Quando parliamo di plasticità?

Plasticità: la capacità delle cellule, dei tessuti e delle funzioni biologiche di modificarsi, in modo più o meno permanente, in seguito a particolari stimoli ambientali

> Modificazioni della massa muscolare e delle funzioni cardio-respiratorie con l'esercizio fisico

> Modificazioni del sistema immunitario per il riconoscimento di "antigeni" estranei

Modificazioni strutturali e funzionali che regolano lo sviluppo embrionale (interazione tra fattori genetici ed epigenetici)

> Nel sistema nervoso: modificazioni strutturali e funzionali che regolano lo sviluppo embrionale del sistema nervoso, l'apprendimento (*plasticità sinaptica*), il recupero funzionale in seguito a lesioni (*rigenerazione*)

Cosa succede quando c'è una lesione neuronale?

Il tessuto nervoso non è in grado di rigenerare (ripristinare) neuroni persi a seguito a gravi lesioni :

Cosa succede quando c'è una lesione dell'assone?

Il neurone è in grado di rigenerare il moncone periferico, ma.....

c'è differenza tra sistema nervoso centrale e periferico!!

Nel Sistema Nervoso Periferico elevata probabilità di rigenerazione, che avviene seguendo una serie di eventi pre-ordinati

Degenerazione Walleriana: completa degenerazione del moncone distale di assone e della guaina mielinica

Rigenerazione¹

- Le cellule di Schwann demielinizzano ed si dispongono a formare un "tubo" cellulare, necessario dirigere la successiva rigenerazione assonale
- I macrofagi fagocitano i detriti

Rigenerazione²

- L'assone emette "gemme" che si allungano distalmente
- L'accrescimento dei prolungamenti è guidato dal "tubo" formato dalla rete di cellule di Schwann

Rigenerazione³

- I prolungamenti si allungano verso il bersaglio periferico crescendo di circa 3-4 mm al giorno
- La ripresa di funzionalità può avvenire anche dopo mesi e si possono verificare *errori* nelle ri-connessioni

Unsuccessful nerve regeneration

Cromatolisi (reazione assonale retrograda)

Cromatolisi e distacco sinaptico (synaptic strippoing)

Pre-assotomia

3 giorni dall'assotomia

3 giorni dall'assotomia

Cromatolisi e distacco sinaptico (synaptic strippoing)

6 giorni dall'assotomia

La rigenerazione è innescata dall'azione sinergica di almeno tre *"segnali retrogradi positivi"*

Abe and Cavalli, 2009

Cambiamenti nel trasporto assonale

Bradke et al., 2012

Cambiamenti nel trasporto assonale

- Riduzione sintesi e trasporto (*Slow Component a*) dei neurofilamenti (riduzione calibro assonale, riduzione attività elettrica)
- Aumento sintesi actina e tubulina (velocità di trasporto non varia, ma più elevata nel SNP rispetto al SNC)
- Riespressione di GAP43 e trasporto rapido (400 mm/giorno)

Hoffman et al., 2010

I "*segnali retrogradi positivi"* favoriscono la sintesi di nuove proteine assonali

Bradke et al., 2012

Nella rigenerazione....

Tecniche sperimentali per favorire la rigenerazione di lesioni importanti dei nervi periferici:

Local release of axonal growth cues

Tipologie di "innesti"

De Stefano et al., 2013

I neuroni del sistema nervoso centrale non rigenerano spontaneamente, sebbene conservino, almeno in parte, una <u>capacità rigenerativa intrinseca</u>

"Paradigma di danno condizionale"

Abe and Cavalli, 2009

Gli assoni centrali rigenerano molto più facilmente se possono passare all'interno di un nervo periferico trapiantato nel punto di danno

Cellule gangliari retiniche: un altro esempio di rigenerazione mediante "graft" di nervi periferici

Interruzione degli assoni nel SNC

1. Possibili interazioni tra proteine non-permissive degli oligodendrociti e recettori neuronali

2. Neuroinfiammazione: Fattori secreti dagli astrociti e microglia migrati nel sito di danno:Formazione di una cicatrice gliale

3. Matrice Extracellulare

(diversa nella composizione tra SNC e SNP)

- Glicoproteine
- Glicosamminoglicani
- Proteoglicani

Funzioni:

- Supporto e sostegno
- Differenziamento cellulare
- Integrazioni neuroni-glia
- Migrazione cellulare
- Sopravvivenza cellulare
- Allungamento assonale
- Formazione sinapsi

Quali potrebbero essere (o sono) i possibili approcci terapeutici?

- 1. Ridurre il danno in fase acuta (rimozione di coaguli, riduzione dell'infiammazione)
- 2. Ridurre i fattori che impediscono la rigenerazione (bloccare la formazione della cicatrice gliale, inibire l'azione dei fattori che impediscono la crescita assonale)
- 3. Favorire attivamente la rigenerazione: esercizio-riabilitazione (stimola l'attività neuronale), farmaci che promuovono la rigenerazione, trapianti di porzioni di nervi periferici
- 4. Protesi e altri ausili tecnici (stimolatori muscolari)

Matrici di idrogel

Nuovi neuroni in un cervello adulto: le cellule staminali neurali

Un possibile nuovo approccio terapeutico per le malattie neurodegenerative e le lesioni spinali?

La terapia delle cellule staminali

Fonti di staminali umane adulte:

- 1. Midollo osseo
- 2. Sangue periferico
- 3. Cordone ombelicale
- 4. Biopsie di vari tessuti

Siti di iniezione del trapianto

Cellule staminali neurali

