Winter School seminars

speaker	title	session	date	time	GT	TG e Neuro
Wenting Zhao NTU Singapore (online)					Colonnelli	Palermo
					Virgilio	Terzulli
					Majaliwa	Addario
						Roberto
	Engineered membrane deformation and guided reorganization of cellular machinery to study the mechanical properties of cells	Nuclear Integrity and chromatin organization				Iannella
			19/12/22	10 11 20		Valente
			10/12/23	10-11.30		Sileo
						Scansalegna
						Lollobrigida
					Jeong	Bartolucci
						Gigliotti
					Bernardi	Lupo
					Colonnelli	Palermo
Fred Bernard						Furina
Fieu Beinaiu	The importance of sucleus positioning in					Sileo
Jacques Monou	ambre development	Nuclear Integrity and chromatin organization	18/12/23	11.30-13		
Franco	embryo development					Lollobrigida
Flatice					Hazrati	Addario
					Bastianelli	
					Bernardi	Patriarca
	Nuclear lamins and nuclear dysmorphism in pathologies through advanced Nuclear Integ microscopy lens	Nuclear Integrity and chromatin organization		14.00-15.3(Majaliwa	Scansalegna
			18/12/23			Sileo
					colonnelli	Moroni
Barbara Peruzzi IRCCS Children					santacroce	Lollobrigida
						Iannella
Hospital Bambino						Roberto
Gesù, Rome, Italy						Piazza
						Caputo
					Fanelli	Gazzera
					Pace	Bertone
Jeremy Carlton King's College, London, UK	The ESCRT machinery at nuclear envelope: Closing holes and expanding	Nuclear Integrity and chromatin organization	18/12/23	15.30-17	Colonnelli	Radicioni
					Santacroce	Cutrona
					Pace	Pugliano
					Fanelli	Bertone
						Furina
	10185					Gazzera
						Moroni
					Jeong	Dominici

Winter School seminars

					Virgilio	Scaramagli	
Philippe Collas University of Oslo, Norway					Antonio	palermo	
					Glaudo	Dominici	
	D matters: epigenetic and chromatin					de Rosa	
	conformation changes at multiple scales Chromatin organized during adipocyte differentiation	Chromatin organization in development	19/12/23	10.00-11.30		Patriarca	
						Puleo	
						Caputo	
						Cutrona	
				Piazza			
					Glaudo	Scaramagli	
						Addario	
						Scansalegna	
	Polo of obromotin approxisted complexes					Meoni	Scansalegna Meoni Patriarca Puleo De Rosa Furina Piazza
Fulvio Chiacchiera,	during liver regeneration and tumor	Chromotin organization in development	10/12/22	11 20 12 00		Patriarca	
University of Trento	formation and tumor	Chromatin organization in development	19/12/23	11.30-13.00		Puleo	
	Iomation					De Rosa	
						Furina	Furina
						Piazza	
						Chillura	
					Pace	Bertone	
					Bartolini	Meoni	
Daniala Dalasiaa					Majaliwa	Scansalegna	
Cattolica University of	Epitranscriptomics in muscle development	Chromotin organization in dovelopment	10/12/22	14 00 15 20		Patriarca	
	and disease	Chromatin organization in development	19/12/23	14.00-15.30		Puleo	Meoni Scansalegna Patriarca Puleo Furina
Rome						Furina	
					Pourali	Pugliano	
						Valente	
						Cutrona	
Matthiau Dauland					Antonio	Bertone	
	Current many requilation in the manualian				Pourali	Radicioni	
European woiecular	Sweet gene regulation in the mammalian	Chromatin organization in development	19/12/23	15.30-17.00	Bastianelli	Chillura	
Biology Laboratory	embryo				Hazrati	Valente	
EMBL, ROME	Bartolini	Bartolini	Scansalegna				
					Pace		

