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Wavefields: Numerical vs. Asymptotic Approaches

Numerical methods:

 may be cumbersome or even not feasible when dealing with objects
with linear dimensions large with respect to the involved wavelength

 usually do not provide much physical insight into the wave processes
relevant to the considered configuration.



Advantages of the Asymptotic Methods

Asymptotic representations (or expansions) of the wave fields have
several advantages:

 Simplicity of the resulting expressions

 High degree of accuracy with a small number of terms

 Physical insight into the involved wave phenomena

In this and the next lessons we aim at providing basic information on
asymptotic expansions, either derived directly from the wavefield
equations (ray optics) or from integral representations of the wavefield.



Asymptotic Expansions:
Introduction and Behavioral Survey



A Behavioral Survey: the Error Function

Let us start by examining types of expansion which may be developed
for the well-known error function:
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This function is important in its own right, and of special interest in
asymptotics through having provided one of the earliest examples of a
Stokes discontinuity.



Error Function: a Convergent Expansion
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Expansion of the exponential as a power series

followed by term by term integration, leads to the series
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absolutely convergent series for any u,
uniformly convergent on any closed and
bounded subset of the complex plane

which is absolutely convergent for any z.



Drawbacks of the Convergent Expansion

Though theoretically exact for any magnitude and phase of the variable z,
such a convergent series can prove very inconvenient except for small
values of |z|.

For instance, its individual terms do not begin to decrease until
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and their sum does not even begin to approximate the error function
until about three times as many terms have been assembled.

More seriously, for large |z| the final sum is far smaller than the
largest individual terms, which therefore have to be calculated to
many extra significant figures…



The Asymptotic Approach

Fortunately, the alternative 'asymptotic' approach produces a series in
which, in contrast, ease of calculation to a prescribed accuracy increases
with |z|.

Let us consider for instance the phase sector arg
2
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To start with, the well known Gauss integral

allows for writing
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The Asymptotic Approach

In the new integral, is significant in magnitude only near the lower
limit u=z, and can therefore be expanded about this point.

It is convenient to choose as expansion parameter so that2 2w u z 
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We now make use of the Binomial Theorem, which provides for the
following power-series representation about the point w=0:
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Detour on the Generalized Factorial via Gamma Function

What is the meaning of the factorial for a non-integer number?

In the the aforementioned binomial expansion, it is understood that the factorial
is defined via the so-called (Eulerian) Gamma function:
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The indicated condition guarantees convergence of the integral in a neighborhood
of w=0.

The Gamma function can then be analytically
extended to a meromorphic function that is
holomorphic in the whole complex plane except
the non-positive integers, where the function has
simple poles



The Asymptotic Approach

Including the binomial expansion inside the integral and performing again
term by term integration we obtain
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asymptotic expansion of the error function 
in the indicated phase range



The Asymptotic Approach

The terms in this 'asymptotic series' behave in a

radically different way from those of the convergent series :

For moderate or large |z|:
- the terms in the former first progressively decrease in magnitude, then

reach a minimum around r |z|2 and thereafter increase;
- while those in the latter first increase, reach a maximum around s |z|2

and thereafter decrease.
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Because of the ultimate progressive increase in magnitude of its terms, an
asymptotic power series is divergent. Nevertheless, even if crudely broken
off at its least term (thereby retaining its first few terms), it produces
remarkably accurate results, especially for large values of z.



Inspiring Quotes

One remarkable fact of applied mathematics is the ubiquitous
appearance of divergent series, hypocritically renamed asymptotic
expansions. Isn’t it a scandal that we teach convergent series to our
sophomores and do not tell them that few, if any, of the series they
meet will converge? The challenge of explaining what an asymptotic
expansion is ranks among the outstanding taboo problems of
mathematics.

Gian Carlo Rota, 1996



Inspiring Quotes

Divergent series are the devil, and it is a shame to base on them any
demonstration whatsoever.

Niels Henrik Abel, 1828

The series is divergent, therefore we may be able to do something with
it.

Oliver Heaviside, cited by M. Kline
Morris Kline, Mathematical thought from ancient to modern times. Oxford University Press USA, 1990.



Asymptotic Expansions in Physics and Engineering

Both in theoretical and applied sciences it is desirable to approach the
solution of a problem by a method of successive approximation in which
the very first term will provide at least a rough value for the answer.

