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Integrin-mediated adhesion is a general concept referring to a series of adhesive phe-
nomena including tethering–rolling, affinity, valency, and binding stabilization altogether
controlling cell avidity (adhesiveness) for the substrate. Arrest chemokines modulate each
aspect of integrin activation, although integrin affinity regulation has been recognized as the
prominent event in rapid leukocyte arrest induced by chemokines. A variety of inside-out
and outside-in signaling mechanisms have been related to the process of integrin-mediated
adhesion in different cellular models, but only few of them have been clearly contextualized
to rapid integrin affinity modulation by arrest chemokines in primary leukocytes. Com-
plex signaling processes triggered by arrest chemokines and controlling leukocyte integrin
activation have been described for ras-related rap and for rho-related small GTPases. We
summarize the role of rap and rho small GTPases in the regulation of rapid integrin affinity
in primary leukocytes and provide a modular view of these pro-adhesive signaling events.
A potential, albeit still speculative, mechanism of rho-mediated regulation of cytoskeletal
proteins controlling the last step of integrin activation is also discussed. We also discuss
data suggesting a functional integration between the rho- and rap-modules of integrin acti-
vation. Finally we examine the universality of signaling mechanisms regulating integrin
triggering by arrest chemokines.
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INTRODUCTION
Leukocytes spend the majority of their life circulating into blood
and lymphoid vessels until local environmental cues claim their
presence into sites of immune response. The capability to resist to
extreme hemodynamic stress and turbulence within high diame-
ter vessels and to avoid cell–cell aggregation in the circulation are
prerequisites to allow leukocytes to embrace blood and lymph ves-
sels like highways leading to the widest possible distribution of the
immune system in the organism. However, there are adverse impli-
cations. Indeed, nothing can be more difficult for a cell than trying
to stop its motion under the frantic flow conditions generated by
the circulation. These conditions are important to regulate cell
trafficking, by imposing physical thresholds to leukocyte recruit-
ment, with the flow itself providing mechano-chemical signals
regulating leukocyte trafficking (Zhu et al., 2000; McEver and Zhu,
2010). But at the end, to fulfill their duties, leukocytes must be able
to counteract the pushing force generated by the flow, arresting on
the surface of endothelial cells and transmigrating into tissues.
Everything must be done within few second or less to cope with
the timing imposed by flow dynamics. In the past two decades
consistent efforts have been made to understand the physiology
and molecular bases of the leukocyte recruitment process and a
general, widely validated, model describing the entire process has
been generated (Laudanna and Alon, 2006; Ley et al., 2007; Alon
and Shulman, 2011). A critical step in this process is the tran-
sition from rolling to stable arrest, which is the moment when
leukocytes become fully resistant to the flow and definitively stop

on the vessel wall. This critical phase is mediated by a family
of leukocyte-expressed cytoskeleton-regulated adhesive receptors,
called integrins (Takada et al., 2007). Integrins are capable of
establishing sudden and very stable adhesive interactions with
endothelial ligands expressed on the inner surface of the vessels
and belonging to the immunoglobulin superfamily. The strong
adhesive interaction between integrins and their ligands support-
ing arrest of circulating leukocytes is, de facto, the primum movens
of the immune response.

Integrins basally interact with the ligand with rather low
affinity. To increase binding efficiency integrins must undergo
dramatic structural and topological modifications consisting of
extensive conformational changes leading to increased affinity
for the ligand, along with concurrent spatial rearrangement on
the cell plasma membrane. This phenomenon is globally indi-
cated as integrin activation and is mandatory to rapid arrest of
circulating cells. The step of integrin activation is finely regu-
lated to allow diversity of leukocyte recruitment, but its most
distinguishing property is the speediness. This implies the exis-
tence of environmental factors capable of activating integrins
with corresponding dynamics. The original discovery of a role
for a PTX-sensitive Gai-protein linked signaling in regulation of
lymphocyte homing (Bargatze and Butcher, 1993) prompted the
search for microvessel-presented agonists capable of triggering
integrin-dependent arrest within seconds. It is now established
that arrest chemokines, a subgroup of chemotactic cytokines capa-
ble of rapid integrin activation (Rot and von Andrian, 2004;
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Bromley et al., 2008), are the most potent physiological activa-
tor of leukocyte adhesiveness. They do that by triggering complex
signaling transduction mechanisms leading to extremely rapid
activation of integrins and, ultimately, of adhesion. In this con-
text, the most studied and best-known signaling events are rep-
resented by the signaling networks regulated by the small GTP
binding proteins of the ras-like rap and rho family (Caron, 2003;
Scheele et al., 2007; Tybulewicz and Henderson, 2009). More
than 670 interacting proteins belong to these signaling networks,
including upstream regulators and downstream effectors (see
http://www.pathwaycommons.org/pc/), with specific sub-sets of
these interactions devoted to modulation of leukocyte integrin
activation and dependent adhesion. Here we will summarize the
available data about the signaling mechanisms triggered by arrest
chemokines and controlling rapid integrin affinity transitions
critical to leukocyte arrest.