Winter School seminars

Jamie Hackett European Molecular Biology Laboratory	What do chromatin modifications do? Epigenome editing to dissect function in health and disease?				Hazrati	Palermo
					Antonio	Scaramagli
					Pourali	Meoni
						Sileo
						Cutrona
		Genome Stability in mouse model of diseases	20/12/23	10.00-11.3(Iannella
			20/12/20			Roberto
EMBL, Rome						Dominici
						Lollobrigida
						terzulli
						Bartolucci
					Ilie	Gigliotti
				-	Fanelli	Scaramagli
					Virgilio	Gigliotti
					Glaudo	Piazza
Monica Ballarino	Myogenesis and long non-coding PNAs: a					de rosa
Sapienza University	chromatin affair	Genome Stability in mouse model of diseases	20/12/23	11.30-13.00		iannella
of Rome	Chromatin anali					Puleo
						Roberto
					Ilie	bartolucci
						Terzulli
		Jeong Bernard Fanelli Majaliwa		-	Jeong	Meoni
					Bernardi	gigliottti
					Fanelli	Dominici
Marina Vietri			Majaliwa	Chillura		
	Nuclear envelope dynamics at ruptured	Genome Stability in mouse model of diseases	20/12/23 14 00	14 00 15 30	santacroce	Lupo
Norway	micronuclei	Genome Stability in mouse model of diseases	20/12/23	14.00-15.30	Glaudo	Radicioni
Norway						Pugliano
						Caputo
					Hazrati	Moroni
					Bartolini	Gazzera
Rafal Czapiewski University of Edinburgh, UK				-		Radicioni
					Antonio	Pugliano
					Pourali	Caputo
	Nuclear envelope controls genetic spacetime - focus on genome organization and function. Genome Stability in mouse model of diseases 20/12/23 15.30-17.00	santacroce	addario			
		Genome Stability in mouse model of diseases	20/12/23	15.30-17.00		de rosa
(online)						Cutrona
					Bartolini	Moroni
					Bernardi	Gazzera

Genome editing, called also genome engineering,

processes of making <u>targeted modifications</u> to the genome, its contexts (e.g., epigenetic marks), or its outputs (e.g., transcripts).

Genome engineering technologies are enabling a broad range of applications

Classic Definition of Gene Therapy:

transfer of genetic material to a patient to treat a disease

AIM:

2.0 Gene Therapy

long- term expression of the transferred gene high enough to be therapeutic

3.0 Gene Therapy (gene editing)

long- term correction of the 'edited' gene high enough to be therapeutic

2.0 gene therapy vs 3.0 gene therapy

(Xavier M. Anguela and Katherine A. High, Annual Reviews of Medicine 2018)

(Fazhan Wang et al., J Gene Med. 2019)

Genome editing tools:

Li et al, Signal Transduction and Targeted Therapy (2020)

Genome editing tools:

Fig. 1. Schematic representation of Genome Editing Tools.

Sanagala et al, Journal of Genetic Engineering and Biotechnology (2017)

Genome editing tools:

(Hsu et al., Cell, 2014)

	TALEN and ZFN	CRISPR/Cas9
Target binding principle	Protein-DNA specific recognition	Watson-Crick complementary rule
Working mode	Specifically recognizes the target DNA and dimeric Fok1 makes DSB	Guide RNA specifically recognizes the target DNA and Cas9 makes DSB
Essential components	Dimers of TALE/ZFN-Fok1 fusion protein	Guide RNA and Cas9
Target DNA lenght	14-18 bp	20 bp
Time consumption for construction	5-7 days	1-3 days
Multiple targeting	context-dependent binding (multiple proteins)	high specificity with multiple sgRNAs

CRISPR/Cas9 technology increased the feasibility of genome-editing technologies

CRISPR/Cas9

CRISPR/Cas9 - It all started with yogurt

2005-Rodolphe Barrangou discovered that S. thermophilus contained odd chunks of repeating DNA sequences—Crisprs

CRISPR/Cas9 - as a tool for genetic engineering

2012 : Jennifer Doudna and Emmanuelle Charpentier discovered S. pyogenes molecular mechanism

CRISPR/Cas9 technology increased the feasibility of genome-editing technologies

CRISPR system in prokariotes is an adaptive immunity system

(Hille F. et al., Cell, 2018)

Engineered CRISPR-Cas9 system consists of a fusion between a crRNA and a part of the tracrRNA sequence: sgRNA

CRISPR/Cas9 Genome editing tool exploit endogenous DNA repair machinery

(Ran et al, Nat Protoc. 2013)

Insertion/deletion mutations=indels

CRISPR/Cas9 Genome editing tool exploit endogenous DNA repair machinery

Cas9 nuclease from *S. pyogenes* is targeted to genome by an sgRNA consisting of a 20-nt guide sequence and a scaffold

The only restriction for targeting is that the sequence must be followed by **PAM motif**

RNA-programmed endonucleases offer a variety of genome editing-options

SpCas9:

- More characterized;
- Balance between PAM complexity and construct size;
- Tested in a variety of contexts

(Komor A.C. et al., Cell, 2017)

RNA-programmed endonucleases offer a variety of genome editing-options

PRO

- Higly efficiency
- Fast (4 weeks for mice);
- Target design simplicity; fidelity (off-targets, effects)

CONS

- delivery
- targeting scope

- OPEN QUESTIONS: - Immunogenicity of nucleases in vivo (?) - Ethics (?)

