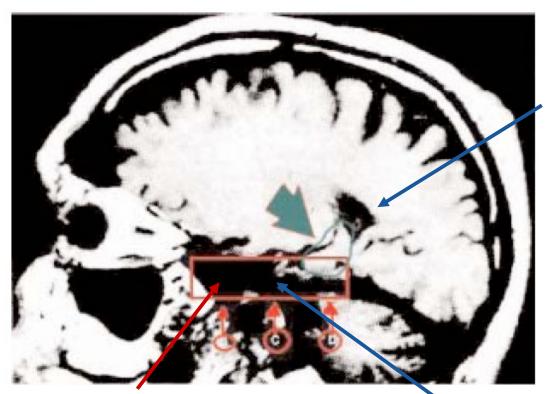

Plasticità sinaptica e ippocampo

Perché studiare proprio l'ippocampo?

- Dati su soggetti umani normali e lesionati
- Labirinti radiali
- Labirinti acquatici
- Place cells ippocampali
- Potenziamento a lungo termine


Nell'uomo l'ippocampo si attiva in compiti di memoria spaziale (immagine ottenuta con la PET del cervello di un tassista londinese mentre sta immaginando di percorrere un certo itinerario)

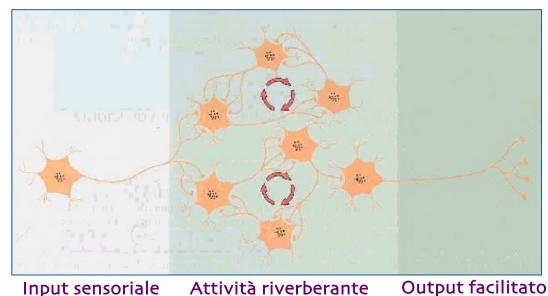
Il caso di H.M.

- H. M. aveva sempre sofferto di crisi epilettiche
- Quando aveva 27 anni i medici decisero che l'unico modo per intervenire sulla sua epilessia resistente ai farmaci era attraverso un' operazione chirurgica
- Vennero asportati dal suo cervello l'amigdala, l'uncus, il giro ippocampale e i due terzi anteriori dell'ippocampo.

Risonanza magnetica del cervello del paziente H.M.

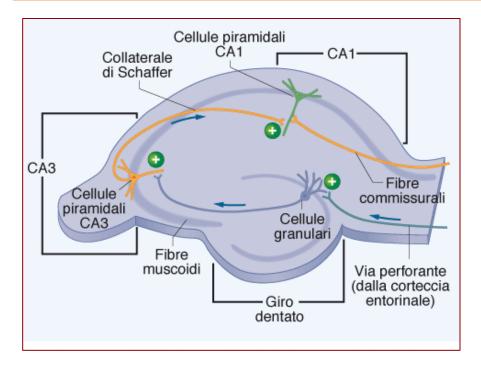
Regione caudale dell'ippocampo, unica rimasta intatta

amigdala

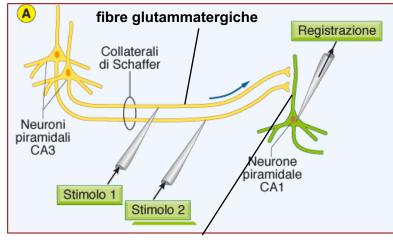

parte rostrale dell' ippocampo

Problemi di memoria diagnosticati con sistematicità circa due anni dopo l'intervento

- Quando gli venne chiesto se sapeva che giorno fosse, lui rispose che era un giorno di marzo del 1953. I suoi ricordi si fermavano al giorno dell'intervento che H. M. negava avesse mai avuto luogo
- Il quoziente intellettivo non subì nessun declino
- Sembrava che insieme al suo lobo temporale mediale i medici avessero asportato anche la sua capacità di formare nuovi ricordi
- Grave perdita della memoria dichiarativa a breve termine
- Della sua memoria H.M. aveva conservato solo i ricordi precedenti l'intervento chirurgico

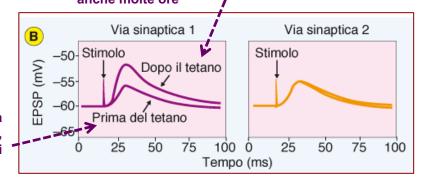

Cambiamenti della forza sinaptica dipendenti dall'attività

- L'esperienza attiva delle vie sensoriali che convogliano l'informazione al SNC
- L'incremento a breve termine dell'attività neuronale si distribuisce in circuiti riverberanti (*reverberating loop*)
- Se l'attività riverberante è mantenuta, vengono indotti cambiamenti strutturali nelle sinapsi, che risultano in un'alterazione della forza delle connessioni sinaptiche
- I cambiameni della forza sinaptica facilitano la trasmissione di informazioni specifiche