INTEGRIN-DEPENDENT ADHESION: AN OVERVIEW
At least two distinct modalities of integrin activation are known,
namely conformational changes, leading to increased affinity,
and lateral mobility leading to increased valency, both con-
currently enhancing cell avidity (adhesiveness; Arnaout et al.,
2005). The most detailed information about integrin structural
rearrangement during affinity up-regulation in leukocytes comes
from studies of LFA-1. Recent structural and biophysical data

predict that LFA-1 exists in at least three conformational states,
which differ both in their overall extension over the plasma mem-
brane as well as in the arrangement of their headpiece (Carman
and Springer, 2003; Luo et al., 2007; Springer and Dustin, 2011;
Figure 1). Inside-out signaling events trigger integrins to undergo
a dramatic transition from a bent low-affinity conformation to
an extended intermediate-affinity to a high-affinity conformation,
characterized by a complete opening of the ligand-binding pocket
(Nishida et al., 2006; Luo et al., 2007). Extended β2 integrin confor-
mations with high topographical availability of the ligand-binding
headpiece but low affinity for the ligand have been also postulated
(Salas et al., 2002, 2006). This extended but low/intermediate-
affinity conformation may increase the capability of LFA-1 to
mediate rolling on ICAM-1 upon selectin triggering (Chesnutt
et al., 2006; Zarbock et al., 2007; Miner et al., 2008).

It is important to emphasize that low-, intermediate-, and
high-affinity integrins likely represent discrete, reversible, states
in a continuum of integrin conformational changes (Figure 1).
Thus, the correct interpretation of the integrin activation process
is a dynamic equilibrium between different conformers, corre-
sponding to inside-out triggered conformational changes of the
heterodimer displaying increasing affinity (binding energy) for
the ligand (Carman and Springer, 2003; Shamri et al., 2005).
Importantly, it has been demonstrated that LFA-1 integrin confor-
mational changes are critical to the in vivo arrest of lymphocytes on

FIGURE 1 | Integrin affinity triggering. The diagram refers to the LFA-1
affinity-triggering model. Shown is the dynamic equilibrium between three
conformers displaying low-, low/intermediate-, and high-affinity for ICAM-1.

The progressive extension of the heterodimer is accompanied by increasing
topological availability of the I-domain and I-like domain (in yellow), which are
involved in ligand binding with increasing affinity.
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the high endothelial venules (HEV) of secondary lymphoid organs
(Giagulli et al., 2004). Thus, modulation of integrin affinity is now
recognized as the critical step to leukocyte arrest in vivo.

Notably, integrins may undergo not only rapid inside-out reg-
ulation of affinity but also structural stabilization transmitted
to the cytosolic tail by the bound ligand. The two processes are
believed to cooperate to enhance integrin-mediated adhesiveness
in a rapid and reversible manner. For instance, the induction of
conformational changes transmitted to the cytosolic tail of the
LFA-1 heterodimer upon ICAM-1 binding (Kim et al., 2003) may
have a role in stabilizing leukocytes arrest under flow. However,
this bi-directional regulation of integrin binding may be insuffi-
cient to support prolonged shear-resistant firm adhesions, and so
post ligand occupancy events leading to integrin anchorage to the
cytoskeleton are apparently required to further increase mechan-
ical stability of individual ligand-occupied integrins (Cairo et al.,
2006). Notably, these phenomena can be concurrent to the other
modality of integrin activation, that is valency up-regulation. Het-
erodimer lateral mobility and valency increase is also regulated by
interaction with the cytoskeleton, which could behave as mobil-
ity restrain (Stewart et al., 1998; van Kooyk and Figdor, 2000;
Svensson et al., 2010; Bakker et al., 2012). Thus, it seems that, to
stabilize the adhesion, a shuttling between restraining and stabi-
lizing cytoskeletal proteins must occur. Valency up-regulation can
be directly triggered by chemokine signaling leading to formation
of multivalent complex on the plasma membrane. This may have
a role under specific conditions by facilitating the encountering
of activated mobile integrins with the immobilized ligand (Con-
stantin et al., 2000). Furthermore, increase of integrin valency may
also contribute to the initiation of outside-in signaling cascades,
leading to the efficient recruitment of protein tyrosine kinases
(PTKs; Berton et al., 2005) and the initiation of the full repertoire
of outside-in signaling pathways leading to adhesion stabilization.
Notably, it has been shown that lacking of integrin signaling capa-
bility leads to accelerated leukocyte detachment (Giagulli et al.,
2006). Thus, chemoattractant-triggered inside-out and integrin-
initiated outside-in signaling events concurrently cooperate to
increase integrin affinity for the ligand and to stabilize and prolong
the arrest of circulating leukocytes.

