthma.73 In response to different cellular
stimuli, NF-κB plays a complex role in different cell types and in
different diseases states.

Rheumatoid arthritis
RA is an autoimmune and inflammatory disease characterized by
immune cell infiltration into the synovium, associated with chronic
inflammation and destruction of cartilage and bone.74 A major
inflammatory mediator of RA is NF-κB, which has been demon-
strated in studies using both animal models and human patients.
For example, several early studies have detected NF-κB activation
in synovial tissue of RA patients.75–78 In mouse collagen-induced
arthritis, NF-κB activation in synovial tissue precedes the devel-
opment of clinical symptoms and increases along with disease
progression.79 NF-κB activation has also been associated with rat
arthritis induced by different agents, such as pristine and
streptococcal cell wall.80,81 Similarly, NF-κB activation in rats by
intra-articular transfer of an adenoviral vector encoding IKKβ
induces synovial inflammation and clinical signs of arthritis,
whereas intra-articular transfer of a dominant-negative IKKβ
mutant suppresses adjuvant-induced arthritis.82 In line with these
findings, mice with myeloid cell-specific deficiency of A20, a
deubiquitinase negatively regulating NF-κB signaling, sponta-
neously develop polyarthritis with typical features of RA.83 Finally,
NF-κB inhibition by decoy oligonucleotides or the IKK inhibitor
BMS-345541 ameliorates adjuvant-induced arthritis.16,84

The pathogenesis of RA involves a variety of cell types,
including innate immune cells such as monocytes/macrophages,
T cells, B cells and synovial fibroblasts.85 NF-κB mediates the
induction of pro-inflammatory cytokines, such as TNF-α, IL-1 and
IL-6, in monocytes/macrophages.86 Many of these cytokines are
capable of activating NF-κB in innate immune cells and fibroblasts,
thereby inducing the expression of additional inflammatory
cytokines and chemokines, leading to further recruitment of
inflammatory immune cells and dissemination of inflammation.84

The canonical and noncanonical NF-κB pathways also mediate
RANK ligand-induced differentiation of monocytes/macrophages
into the bone-resorbing osteoclasts, whose deregulation con-
tributes to inflammatory bone loss associated with RA.87–89

Among the different subsets of T cells, Th17 cells are particularly
important for the pathogenesis of RA.90 As described above, NF-κB
promotes Th17 differentiation both indirectly through induction
of inflammatory cytokines, IL-1, IL-6 and IL-23, in innate immune
cells and directly regulates Th17 lineage transcription factors in T
cells.2,91,92 Deregulated activation of NF-κB also contributes to
aberrant survival of self-reactive B cells and production of auto-
antibodies that contribute to the pathogenesis of RA.93 In
particular, RA patients often display elevated serum levels of
B-cell activating factor belonging to TNF family associated with
deregulated activation of the noncanonical NF-κB. Therefore,
NF-κB mediates the pathogenesis of RA by functioning in different
cell types.

Inflammatory bowel disease
Inflammatory bowel diseases, including Crohn’s disease and
ulcerative colitis, are chronic inflammatory disorders of the
gastrointestinal tract thought to result from inappropriate
inflammatory responses to intestinal microbes.94 The pathogen-
esis of IBD involves multiple cell types of the mucosal immune
system, including intestinal epithelial cells, innate immune cells
such as macrophages and neutrophils, T cells and innate lymphoid
cells.95 Strong evidence suggests the involvement of NF-κB in the
pathogenesis of IBD. Constitutive NF-κB activation has been found
in inflamed colonic tissue of IBD patients.96,97 Furthermore,
genetic mutations in NF-κB-stimulating immune receptors, such
as NOD2, and NF-κB target genes, such as IL-12 and IL-23, are

associated with human IBD.94 Polymorphisms and mutations in
the NFKB1 gene, which encodes the IκB-like molecule p105 and its
processing product p50, have also been associated with IBD.98–100

These genetic alterations appear to inhibit NFKB1 gene expression
or alter the stability and function of the protein products.
Consistently, mice carrying a knockin mutation in the NFKB1 gene
to block generation of p105 spontaneously develop intestinal
inflammation with IBD-like features.43 A number of other animal
model studies have also demonstrated that genetic deficiency
in negative regulators of the canonical NF-κB pathway, such
as the deubiquitinases CYLD and A20, promotes colonic
inflammation.101–103 In line with these findings, decoy oligonu-
cleotides that target the DNA-binding activity of NF-κB proteins
ameliorate colitis induced by trinitrobenzene sulfonic acid and
Dextran sulfate sodium.104,105 Deletion of IKKβ in myeloid cells
also inhibits experimental colitis and colitis-associated cancer.106