L'ippocampo è costituito da un circuito tri-sinaptico

Le sinapsi ippocampali sono estremamente plastiche



Nel 1973 Bliss and Lomo scoprirono che uno stimolo ad alta frequenza in una qualsiasi delle tre vie dava origine a fenomeni di potenziamento a lungo termine (LTP) osservabile sia *in vitro che in vivo*

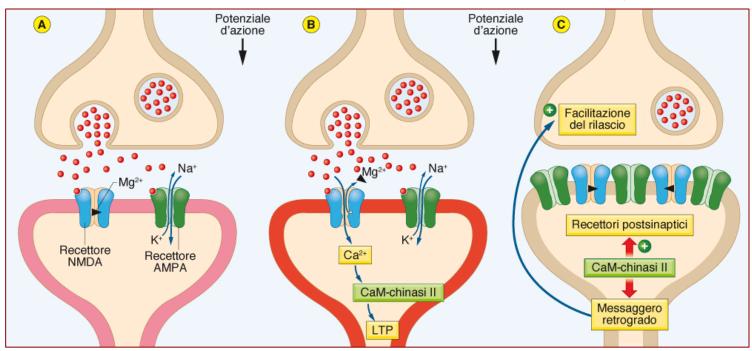
Recettori sia AMPA che NMDA

Dopo una stimolazione tetanica (100 Hz per 1 sec) la risposta a bassa frequenza è amplificata in modo persistente (anche 1 h) e se si perpetua la stimolazione, l'amplificazione dura anche molte ore

Si genera un
Potenziamento a Lungo termine (LTP)

Stimolazione a bassa frequenza, uno stimolo ogni 1-2 min

Caratteristiche del LTP osservato nelle sinapsi CA3-CA1 (e similari):


- ➤ Specificità: non si ha combinazione di fase. Solo l'assone stimolato tetanicamente viene indotto verso LTP
- Cooperatività (sommazione temporale e spaziale): si ottiene quando si stimolano tetanicamente più fibre contemporaneamente. Nell'elemento post-sinaptico si somma il contributo depolarizzante di ogni assone
- Associatività (sommazione temporale e spaziale): Induzione di LTP da parte di una fibra stimolata tetanicamente su altre fibre adiacenti, presupposto che le fibre siano stimolate contemporaneamente

Questo tipo di LTP è definito ASSOCIATIVO fenomeno voltaggio-dipendente

Meccanismi molecolari di induzione di un LTP associativo

Attivazione sinaptica a bassa frequenza

Attivazione sinaptica
ad alta frequenza
(sommazione temporale)

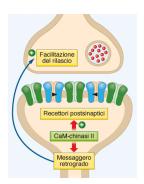
NO NMDAR

SI NMDAR

Non si ha LTP:

- •In seguito a blocco dell'attività della CaMII
- •In topi CaMII knockout
- •Iniezione post-sinaptica di chelanti del Ca²⁺

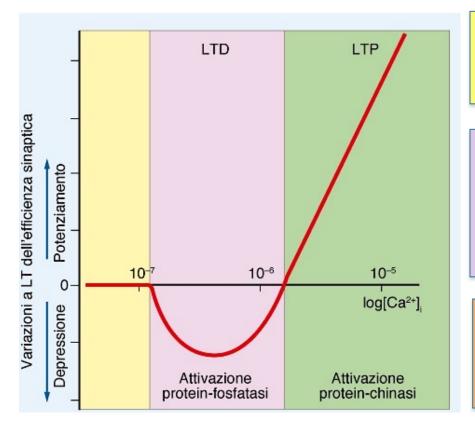
Il recettore NMDA si comporta come un *interruttore molecolare ad attivazione condizionata*


Come si esprime un LTP?