THE ROLE OF rap AND rho IN INTEGRIN AFFINITY
MODULATION
A plethora of signaling events have been implicated in the regu-
lation of various kinetic aspects of integrin-mediated adhesion.
Overall, at least 65 signaling proteins are possibly involved in
the regulation of integrin-mediated adhesion by chemoattrac-
tants and other agonists (Table 1). However, it is important to
emphasize that only a subset of this group of signaling mole-
cules has been validated under physiological conditions significant
to chemokine-modulated rapid arrest of circulating leukocytes.
These conditions, which we may call “the four criteria,” should
include: (a) evaluation of signaling events in primary leukocytes;
(b) evaluation of adhesion under flow conditions; (c) measure-
ment of rapid kinetics of adhesion triggering (seconds or less);
and (d) direct detection of heterodimer conformational changes.
The rationale for adopting such criteria is based of the following
considerations: (a) Signaling studies should be always accurately

contextualized, by first focusing on physiological, standard, condi-
tions followed by comparative analysis in more specific contexts.
For instance, neoplastic leukocyte cell lines are not appropriate
models of physiologic leukocyte adhesion since the neoplastic
transformation may alter the signaling machinery with respect
to normal primary cells, thus affecting response to the agonists
and data interpretation. (b) Flow is the natural condition dur-
ing cell recruitment by generating a shear stress, which imposes
a mechanistic threshold to adhesion activation; thus, the effi-
cacy of signaling events in regulating leukocyte arrest should be
always challenged by applying flow conditions. (c) Integrin acti-
vation under-flow occurs in the range of seconds or less (likely
milliseconds); thus, to correlate signaling events to integrin acti-
vation relevant to leukocyte recruitment, the kinetics of the two
events must be coherent. Such kinetics cannot be studied in static
assays. (d) As stated above, integrin-mediated adhesion is a general
concept. To precisely assess whether a signaling event specifi-
cally regulates integrin conformational changes leading to affinity
increase it is necessary to be able to directly detect integrin struc-
tural rearrangements by means of soluble ligand-binding assays
or reporter monoclonal antibodies detecting activation epitopes.
These four criteria should be always satisfied in order to correlate sig-
naling events to affinity triggering controlling leukocyte rapid arrest
in physiological contexts. Unfortunately, these experimental criteria
are not systematically applied in the literature and this may affect
the correct interpretation of the regulatory role of pro-adhesive
signal transduction events.

The intracellular signaling cascade from arrest chemokines,
such as CCL19, CCL21, or CXCL12, to integrin affinity modu-
lation is still incompletely understood. The two most studied and
validated signaling mechanisms activated by arrest chemokines
and leading to up-regulation of integrin affinity, especially in the
context of the β2 integrin LFA-1, are related to signaling delivered
by the small GTP binding proteins of the rap and rho family. Both
rap and rho are capable of activating a variety of downstream
effectors and are, in turn, activated by several upstream regulators
(Caron, 2003; Scheele et al., 2007; Tybulewicz and Henderson,
2009). However, in the specific context of integrin activation
by arrest chemokines, rap and rho regulate restricted signaling
modules devoted to the specific control of integrin affinity.

The role of the rap isoform Rap1A in integrin activation by
arrest chemokines has been extensively studied and it is now clearly
demonstrated that Rap1A regulates rapid integrin-dependent
adhesion either in the context of the β2 integrin LFA-1 as well as
β1 integrin VLA-4 (Duchniewicz et al., 2006). Rap1A was shown
to control arrest of rolling lymphocytes as well as in vivo homing
to secondary lymphoid organs (Ebisuno et al., 2010). Rap1A is
activated by arrest chemokines by means of an upstream signaling
mechanism involving phospholipase C (PLC). Indeed, ligation of
chemokine receptors, and more in general of all chemoattrac-
tants Gαi-protein coupled receptors (GPCRs), results in rapid
intracellular calcium influx and activation of PLC (particularly
of the β isoforms), which leads to generation of inositol-1,4,5-
trisphosphate (IP3, which further increases intracellular calcium
from intracellular stores) and diacylglycerol (DAG). Calcium and
DAG are, in turn, critical to activate the rap-specific guanine-
nucleotide-exchange factor (GEF) calcium- and DAG-regulated
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Table 1 |The signaling molecules involved in the regulation of integrin-dependent adhesion in leukocytes.

