Which vectors for the genes

Which vectors for the genes

Vectors Used for Gene Transfer in Gene Therapy Clinical Trials

Copyright © 2021 by John Wileys and Sons LTD

First step: bring the transgene into the nucleus

2nd step: the transgene is expressed

DNA must include:

2nd step: the transgene is expressed

DNA must include:

- Antibiotic resistance
- ORI
- Eukaryotic expression casette

Liposome: microprecipates containing DNA

<u>http://www.youtube.com/watch?v=04SP8Tw3htE</u> <u>&NR=1</u> video

Phospholipids (membrane component)

Liposomes

Nanometer size

Enzymes and acids disrupt the liposome and let nucleic acids get out

Liposomes/Lipoplexes (12.1% clin tr.2003, 8.6% 2005,7.1% 2008; 6.5 2010)

Unsuccessful, pH sensitive, DOTAP

Liposome and gene therapy 1985 - 2011; ISI

h index 103

How does DNA-liposome enter the cell?

- Membrane fusion?
- Spontaneous endocytosis?
- mammalian cell surface is covered with negatively charged syalic acid

Liposome gene transfer in vivo (intraven.) Organ distribution

Figure 7 Luciferase expression in organs at 24 h after the intravenous injection of $60 \mu g$ of luciferase plasmid complexed to 1440 nmoles of DOTAP/cholesterol (1/1) liposomes (mean \pm SD, n = 6). No detectable expression above background was seen in blood, ovary, or plasma.

Liposome gene transfer in vivo (intraven.) Time course

Figure 8 Time course of expression in lungs after the intravenous injection of 30 μ g of luciferase plasmid complexed to 540 nmoles of DDAB/cholesterol (1/1) liposomes (n = 6 per time point).

Gene gun transfection <u>in vivo</u>, injection in mouse skin

Dose dependent inflammation following intranasal instillation of lipoplexes into lungs of BALB/c mice. 48hrs after DNA inj.

NB toxicity reduced with aerosol

Intracellular transport and plasmid biodistribution after cationic lipid mediated transfection

- 1.000.000 plasmids/cell transfected
- 300.000 plasmids/cell in pellet
- 50.000 plasmids/cell intracellular
- 1.000 plasmids/cell intranuclear (1/1000)

Delivery barriers that a vector must overcome

• Extracellular barriers

Opsonins (act as binding enhancers for the process of phagocytosis) Phagocytic cells Extra-cellular matrix Digestive enzymes

• <u>Intracellular barriers</u> Plasma membrane Endosome/lysosome Nuclear membrane

Non viral vectors: the objectives of nanotech studies applied to gene transfer

Liposomes/improvements

+cholesterol-increase stability in vivo

+PEG, more stable

+Ab, targeting

Use of receptor ligands: to facilitate binding to cell membrane

or

Which receptor ligand?

Table 1	Ligands	Used in	Receptor-mediated	Gene
Transfer				

Ligands	Refs.
Alpha2 macroglobulin	24,25
Anti-CD3	26,27
Anti-CD5	28
Anti-CD117	29
Anti-EGF	30
Anti-HER2	31
Anti-IgG	32,33
Antisecretory component Fab	34-36
Anti-Tn	37
Antithrombomodulin	38
Antibody ChCE7	39
Asialoglycoproteins	40-49
EGF	50-52
Fibroblast growth factor 2(FGF2)	9,53
Folate	54-56
Glycosylated synthetic ligands	57-69
IgG (FcR ligand)	32,70
Insulin	10,71
Invasin	72
Lectins	73-75
Malarial circumsporozoite protein	76
RGD-motif (integrin binding)	77
Steel factor (CD117 ligand)	78
Surfactant proteins A and B	79,80
Transferrin	13,81-87

Liposomes-evolution

Tenchov et al, ACS Nano 2021

Liposomes- time line evolution

Tenchov et al, ACS Nano 2021

Gene therapy project

Theme I: Aging

Group A: Bernardi, Ilie, Colonnelli, Bastianelli *Charcot marie tooth – x linked – gjb1* Group B: Hazrati, Bartolini, Glaudo, Montrone *Sarcopenia - CD38*

Theme II: Cancer Group C: Belvedere, Jeong, Majaliwa, Virgilio (new entry) *Retinoblastoma – rb1* Group D: Santacroce, Pace, Serra, Fanelli, Duarte *tbd* Gene therapy project

30/10/23

1 slide/group

Title General Idea