<u>Fase precoce</u>: aumento dell'efficacia sinaptica per un periodo di tempo che va da ore a settimane

- >Modificazioni post-sinaptiche: aumento del numero di recettori post-sinaptici o della corrente generata da ciascuno di essi
- •Fosforilazione recettori AMPA mediata da CAMKII (aumento conduttanza)
- •Modificazione composizione molecolare dei recettori AMPA (splicing alternativo)
- •Mobilizzazione di un maggior numero di recettori AMPA verso la membrana postsinaptica (sia extra-sinaptici che immagazzinati nella cellula)
- •Attivazione di sinapsi silenti (sinapsi che normalmente contengono solo recettori NMDA)
- >Modificazioni pre-sinaptiche: aumento della probabilità di rilascio quantale del neurotrasmettitore
- •Esistenza di un messaggero retrogrado (NO, sintetizzato dalla nNOS)

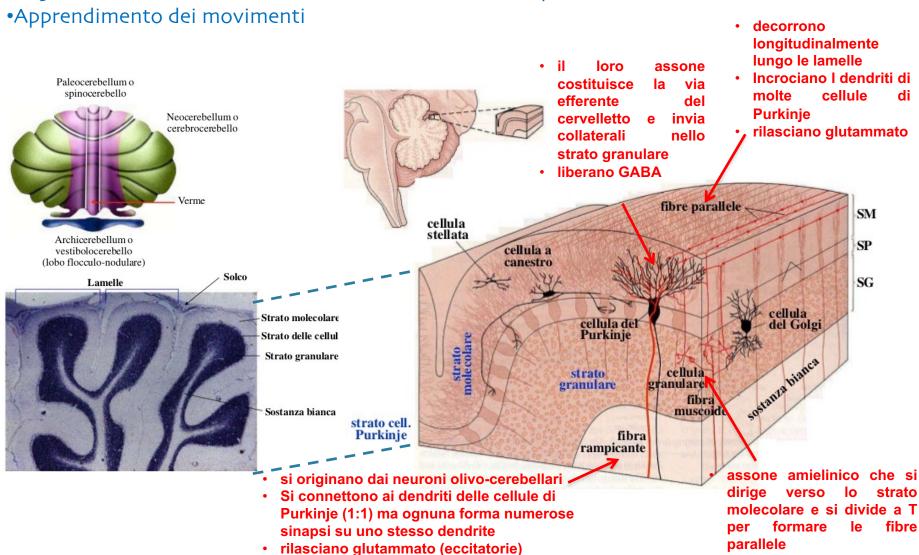
Fase tardiva: consolidamento dell'LTP


- •Attivazione dell'espressione genica mediante il reclutamento del sistema: cAMP-PKA-CREB-CRE
- •Il Ca²⁺ attiva l'adenilato ciclasi-1 (Ca²⁺ sensibile)
- •Sintesi di proteine implicate nelle funzioni di sinapsi pre-formate e nella formazione di nuove sinapsi

La depressione a lungo termine: LTD

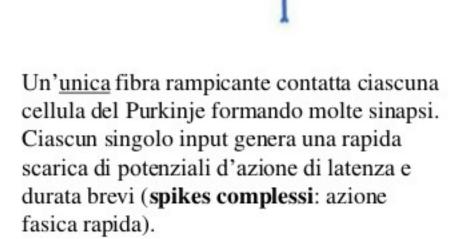
Stimolazione a bassa frequenza (1 Hz) per tempi prolungati (10-15 min) riduce l'attività della stessa sinapsi, ma non incide sull'attività di sinapsi adiacenti (LTD Omosinaptico)

- •Simile nelle proprietà cardine dell'LTP: la specificità
- •Ruolo chiave dei recettori NMDA (LTD inibito dal loro blocco)
- •Ruolo fondamentale del Ca²⁺ (bloccato da chelanti del Ca²⁺)
- •Il tipo di stimolazione induce un grado di reclutamento minore dei recettori NMDA rispetto all'LTP