HGNC-ID GI-ID Aliases Approved names Chromosome

ACTN1 87 Actinin, alpha 1 14q24.1

APBB1IP 54518 INAG1, RIAM Amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein 10p12.1

ARF1 375 ADP-ribosylation factor 1 1q42.13

ARF6 382 ADP-ribosylation factor 6 14q21.3

CDC42 998 G25K, CDC42Hs Cell division cycle 42 (GTP binding protein, 25 kD) 1p36.1

CYTH1 9267 B2-1, D17S811E,

PSCD1

Cytohesin-1; pleckstrin homology, Sec7 and coiled-coil domains 1 17q25

DOCK2 1794 KIAA0209 Dedicator of cytokinesis 2 5q35.1

FERMT3 83706 URP2, KIND3,

MIG2B, MGC10966,

MIG-2, UNC112C

Kindlin-3 11q13.1

FGR 2268 c-fgr, p55c-fgr Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog 1p36.2-p36.1

FYB 2533 SLAP-130, ADAP FYN binding protein (FYB-120/130) 5p13.1

HCK 3055 JTK9 Hemopoietic cell kinase 20q11-q12

HRAS 3265 v-Ha-ras Harvey rat sarcoma viral oncogene homolog 11p15.5

ILK 3611 Integrin-linked kinase 11p15.4

PIK3AP1 118788 BCAP, FLJ35564 Phosphoinositide-3-kinase adaptor protein 1 10q24.2

PIK3C2A 5286 PI3K-C2alpha Phosphoinositide-3-kinase, class 2, alpha polypeptide 11p15.5-p14

PIK3C2B 5287 C2-PI3K,

PI3K-C2beta

Phosphoinositide-3-kinase, class 2, beta polypeptide 1q32

PIK3C2G 5288 Phosphoinositide-3-kinase, class 2, gamma polypeptide 12p12

PIK3C3 5289 Vps34 Phosphoinositide-3-kinase, class 3 18q12.3

PIK3CA 5290 Phosphoinositide-3-kinase, catalytic, alpha polypeptide 3q26.3

PIK3CB 5291 Phosphoinositide-3-kinase, catalytic, beta polypeptide 3q21-qter

PIK3CD 5293 p110D Phosphoinositide-3-kinase, catalytic, delta polypeptide 1p36.2

PIK3CG 5294 Phosphoinositide-3-kinase, catalytic, gamma polypeptide 7q

PIK3R1 5295 GRB1, p85-ALPHA Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) 5q13.1

PIK3R2 5296 P85B Phosphoinositide-3-kinase, regulatory subunit 2 (p85 beta) 19q13.2-q13.4

PIK3R3 8503 Phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma) 1p34.1

PIK3R4 30849 VPS15, P150 Phosphoinositide-3-kinase, regulatory subunit 4, p150 3q22.1

PIK3R5 23533 P101-PI3K Phosphoinositide-3-kinase, regulatory subunit 5, p101 17p13.1

PIP5K1C 23396 PIP5Kgamma,

KIAA0589

Phosphatidylinositol-4-phosphate 5-kinase, type I, gamma, 87 kD isoform 19

PIP5K1C 23396 PIP5Kgamma Phosphatidylinositol-4-phosphate 5-kinase, type II, gamma, 90 kD isoform 19

PKD1 5310 PBP Polycystic kidney disease 1 (autosomal dominant) 16p13.3

PLCB1 23236 KIAA0581 Phospholipase C, beta 1 (phosphoinositide-specific) 20p12

PLCB2 5330 Phospholipase C, beta 2 15q15

PLCB3 5331 Phospholipase C, beta 3 (phosphatidylinositol-specific) 11q13

PLCB4 5332 Phospholipase C, beta 4 20p12

PLCE1 51196 KIAA1516, PLCE Phospholipase C, epsilon 1 10q23

PLCG1 5335 PLC148, PLC-II,

PLCgamma1

Phospholipase C, gamma 1 20q12-q13.1

PLCG2 5336 Phospholipase C, gamma 2 (phosphatidylinositol-specific) 16q24.1

PLD1 5337 Phospholipase D1, phosphatidylcholine-specific 3q26

PRKAA1 5562 AMPKa1 Protein kinase, AMP-activated, alpha1 catalytic subunit 5p12

PRKAA2 5563 AMPK Protein kinase, AMP-activated, alpha2 catalytic subunit 1p31

PRKAB1 5564 AMPK beta 1 Protein kinase, AMP-activated, beta 1 non-catalytic subunit 12q24.1-24.3