I - targeting scope

SpCas9 / FnCas9 1368 / 1629 5'- 3'- 11 11000 11000 11000 <th></th> <th>Enzyme name</th> <th>Size (residues)</th> <th>PAM requirement and cleavage pattern</th> <th></th>		Enzyme name	Size (residues)	PAM requirement and cleavage pattern	
$SitCas9 1121 3 \cdot \frac{5}{1} \cdot \frac{1}{1} 20^{1} \times 10^{1} \times 5^{1} \cdot \frac{1}{1} 20^{1} \times 10^{1} \times 10^{1} \times 5^{1} \cdot \frac{1}{1} 20^{1} \times 10^{1} \times $		SpCas9 / FnCas9	1368 / 1629	5'	
$Si3Cas9 1409 \frac{5}{3} \cdot \frac{1}{1} \frac{1}{1} \frac{1}{20} \frac{1}{20} \frac{1}{20} \frac{1}{20} \frac{1}{1} \frac{1}{20} \frac{1}{1} \frac{1}{20} \frac{1}{1} \frac{1}{1} \frac{1}{20} \frac{1}{1} \frac{1}{1$		St1Cas9	1121	5'- 3'- 1 1 20NNTCTTW-5'	
NmCas9 1082 5'- 3'- 1' 1082 1083 1082 1082 1082 1082 1082 1082 1083 1082 1083 1082 1083 <td></td> <td>St3Cas9</td> <td>1409</td> <td>5'- 3'- 1 2'0NCCNC-5'</td> <td></td>		St3Cas9	1409	5'- 3'- 1 2'0NCCNC-5'	
SaCas9 1053 5'		NmCas9	1082	5'- 3'- 1 21 24 NNNN CTAA-5'	
$P_{17}^{AsCpf1 / LbCpf1} 1307 / 1228 \qquad 5' 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $		SaCas9	1053	5'- 3'- 1 18 21 NNGRRT-3' 18 21 NNCYYA-5'	
$EQR SpCas9 1368 3' - 1 1 20^{NCT-5'}$ $EQR SpCas9 1368 5' - 1 1 20^{NCT-5'}$ $EQR SpCas9 1368 5' - 1 1 20^{NCT-5'}$ $VRER SpCas9 1368 5' - 1 1 20^{NCT-5'}$ $VRER SpCas9 1368 5' - 1 1 20^{NCT-5'}$ $RHA FnCas9 1629 5' - 1 1 20^{NCT-5'}$		AsCpf1 / LbCpf1	1307 / 1228	5'-TTTN 3'-AAAN 1 19 -5'	
EQR SpCas9 1368 3'- 1 10 10 10 10 10 10 10 10 10 10 10 10 1		VQR SpCas9	1368	5'	
$ES \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		EQR SpCas9	1368	5'- 3'- 3'- 1 20NCTC-5'	
$\frac{1}{12}$ RHA FnCas9 1629 $\frac{5' - \frac{1}{3' - \frac{1}{1}}}{1}$ KKH SaCas9 1053 $\frac{5' - \frac{1}{3' - \frac{1}{1}}}{3' - \frac{1}{1}}$ RHA FnCas9 1053 $\frac{5' - \frac{1}{3' - \frac{1}{1}}}{1}$		VRER SpCas9	1368	5'- 3'- 1 1 20NCGC-5'	-
KKH SaCas9 1053 5'-	25	RHA FnCas9	1629	5'- 18 3'- 1 20 RC-5'	
	017)	KKH SaCas9	1053	5'- 3'- 1 18 <u>4</u> 21NNNYYA-5'	Kł R€

KKH SaCas9 shows Relaxed PAM specifities

RHA FnCas9 requires only a YG PAM

(Komor A.C. et al., Cell, 2017)

How to check?

- Whole genome deep sequencing;
 - BLESS
 - GUIDE-Seq
 - Digenome-Seq

II - Fidelity

How to improve?

Reduction of off-targets

(Komor A.C. et al., Cell, 2017)

(Komor A.C. et al., Cell, 2017)

Lentivirus:

- infects non dividing cells;
- Packaging limit ~8.5 kb (package Cas9 genes, gRNA, promoter and regulatory sequences)

Adenovirus:

- infects dividing and non dividing cells;
- Do not integrate DNA;
- Elicits strong immune response in animals;

AAV variants:

- infect both dividing and non-dividing cells;
- do not integrate;
- do not elicit immune response in the host;
- A variety of serotypes of AAV are known,
- AAV has a packaging limit of ~4.5 kb of foreign DNA

Lipid nanoparticle delivery:

- more transient
- higher DNA specificity
- less off-target editing

(Komor A.C. et al., Cell, 2017)

(Komor A.C. et al., Cell, 2017)

CRISPR/Cas9 technologies beyond genome editing are based mainly on dead-Cas9

(Adli M., Nature communications, 2018)