These findings are consistent with the role of NF-κB in mediating
induction of pro-inflammatory cytokines in innate immune cells
and the differentiation Th1 and Th17 subsets of inflammatory
T cells.
In contrast to its pro-inflammatory role in myeloid cells, NF-κB

has a protective role in intestinal epithelial cells, where it is
required for maintaining epithelial integrity and intestinal immune
homeostasis.107,108 Conditional deletion of NEMO, IKKβ or both
IKKα and IKKβ in intestinal epithelial cells causes spontaneous
development of chronic intestinal inflammation in mice.107,108

Thus, aberrant activation of NF-κB or its genetic deficiency may
both contribute to the pathogenesis of IBD, with its functions
differing between innate immune cells and epithelial cells.

Multiple sclerosis
Multiple sclerosis is an inflammatory disease of the central
nervous system (CNS) generally considered to be an autoimmune
disease involving the pathogenic action of CNS-specific CD4+

T cells, particularly Th1 and Th17 cells.109 The involvement of NF-
κB signaling pathway in multiple sclerosis has been suggested by
genome-wide association studies. These studies have identified a
number of NF-κB-related factors as susceptibility candidates, such
as RelA, IκBα, IκBz, NIK, Bcl10 and MALT1.110–112 Consistently, both
the canonical and noncanonical NF-κB pathways play an
important role in the pathogenesis of EAE, a widely used animal
model of multiple sclerosis involving immunization of mice with
peptides derived from CNS proteins, such as myelin oligoden-
drocyte glycoprotein.2,113. T-cell-specific deletion of IKKβ or oral
administration of an IKKβ inhibitor, PS1145, renders mice
refractory to EAE induction.44 Genetic deficiency in IKK upstream
signaling factors of the TCR pathway, including CARMA1 and
MALT1, also ameliorate EAE induction.114–116 The canonical NF-κB
members RelA and c-Rel mediate expression of the Th17 lineage
transcription factor RORγt and, thereby, promote Th17
differentiation.117,118 An important role of noncanonical NF-κB
pathway in EAE regulation has been demonstrated using mutant
mice lacking the kinase NIK or expressing a processing-defective
p100 mutant.52,53,119,120 Noncanonical NF-κB regulates both recall
responses and encephalitogenic function of Th17 cells.52,53

Regarding the latter, the noncanonical NF-κB member p52, in
synergy with c-Rel, mediates expression of the inflammatory
cytokine GM-CSF in Th17 cells.53

In addition to its function in regulating the differentiation and
effector function of T cells, NF-κB regulates EAE through action of
innate immune cells. Constitutive activation of NF-κB in myeloid
cells, as a result of IκBα deletion using the LysM-Cre system, causes
more severe CNS inflammation and clinical scores in myelin
oligodendrocyte glycoprotein-induced EAE,121 whereas myeloid
cell-specific deletion of IKKβ inhibits EAE induction associated with
impaired generation of inflammatory Th1 and Th17 cells.122 NF-κB
also functions in the CNS to regulate neuroinflammation, since
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conditional deletion of NEMO or IKKβ using Nes-Cre, which is
specific for neuronal cells including neurons, astrocytes and
oligodendrocytes, partially inhibits EAE induction.123 Furthermore,
NF-κB inhibition in astrocytes via transgenic expression of a
degradation-resistant form of IκBα (IκBα-dn) inhibits inflammatory
cytokine expression and reduces the disease severity in EAE.124,125

Atherosclerosis
Atherosclerosis is a progressive and inflammatory disorder of the
arterial wall, characterized by the accumulation of low-density
lipoprotein (LDL) particles and immune cells in the subendothelial
space.126 The pathogenesis of atherosclerosis involves different
cell types, including endothelial cells, monocytes and T cells.126 It
is generally thought that the disease initiation involves activation
of endothelial cells to express chemotactic factors and cell
adhesion molecules that mediate recruitment of blood monocytes
into the arterial intima, where they differentiate into macrophages
and, following uptake of LDL particles, eventually become lipid-
laden foam cells involved in atherosclerotic plaque formation. NF-
κB regulates the expression of a large array of genes involved in
different aspects of atherosclerotic pathogenesis.127 In vascular
endothelial cells, NF-κB mediates induction of pro-inflammatory
cytokines, chemotactic factors and adhesion molecules, thereby
promoting monocyte recruitment and disease progression.127–131