PRKAB2 5565 AMPK beta 2 Protein kinase, AMP-activated, beta 2 non-catalytic subunit 1q21.2

PRKACA 5566 Protein kinase, cAMP-dependent, catalytic, alpha 19p13.1

PRKACB 5567 Protein kinase, cAMP-dependent, catalytic, beta 1p36.1

PRKAG1 5571 Protein kinase, AMP-activated, gamma 1 non-catalytic subunit 12q12-q14

(Continued)
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Table 1 | Continued

HGNC-ID GI-ID Aliases Approved names Chromosome

PRKAG2 51422 AAKG, AAKG2 Protein kinase, AMP-activated, gamma 2 non-catalytic subunit 7q35-q36

PRKAG3 53632 Protein kinase, AMP-activated, gamma 3 non-catalytic subunit 2

PRKAR1A 5573 Protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1) 17q23-q24

PRKAR1B 5575 Protein kinase, cAMP-dependent, regulatory, type I, beta 7pter-p22

PRKAR2A 5576 Protein kinase, cAMP-dependent, regulatory, type II, alpha 3p21.3-p21.2

PRKAR2B 5577 Protein kinase, cAMP-dependent, regulatory, type II, beta 7q31-qter

PRKCZ 5590 PKC2 Protein kinase C, zeta 1p36.33-p36.2

RAC1 5879 TC-25, p21-Rac1 Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) 7p22

RAP1A 5906 KREV-1, SMGP21 RAP1A, member of RAS oncogene family 1p13.3

RASGRP1 10125 CalDAG-GEFII,

RASGRP, V

RAS guanyl releasing protein 1 (calcium and DAG-regulated) 15q15

RASSF5 83593 RAPL, Maxp1,

NORE1, MGC10823,

Ras association (RalGDS/AF-6) domain family 5 1q31

RHOA 387 RhoA, Rho12,

RHOH12

Ras homolog gene family, member A 3p21.3

RHOH 399 RhoH, TTF Ras homolog gene family, member H 4p13

SRC 6714 ASV, c-src v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 20q12-q13

SKAP1 8631 SKAP55 src kinase associated phosphoprotein 1 17q21.32

STK4 6789 MST1, KRS2, YSK3 Serine/threonine kinase 4 20q11.2-q13.2

SYK 6850 Spleen tyrosine kinase 9q22

SWAP70 23075 KIAA0640,

SWAP-70, HSPC321

SWAP switching B cell complex 70 kD subunit 11p15

TLN1 7094 ILWEQ Talin-1 9p23-p21

VAV1 7409 vav 1 oncogene 19p13.2

The table lists the 65 signaling proteins reported to date to be involved in regulation of integrin-mediated adhesion in different experimental contexts. Notably, few of

them have been validated under experimental conditions satisfying the four criteria (see text). Shown are HGNC and Gi protein IDs, alias, full names, and chromosome

localization.

GEF (CALDAG–GEF), also known as RAPGEF2; Crittenden et al.,
2004; Bergmeier et al., 2007), which, ultimately, activates Rap1A.
The role of other rap GEFs, such as C3G (RAPGEF1) and EPAC
(RAPGEF3), in the context of chemokine signaling leading to
integrin affinity regulation, is still not addressed. Once activated,
Rap1A transmits downstream signals through different effectors,
including RAPL (RASSF5; Ebisuno et al., 2010) RIAM (APBB1IP;
Lafuente and Boussiotis, 2006), MST1 (STK4; Katagiri et al.,
2006), SKAP55 (SKAP1), and ADAP (FYB; Menasche et al., 2007;
see below). Although these signaling events lead to pro-adhesive
events, the role of these signaling molecules in chemokine-
triggered integrin affinity regulation mediating leukocyte arrest is
still not clarified. Notably, in monocytes, PLC-mediated calcium
signaling is required for induction of high-affinity α4-integrin
ligation and monocyte arrest (Hyduk et al., 2007). However, an
important recent study showed that Rap1A is, de facto, unable to
modulate LFA-1 affinity conformeric transitions, thus apparently
implicating Rap1A and its effectors in adhesive events other than
integrin affinity regulation (Ebisuno et al., 2010), such as removal
of cytosolic constrains or post-binding stabilization (Ebisuno
et al., 2010).

