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The Sommerfeld Half-Space Problem



Statement of the Problem

Find the potential produced by a Vertical Electric Dipole (VED) placed
in a vacuum in the presence of a (lossy) dielectric half space.
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The Incident Potential

The incident field is purely TMz and hence it can be derived from a z-
directed magnetic potential
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Plane-Wave Spectrum of the Incident Potential

The interaction of a spherical wave with a planar interface cannot be
described analytically.

Hence it is convenient to express the incident field as an integral superposition
of plane waves (i.e., a plane-wave spectrum):
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The latter condition ensures that the evanescent waves of the spectrum decay
exponentially to zero as .
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Plane-Wave Reflection

The interaction between each plane-wave constituent of such a spectrum and the
dielectric half space is readily described through the TM reflection coefficient:
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• The reflected plane wave is also TMz,
i.e., the interface does not introduce
cross-polarization.

• Thanks to rotational symmetry,
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The Reflected Potential

We thus have for the reflected potential:
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Note the minus sign in front of the reflection coefficient: this is due to the fact
that the z-component of the magnetic potential (Az) is proportional to the
current in the transmission-line model of each plane wave:

Now, TM is a voltage reflection coefficient; as is well known, to obtain the
current reflection coefficient we just need to change its sign.
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Potential at the Interface and Transmitted Potential

At the lower vacuum-dielectric interface (z=0) the total potential is:
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The continuity of the equivalent current across such an interface implies the
continuity of Az at z=0 :
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and hence for the transmitted potential we can write:
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Total Potential

To summarize, we have:
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Exploiting the Rotational Symmetry

We now exploit the rotational symmetry of the configuration, by which all the
previous expressions are of the kind:
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Total Potential (Axial Transmission Representation)

As a consequence, the potential does not depend on ; it can be expressed in
terms of Sommerfeld integrals as
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Since in each of the above integrals the integrand is an elementary wave
propagating along the axial z-direction, this is also called an Axial Transmission
Representation of the potential.



Singularities in the  kr-Plane

Since the Bessel function J0 is an entire function of its argument, the
singularities of the integrand arise from:

• The zeros of the denominator of the reflection coefficient TM (these are
poles):

• The square-root functions defining the vertical wavenumbers kz1 and kz2
(these introduce branch points and make the integrand multivalued):
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Branch Points and Branch Cuts in the  kr-Plane

The branch points (BPs) introduced by the square-root functions are located at

1k k  

To make the integrand single-valued, two pairs of branch cuts are introduced,
which define a four-sheeted Riemann surface:
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Sommerfeld Branch Cuts
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The shape of the cuts is quite arbitrary, but the hyperbolic cuts defined by the 
condition                             (called the fundamental or Sommerfeld branch cuts) are 
especially convenient, since they allow to easily enforce the radiation condition at 
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The Sommerfeld Poles in the  kr-Plane

By equating to zero the denominator of TM we have the dispersion equation:
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However, squaring obliterates any distinction of the square-root branches...

whence squaring we find Sommerfeld poles



The Sommerfeld Poles in the  kr-Plane

Substituting in the dispersion equation:pk k  
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The imaginary parts of the square roots have been chosen negative and it can
be checked that this makes the LHS and RHS of the dispersion equation match,
so that the Sommerfeld poles lie on the top sheet (sheet I).

Remark: The poles also exists on sheet IV, whereas on sheets II and III the above
square roots satisfy the dispersion equation with the sign of the RHS reversed, i.e.,
they are zeros of the numerator of TM on these sheets (Brewster zeros).



Sommerfeld Integration Path in the kr-Plane

The Sommerfeld integration path (SIP) is the positive real axis on the top
Riemann sheet:
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Note that, for high media contrast, the Sommerfeld poles may be arbitrarily
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A Typical Sommerfeld Integrand

This is the magnitude (in logarithmic scale) of a typical Sommerfeld integrand
along the SIP for a VED above a lossy ground:
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[From K. A. Michalski and J. R. Mosig, "The Sommerfeld half-space
problem revisited: from radio frequencies and Zenneck waves to visible
light and Fano modes," J. Electromagn. Waves Appl., Vol. 30, No. 1, 1-42,
2016]



Avoiding the Spike: Detour in the 1st Quadrant

A simple remedy to the numerical problems produced by the presence of the
Sommerfeld pole is a detour in the first quadrant of the complex kr-plane, which
skirts the singularities and then rejoins the real axis:
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Standard quadratures can be used on the rooftop. The real-axis tail can be dealt
with by using one of the effective existing approaches to the numerical
evaluation of real Sommerfeld integrals.
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Extended Sommerfeld Path in the kr-Plane

Alternative representations for the potential, more amenable to numerical
evaluation and capable of providing physical insight into the involved wave
penomena, can be obtained by suitable deformations of the integration path.

To this aim, we first extend the SIP into a path along the whole real axis, using
the relations:
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Extended Sommerfeld Path in the kr-Plane

Note that the Hankel function introduces an additional logarithmic branch point
at k=0 (devoid of any physical meaning), with its associated branch cut along
the negative real axis. The integration path extends on the lower rim of this cut:
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Note also that, since is singular at z=0, the representations of the
potential using the extended SIP or integration paths derived thereof cannot be
used for calculating the potential at =0.
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Path Deformation in the Lower Half kr-Plane

In view of the asymptotic behavior of the Hankel function for large arguments:
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we may close the extended SIP in the lower half plane through a semicircular
arc at infinity, wrapping around the branch cuts; such arc contributes nothing to
the integral:
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Radial Transmission Representation

Using the Residue Theorem, we obtain
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Since each of the above terms is expressed in terms of elementary waves
propagating also the radial -direction, this is called a Radial Transmission
Representation of the potential.
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Spectral Representation: the Zenneck Wave

The Radial Transmission Representation is also called a Spectral Representation,
since it exhibits the potential as a sum of modes supported by the air-dielectric
structure.