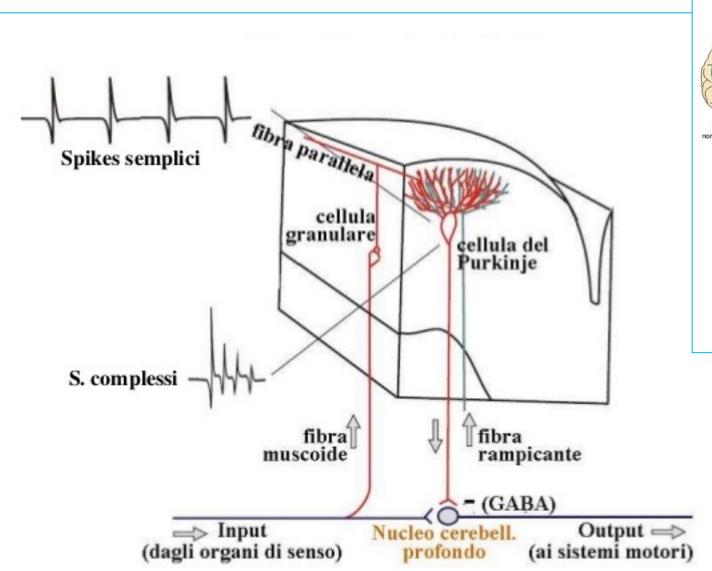


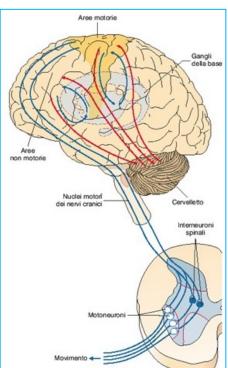
- 1. Bassissima [Ca²+]_i intracellulare: non si attiva nessun meccanismo induttivo; efficacia sinaptica a livelli basali
- 2. Modesta [Ca²+]_i intracellulare: attivazione di meccanismi induttivi dell'LTD, che sono speculari rispetto a quelli dell'LTP associativo; attivazione di proteine fosfatasi che defosforilano i recettori AMPA
- 3. Cospicuo aumento della [Ca²+]_i intracellulare: superamento del livello soglia e attivazione dei meccanismi induttivi dell'LTP

LTD cerebellare: un esempio particolare di LTD associativo

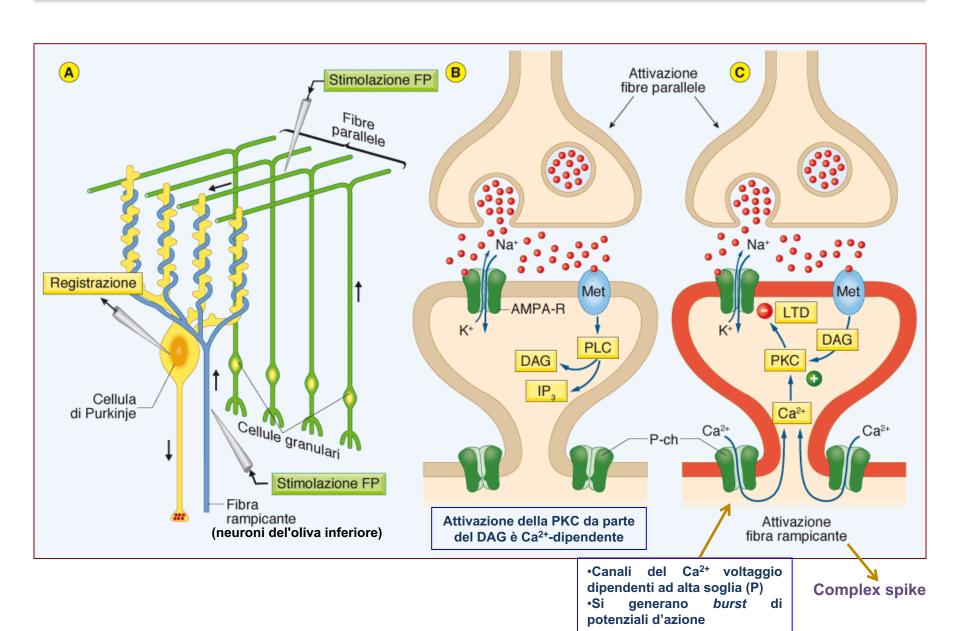

La funzione cerebellare è integrata per:

- •Raffinamento e coordinazione dei movimenti
- •Regolazione del tono muscolare e mantenimanto dell'equilibrio




Gli input delle fibre parallele e rampicanti hanno effetti molto diversi sulle cellule del Purkinje

Molte fibre parallele (~200,000) prendono contatto con una singola cellula del Purkinje (convergenza). Ciascuna sinapsi genera un debole PPSE e sono richiesti molti inputs (sommazione) per generare un potenziale d'azione. La scarica generata è duratura e ritardata rispetto a quella generata dalle fibre rampicanti (**spikes semplici**: azione tonica lenta)



Circuiti cerebellari di base

LTD cerebellare: un esempio particolare di LTD associativo