A role for the rho isoform RhoA in chemoattractant-induced
rapid integrin activation was originally suggested in the context
of the β1 integrin VLA-4 (Laudanna et al., 1996), although those

studies did not fully satisfied the four criteria described above.
However, more recently it was clearly demonstrated that, under
physiological conditions, RhoA and Rac1 mediate LFA-1 affinity
triggering by arrest chemokines (Giagulli et al., 2004; Bolomini-
Vittori et al., 2009). The role of rho-specific GEF in mediating
RhoA and/or Rac1 activation by arrest chemokines is still not
fully clarified, although recent data show that DOCK2 (dedicator
of cytokinesis 2; Garcia-Bernal et al., 2006) and VAV1 (Gakidis
et al., 2004; Garcia-Bernal et al., 2005) may participate to leuko-
cyte integrin affinity modulation. In other studies, however, VAV1
seems to have a negative regulatory role on VLA-4 affinity reg-
ulation (Garcia-Bernal et al., 2009). Once activated, RhoA and
Rac1 activate a variety of downstream effectors, but only few
of them have been tested as effectors to integrin affinity mod-
ulation by chemokines. In this context, PLD1 and the 87 kD
isoform of PIP5K1C have been demonstrated to play a critical role
in LFA-1 affinity modulation by chemokines. Thus, RhoA- and
Rac1-activated PLD1 was shown to control chemokine trigger-
ing of LFA-1 extensions corresponding to both intermediate and
high affinity states. Moreover, by leading to plasma membrane
accumulation of phosphatidic acid, PLD1 mediates the activa-
tion of PIP5K1C. However, PIP5K1C was shown to control LFA-1
affinity triggering by chemokines in a conformer-selective man-
ner, with transition from intermediate to high affinity, but not
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from low to intermediate affinity, states controlled by the kinase
activity of PIP5K1C (Bolomini-Vittori et al., 2009). These find-
ings have important implication for our comprehension of LFA-1
affinity modulation. Indeed, these data show that the complete
LFA-1 conformeric transition from a bent to a fully extended
structure is accurately controlled at the level of inside-out signal
transduction, even in absence of ICAM-1 interaction with LFA-
1 in extended intermediate affinity state (Bolomini-Vittori et al.,
2009). Thus, arrest chemokines are fully competent to trigger a
complete LFA-1 affinity transition supporting arrest of rolling
leukocytes. In contrast, in the context of rho-mediated LFA-1
affinity modulation, CDC42 was shown to negatively regulate
LFA-1 affinity triggering by chemokines, thus establishing a sharp
dichotomy with respect to the other two most homologous rho
small GTPases (Bolomini-Vittori et al., 2009). CDC42 seems to
affect LFA-1-mediated adhesion by blocking PIP5K1C activation
(Bolomini-Vittori et al., 2009). Moreover, it was recently shown
that activated CDC42 also inhibits Rap1A activation by chemoat-
tractants (Kempf et al., 2011), thus highlighting a complex negative
regulatory role for CDC42 in adhesion-de-adhesion cycling. Over-
all, arrest chemokines regulate integrin-dependent rapid adhesion
by means of two main signaling modules: (a) the rap-module,
likely including PLC, CALDAG–GEF, Rap1A, RAPL, RIAM, STK4,
SKAP55, and ADAP; (b) the rho-module likely including at least
DOCK2, VAV1, RhoA, Rac1, CDC42, PLD1, and PIP5K1C.

DEEP IN THE MODULES: THE VERY DOWNSTREAM EVENTS
Several cytosolic proteins, either or not of cytoskeletal nature,
have been shown to directly interact with the integrin cytoplas-
mic tails of both alpha and beta chains and to regulate integrin
functionality (Alon, 2010; Hogg et al., 2011). The most prox-
imal to the heterodimer (downstream) signaling event leading
to integrin affinity triggering is likely represented by interaction
with actin-binding proteins. Among them, Talin-1 (TLN1) is the
most studied actin-binding protein implicated in triggering inte-
grin affinity up-regulation. Talin-1 is an anti-parallel homodimer.
The F3 region of the head domain interacts with the cytoplas-
mic tail of the β chain of platelet gpIIb/IIIa (αIIbβ3-integrin) and
triggers the transition to an increased affinity state (Tadokoro
et al., 2003). The idea that the head of Talin-1 wedges between
the α and β cytoplasmic tails of integrins (Tadokoro et al., 2003)
is consistent with the observation that the α and β tails move
apart during LFA-1 activation (Kim et al., 2003). At present, it
is not clear whether Talin-1 controls the triggering of LFA-1 to
its intermediate- or high-affinity state. Other actin-binding pro-
teins, such as α-actin in and L-plastin have been also suggested
to mediate LFA-1 affinity transition (Jones et al., 1998; Sampath
et al., 1998). More recently, Kindlin-3 (FERMT3) and Cytohesin-1
(CYTH1), a GEF for ADP-ribosylation factor 6 (Arf6), have been
suggested to mediate LFA-1 affinity activation (Weber et al., 2001;
Manevich-Mendelson et al., 2009; Moser et al., 2009; Lefort et al.,
2012), although not always under fully physiological conditions.
Furthermore, the Rap1A effectors RAPL and RIAM have been
shown to behave as direct integrin-binding proteins regulating
integrin activation. RAPL was shown to directly bind the cytosolic
tail of LFA-1 alpha chain (CD11a), but this was related to stabi-
lization events and not to affinity triggering (Ebisuno et al., 2010).