The above comparative analysis of convergent and asymptotic series
suggests that the most commonly applied methods are indeed asymptotic
rather than convergent. Evidence shows this to be true for ubiquitous
methods such as:

- WKB methods
- stationary-point methods
- perturbative expansions

extensively applied from oceanography to seismology through optics,
applied electromagnetics, quantum mechanics and quantum field theory.



Asymptotic Expansions in Physics and Engineering

A simple elementary example of this is the Stirling-Laplace asymptotic
formula for the factorial
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compared with the virtual non-appearance of the corresponding convergent
expansion
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Taxonomy of Late Terms

The most frequent exception to the predilection towards asymptotics in
physics is the hypergeometric form, which displays properties midway
between those of asymptotic and exponential type:
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Its finite radius of convergence is often associated with some transition
point; hence it appears, e.g., in co-operative phenomena (especially phase
transitions), such as the Ising model, ferromagnetism, Fermi-Thomas
electron screening, and hydrodynamics (boundary layers, flow
discontinuities).



Stokes Discontinuities

The foregoing derivation of the asymptotic expansion for (z) was based
on the understanding that |arg(z)|<p/2.

Now let us suppose z to be purely imaginary, i.e., z=jy; by letting u=jv:
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The integrand is large only close to the upper limit v=y, and can therefore
be expanded about this point. By letting f=y2-v2:
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Stokes Discontinuities

Since the integrand is real throughout the specified range of integration
from 0 to y2, but would be purely imaginary over the range from y2 to +∞,
then
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An identical reasoning covers the case where z is a negative imaginary.
In both cases, therefore:

   
 

 
2

20

1 / 2 !
, arg

2

z

r
r

rez z
z z




 




  






Stokes Discontinuities

Let us now compare:
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The second lacks the unit term. This type of discontinuity in the
asymptotic expansion of the (continuous!) error function was discovered
by Stokes in 1864. Typically, at a certain phase drawn in the complex plane
as a 'Stokes ray', an 'associated function' appears, disappears, or changes
its numerical multiplier.



Stokes Discontinuities

Let us proceed to still larger phases p/2 <|arg(z)|≤ p : by reversing the
sign of u in the defining formula:
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we get

where now the 'associated function' has changed (previously it was the
constant +1, now it is the constant -1).



Asymptotic Expansions:
Definitions and Fundamental Concepts



Example and First Definitions

Example:
0
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Assume you wish to evaluate this for small positive values of e.

Integrating by parts:
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Iterating:



 
   

 

2 3

1 1
2

0

1 2! 3 ! ... 1 !

1 1 ! d
1

N N

tN N
N

I N

eN t
t

    




  


           

  



Terminology:

• is of order

• is of smaller order than

• is an approximation correct to order

 

22! 

21 2 !I         
2

(this assumes that is a ‘small’ quantity).

Let us now try to make these statements more precise…
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Example and First Definitions
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‘f(k) is an approximation to I(k) valid to order (k) as k → k0’

   
 0

lim 0
k k

I k f k

k


 

Example and First Definitions



Asymptotic Sequences, Asymptotic Expansions

The ordered sequence is characterized by the fact that its
(j+1)-th term is much smaller than its j-th term.
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This is the defining property of an asymptotic sequence.
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provides an asymptotic expansion with respect to the aforementioned
asymptotic sequence
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Definitions:
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Asymptotic Sequences, Asymptotic Expansions



We then write:
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When an arbitrary number of terms can be calculated we write:
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Asymptotic Sequences, Asymptotic Expansions



Asymptotic does not mean Convergent

Coming back to our example, it is important to realize that:
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DOES NOT imply that the series is convergent.

In fact, this series is not convergent for any value of ε.
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Indeed, for ε fixed the term tends to infinity as j →∞.

But for fixed j this term vanishes as  → 0, and this is the reason that the
above expansion provides a good approximation to I() as  → 0.
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A Second Example

Example: Asymptotic expansion of  
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A Third Example

Example: Asymptotic expansion of   d ,
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Integrating by parts:



Accuracy of Asymptotic Expansions

Asymptotic series frequently give remarkably good approximations.