Conditional deletion of NEMO or transgenic expression of a
degradation-resistant IκBα in endothelial cells inhibits chemokine
expression and monocyte recruitment, coupled with reduced
disease severity of atherosclerosis, in ApoE-deficient mice fed with
a cholesterol-rich diet.129 NF-κB also functions in myeloid cells to
promote inflammatory gene expression and conversion of
macrophages into foam cells.127 Transgenic expression of a non-
degradable IκBα in macrophages reduces lipid loading and foam-
cell formation, whereas myeloid cell-specific IκBα deletion
sensitizes atherosclerosis development in LDL receptor-deficient
mice.132,133 In line with these findings, myeloid cell-specific
deletion of IKKβ reduces atherosclerotic lesion areas in LDL
receptor-deficient mice fed with high-fat diet, which is associated

with attenuated activities of macrophages in inflammatory gene
expression, adhesion, migration and lipid uptake.134 Surprisingly,
however, an earlier study suggests that deletion of IKKβ in
myeloid cells increases atherosclerotic lesion sizes in the LDL
receptor-deficient mice.134,135 The reason for such a discrepancy is
unclear, although it could be due to the differential experimental
approaches used in these two different studies.

CONCLUDING REMARKS
It is now well accepted that NF-κB serves as a central inflammatory
mediator that responds to a large variety of immune receptors.
Since deregulated NF-κB activation is involved in various
inflammatory diseases, targeting the NF-κB signaling pathway
represents an attractive approach for anti-inflammatory therapies.
Several categories of inhibitors have been developed to block
different steps of NF-κB signaling (Figure 3). (1) An increasing
number of selective IKK inhibitors have been designed to block
the catalytic activity of IKK and prevent IκBα phosphorylation.136

Some well-known anti-inflammatory drugs, such as aspirin and
salicylate, also have the ability to inhibit IKK.137 (2) Proteasome
inhibitors, such as Velcade (also called Bortezomib and PS-341)
and lactacystin, which block IκBα degradation in the proteasome.
(3) Inhibitors that block nuclear translocation of different NF-κB
subunits, such as tacrolimus (FK-506) and IκBα super-repressor.
(4) Drugs that inhibit the DNA-binding activity of NF-κB, such as
glucocorticoids and PPAR agonists. However, while significant
progress has been made in designing approaches to inhibit NF-κB,
complexities exist for the development of clinically available NF-
κB-based drugs. Although NF-κB inhibition could be beneficial in
treating inflammatory diseases, there are obvious questions
regarding the balance between efficacy and safety, since NF-κB
function is also required for maintaining normal immune
responses and cell survival. Accumulating studies suggest that
global inhibition of NF-κB signaling may cause severe side effect.
Therefore, better understanding of the mechanism underlying the
pathological activation of NF-κB in individual diseases is crucial for

Figure 3. NF-κB-targeted therapeutics in inflammatory diseases. NF-κB signaling plays a pathogenic role in various inflammatory diseases;
therefore, there are many therapeutic strategies for inflammatory diseases aimed at blocking NF-κB activity. First, inhibition of IKK kinase
activity. Drugs such as aspirin and salicylate have the ability to specifically inhibit IKK, thereby preventing phosphorylation of IκBα. Second,
inhibition of protease activity. Drugs such as PS-341 and lactacystin specifically inhibit 26S proteasome complex, thereby preventing IκBα
degradation. Third, inhibition of nuclear translocation. Drugs such as tacrolimus and IκBα super-repressor specifically prevent NF-κB subunits
RelA, p50, c-Rel and other members from entering the nucleus. Finally, inhibition of DNA binding. Drugs such as glucocorticoids and PPAR
agonists have the ability to prevent NF-κB subunits from binging with target genes, and therefore inhibit the transcription.
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designing more specific and effective therapeutic agents for the
treatment of inflammatory diseases.
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