On the other hand, RIAM was suggested to directly bind Talin-
1, thus potentially bridging Rap1A to Talin-1-controlled integrin
affinity triggering. However, the role of these Rap1A effectors in
affinity modulation by chemokines in conditions satisfying the
four criteria is still not described. Thus, at present, is not clear
how the rap-module may control the last steps of integrin activa-
tion. A link between the rho-module and the very downstream
events of integrin affinity activation demonstrated under con-
ditions satisfying the four criteria is also lacking. However, it
is possible to speculate. Indeed, Talin-1, Kindlin-3, Cytohesin-1,
and RIAM possess FERM and PH domains critical to support
their interaction with plasma membrane phospholipids. Thus,
it is likely that the lipid kinase activity of rho/PLD1-activated
PIP5K1C, by increasing the local membrane concentration of
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), may trig-
ger the membrane translocation, activation, and direct integrin
interaction of these regulatory proteins. Notably, a functional link
between Cytohesin-1 and RhoA in the context of LFA-1 affinity
triggering was recently described (Quast et al., 2009). Theoreti-
cally, since the 90 kD isoform of PIP5K1C (also activated by RhoA)
directly interacts with Talin-1 (Di Paolo et al., 2002), it is also possi-
ble that this PIP5K1C isoform physically bridges directly RhoA to
integrin affinity activation, independently of PtdIns(4,5)P2 lipid
kinase activity. However, a recent report, although obtained under
condition not satisfying the four criteria, seems to challenge this
hypothesis (Wernimont et al., 2010).

DO rap AND rho TALK EACH OTHER?
Overall, in the context of signal transduction networks control-
ling chemokine-triggered integrin activation, rap and rho small
GTPases may orchestrate the signaling activity of at least 18
signaling proteins and including PLC, CALDAG–GEF, Rap1A,
RAPL, RIAM, STK4, SKAP55, ADAP, DOCK2, VAV1, RhoA, Rac1,
CDC42, PLD1, PIP5K1C, Talin-1, Kindlin-3, and Cytohesin-1. It
is quite likely that other signaling players will be discovered, espe-
cially accounting for context-specificity (see below). Moreover,
we still need testing the role of some of these molecules under
physiological condition, fully satisfying the four criteria proposed
above. However, it is unquestionable that rap- and rho-modules
represent, at present, our best paradigm of integrin affinity regu-
lation by chemokines. An obvious question is whether these two
signaling modules display concurrency and if they work in par-
allel of serially. The concept of “concurrency” is derived from
computer science, where computation of contemporary events
often occurs (D’Ambrosio et al., 2004). Thus, in a concurrent
model of integrin activation, the final state of the system (fully
extended conformation leading to high affinity for the ligand)
is achieved only if the regulatory signaling events are delivered
simultaneously and integrated at quantitative level. The simple
fact that chemokines trigger simultaneously the activation of rap
and rho small GTPases with kinetics consistent with rapid integrin
activation, clearly suggests that the system displays concurrency
(although we are still very far from a quantitative view of the
process). This conclusion is supported by recent findings showing
cooperation between rap and rho in controlling integrin activa-
tion (Vielkind et al., 2005; Kim et al., 2012; Li et al., 2012). An
even more interesting question concerns the possibility that rap
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and rho not only cooperate but also directly influence each other
biochemical activity, which corresponds to ask whether rap and
rho act in parallel or serially. Although not yet verified in con-
ditions satisfying the four criteria, data from the literature may
suggest interesting possibilities. Indeed, RhoA and Rac1 activate
PLC isoforms, including the PLCβ, PLCγ, and PLCε (Thodeti et al.,
2002; Illenberger et al., 2003; Wing et al., 2003; Piechulek et al.,
2005; Seifert et al., 2008; Walliser et al., 2008; Guo et al., 2010)
which, in turn, could determine the activation of Rap1A through
CALDAG–GEF. Notably, the lipid kinase activity of PIP5K1C
itself may contribute to Rap1A activation by increasing the local
concentration of PtdIns(4,5)P2, which, in turn, is substrate of
PLCs leading to activation of CALDAG–GEF and, ultimately, of
Rap1A. Furthermore, it was recently shown that PLD1 activity
is required to Rap1A plasma membrane translocation and acti-
vation (Mor et al., 2009), thus establishing a strong functional
link between rho signaling activity and rap activation. Finally,
as reported above, CDC42 was recently shown to inhibit Rap1A
activation (measured as GTP bound state) (Kempf et al., 2011).
Altogether, these data suggest that Rap1A signaling activity may
be directly influenced by rho, thus controlling a critical arm of the
global module of integrin activation, possibly devoted to aspects of
integrin-dependent adhesion other than conformational changes
and affinity up-regulation (Figure 2).