The BC integrals provide a continuous spectrum of modes, whereas the residue
contributions of the pole singularity provides the discrete spectrum.

The discrete spectrum of the considered
structure consists of a single mode,
corresponding to the Sommerfeld pole,
known as the Zenneck surface wave:
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Zenneck Waves and Brewster Angles

The wavenumber k=kp is also a zero of the reflection coefficient. As such, it
defines a (complex) Brewster angle qB:
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Only the incident and transmitted waves exist at this angle, and both must
decay in magnitude away from the interface, in order to constitute a surface
wave. However, the incident wave propagates toward the interface, so it must
be Imkz1>0, whereas for the transmitted wave Imkz2<0. So kp is a zero of the
reflection coefficient on Riemann sheet II.

Remark: exchanging the role of the two half spaces, one can show that the
(improper) Zenneck wave associated with the pole k=kp on sheet IV
corresponds to a zero of the reflection coefficient on sheet III, i.e., to the
(complex) Brewster angle for incidence from the dielectric.



Spectral Representation: the Branch-Cut Integrals

The BC integrals can be written using kz1,2 as variables of integration:
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(i.e., the difference between the values of the original integrand calculated on the
two rims of the relevant BC; the plus (minus) superscript indicates that every
occurrence of kzi is directly replaced by the variable of integration with a plus
(minus) sign).

Note that the closeness of the Sommerfeld poles to the branch points and the
rapid oscillations of the integrand for large k1r still adversely affect the
numerical efficiency of the Radial Transmission Representation.



Nonspectral Representation

The numerical drawbacks of both the Axial and the Radial Transmission
Representations can be overcome through a further path deformation to the
steepest-descent path (SDP), which leads to the so-called Nonspectral
Representation.

Let us consider for definiteness the reflected potential:
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Preaparation to Canonical Form for SD Evaluation

To this aim, let us single out the first-order asymptotic expansion of the Hankel
function for large arguments:
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Saddle Points and Geometrical Optics

Let us determine the Saddle Points (SPs):

 
1 1

cos sin 0
z

kjk
k k


 q q

 
       
  

SP 1 sink k q 

   SP SP2 2
1 o 2

0
c s

jjk k e
k

  
q

    
 

  

First-order SP

The SP determines the Geometrical
Optics (GO) approximation to the
reflected potential, as it selects the plane-
wave spectral contribution that gives rise
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Steepest-Descent Path

This is the shape of the
Steepest-Descent Path
(SDP) :

The SDP partly lies on the
improper sheet II…
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SP Contribution: the GO Reflected Potential
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The function f(k) is regular in the vicinity of the SP, with
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Steepest-Descent Path as a Function of the Angle q

Depending on the angle q, the integral along the SDP may or may not be the
only contribution to the reflected potential…
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k2-SDP Contribution: the Lateral Wave
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Steepest-Descent Path: Nonspectral Representation
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Sommerfeld Pole Contribution
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Pole Contribution: Taxonomy

If the dielectric represents a lossy ground at radio frequencies, the Sommerfeld
pole is associated to the Zenneck wave (ZW) and is never captured in the
nonspectral representation. However, if the dielectric represents, e.g., a metal at
THz or optical frequencies, the Sommerfeld pole may be captured and is
associated to a Surface Plasmon Polariton (SPP) wave.
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The Role of Zenneck (or SPP) Waves

In both the Sommerfeld and plasmonic cases, if the pole is close to the BP at
k=k1 it gives a significant contribution to the value of the BC integral in the
nonspectral representation of the surface potential (i.e., at z=0), due to its close
topological proximity to the downward leg of the SDP around k1.
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The nonspectral representation can thus be written as:



Nonspectral Representation: SDP Integrals

where

    2

0

22 dijk s
i

jI f j e F s e s s 




  

        
(2)
0F s f k k k   H

Upon changing the variable of integration via: 2
ik k js  

          f k f k f k  
  

Unless the dielectric is very low loss, hence the integral I2
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Nonspectral Representation: SDP Integrals

For a reliable numerical evaluation of the SDP integral it is necessary to avoid the
spike in the integrand due to the Sommerfeld pole. The way to do this is to
extract the pole:
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In this way:
- the modified integral Ip is amenable to numerical quadrature (the integrand is

well-behaved, if it is not oscillatory and exponentially decaying (faster
for larger );

- the compensating integral Iq has a closed-form representation (as shown next)
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Nonspectral Representation: SDP1 Integral

As concerns Iq, we first transform the integral as
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Now Is can be expressed in terms of the Faddeeva function
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However, since Imsp may be negative (Sommerfeld case), it is necessary to extend
the validity of the above representation by adding to the integral 2pj times the
pole residue when Imz<0 (or half of the pole residue when Imz=0).
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Nonspectral Representation: SDP1 Integral

One eventually finds

where
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Nonspectral Representation: SDP1 Integral

Collecting these results, we find the final expression for the SDP1 integral:
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It is important to note that F(p) is discontinuous when the sign of Imsp changes
as the Sommerfeld pole crosses the SDP path (i.e., the Sommerfeld case turns
into the plasmonic case).

However, the resulting discontinuity in the SDP integral is exactly compensated
by the residue term that must now be included in the nonspectral representation.



Asymptotic Evaluation of the SDP1 Integral

The same pole-extraction approach is used for the asymptotic evaluation of the
SDP integral for .

As concerns the Ip integral:
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As concerns the function F(p) it can be shown that:
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Asymptotic Evaluation of the SDP1 Integral

Therefore:
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in terms of the modified attenuation function
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so that the resulting asymptotic expansion is accurate to order 2 .
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