For example, when k = 10 and N = 2, the error between the exact answer and
the first two terms of the series, R2(10), satisfies

which is clearly very small.
In fact, even when k = 3 and N = 2, we have

However, we cannot take too many terms in the series, because the
remainder, which decreases for a while, eventually increases as N increases.

In principle, one can find the “optimal” value of N for fixed k for which the
remainder is smallest (best approximation). In most applications, obtaining
the first few terms of the asymptotic expansion is sufficient.
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Uniqueness Property
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uniqueness.

 1 k

   2 3, , ...k k  0,jc j 



Extension to Complex Parameters

So far the expansion parameter (k) was real. However, the previous definitions
can be extended to complex values of the parameter k, which we will now call z.

  1 2
0 2

0
... j

j
j

aa a
f z a

z z z




    

Consider a function f(z) that is analytic everywhere outside a circle |z| = R. Then
we know that f(z) has a convergent Taylor series at infinity of the form

In this case the convergent Taylor series is equivalent to a convergent asymptotic
series with an asymptotic sequence
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If f(z) is not analytic at infinity, it cannot possess an asymptotic expansion valid
for all arg(z) as z → ∞. Typically asymptotic expansions are found to be valid only
within some sector of the complex plane; that is, the expansion is constrained by
some bounds on arg(z).



Asymptotic Power Series in the Complex Plane

A function f is said to have an asymptotic power series in a sector of the z plane
as z→∞ if

   1 2
0 2

...
a a

f z a
z z

   (the series is generally not convergent.)

Then the arithmetic combinations f + g (sum) and fg (product) also have
asymptotic power series representations that are obtained by adding or
multiplying the series termwise.
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Let another function g(z) have an asymptotic power series representation in the
same sector of the form



An asymptotic power series can be integrated or differentiated termwise to yield
an asymptotic expansion:
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Note that more general asymptotic series (as opposed to asymptotic power
series) can be integrated termwise but it is, in general, not permissible to
differentiate termwise in order to obtain an asymptotic expansion.

Asymptotic Power Series in the Complex Plane



Terms ‘Beyond All Orders’

A given asymptotic expansion can represent two entirely different functions.

Suppose as z →∞ for Re[z] > 0 (i.e., p/2 < arg z < p/2), the function f(z) is
given by the asymptotic power series expansion

Then the same expansion also represents f (z) + ez in this sector.

The reason is that the asymptotic power series representation of ez for Re[z] > 0
is zero, that is
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The term ez is transcendentally small, or said to be “beyond all orders”, with
respect to the asymptotic power series. An asymptotic power series contains no
information about terms beyond all orders.
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Remarks

The previous property can be considered as a drawback of the adopted definition
of an asymptotic expansion.

The adopted definition was proposed by H. Poincaré in 1886 and furnished the
departure for most subsequent theoretical developments.

A different definition of a complete asymptotic expansion was proposed by R. B.
Dingle, who showed that a latently exact meaning can be ascribed to such
expansions (i.e., that they encode precise information about the function they are
associated to).

R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation.
London and New York: Academic Press, 1973.

Exponentially small terms may be crucial in physics, typically being associated to
Non Perturbative (NP) effects not described by the usual Perturbative (P)
asymptotic expansions…

D. Dorigoni, "An introduction to resurgence, trans-series and alien calculus,"
Ann. Phys. 409 (2019 ): 167914.

J. P. Boyd, "The devil's invention: asymptotic, superasymptotic and
hyperasymptotic series." Acta Appl. Math. 56.1 (1999): 1-98.



Discontinuities in Complex Asymptotic Expansions

When f(z) has an asymptotic representation in a sector of the complex plane, it
can happen that an entirely different representation is valid in an adjacent sector.

In fact, even when f(z) is analytic for large but finite values of z, the asymptotic
representation can change discontinuously as the sector is crossed:
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Discontinuities in Complex Asymptotic Expansions

• If f(z) is analytic at infinity, its asymptotic expansion coincides with its power
series, and the series converges. In this case, the asymptotic expansion of f(z)
changes continuously at infinity.

• If the point at infinity is a branch point, the asymptotic expansion changes
discontinuously across the branch cut.

• If the point at infinity is a local essential singular point, and even though f(z) is
single valued in the neighborhood of infinity, the asymptotic expansion has
lines (rays) across which it changes discontinuously. This is usually referred to as
the Stokes phenomenon, after George Stokes who first discovered this in 1864.
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