IS CHEMOKINE SIGNALING TO INTEGRIN AFFINITY
MODULATION UNIVERSAL?
The complexity of pro-adhesive signaling event triggered by arrest
chemokines also imposes more general questions: is the mech-
anism of integrin affinity regulation conserved among leuko-
cyte subpopulations? Are there universal mechanism of inte-
grin activation or, at least, common relevant proteins activated
by chemokines? Some recently published data might provide
answers to these questions. For instance, PLD1 does not seem
to be crucial to VLA-4 activation (Garcia-Bernal et al., 2009).
Moreover, DOCK2 involvement in integrin activation seems cell-
specific (Nombela-Arrieta et al., 2004). A chemokine-selective
role for RhoA involvement in LFA-1 affinity regulation was also
recently suggested (Pasvolsky et al., 2008). Furthermore, surpris-
ing data come from a recent study in B cell chronic lymphocytic
leukemia (B-CLL; Montresor et al., 2009), a lymphoproliferative
disorder characterized by accumulation of immune incompetent
B-lymphocytes in the blood, bone marrow, lymph nodes and
spleen. In human normal B-lymphocytes, the CXCL12-triggered
rho-module of LFA-1 affinity triggering is functionally con-
served, with no differences with respect to normal T lymphocytes.
However, and in sharp contrast, in B-CLL cells the CXCL12-
triggered rho-module of LFA-1 affinity triggering appears no
longer fully operational. Specifically, RhoA and PLD1 are fully

FIGURE 2 |The rap- and rho-modules of integrin affinity modulation

by chemokines. The diagram mainly reports data regarding LFA-1 affinity
triggering. Dotted lines refer to hypothetic effects. Red lines emphasize
the functional relationships between rap and rho modules. Arrowed lines
indicate activation. Flat ending lines indicate inhibition. Circle ending lines
indicate docking activity. Positive regulators of adhesion are represented

as red elliptic shapes; negative regulators are in blue. Notably, although
the physical and functional interactions between the different signaling
molecules have been demonstrated, the functional role of these
interactions in the specific context of integrin affinity regulation under
experimental conditions satisfying the four criteria is still not always
validated.
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activated and involved in LFA-1 affinity regulation also in B-
CLL cells. In contrast, Rac1 and CDC42 are variably involved
in LFA-1 affinity modulation, depending on the studied B-CLL
patients, who could be grouped in two cohorts, either show-
ing conserved or absent regulatory role for Rac1 and CDC42
in LFA-1 affinity modulation by CXCL12. Even more surpris-
ingly, PIP5K1C emerges as totally irrelevant to LFA-1 affinity
triggering in all studied B-CLL patients. Thus, the neoplastic
transformation and progression may completely bypass the role
of PIP5K1C and variably affect the Rac1 and CDC42 roles.
Since the capability of CXCL12 to trigger LFA-1 affinity states
is always fully conserved, altogether these findings show that
other proteins regulate the inside-out signaling in leukemic cells,
thus highlighting the relative, not universal, nature of the rho-
module. Overall, these observations show that universal sig-
naling mechanisms of LFA-1 (and more in general integrin)

affinity triggering likely do not exist. An accurate definition of
these mechanisms in several different cell-, agonist-, and disease-
specific experimental contexts, with particular attention to the
four criteria proposed herein, will be mandatory to fully under-
stand the mechanisms by which arrest chemokines regulate cell
trafficking.
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