

Environmental Geophysics

Giorgio De Donno

5. DC electrical methods

Basic principles

Vertical Electrical Soundings (VES)

“Sapienza” University of Rome - DICEA Area Geofisica

phone: +39 06 44 585 078

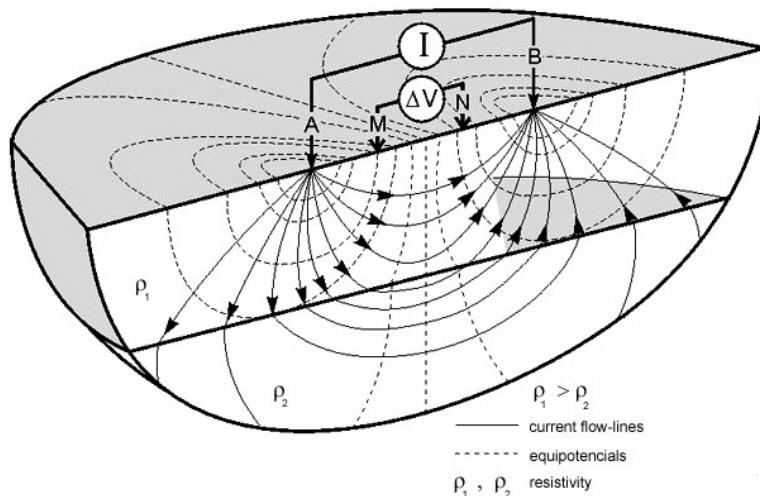
email: giorgio.dedonno@uniroma1.it

Electrostatic (or galvanic or geoelectrical) method

Geoelectrical methods are all methods that use the electric current (generally DC) flow within a medium.

The electric source can be **natural** (spontaneous potentials generated in the Earth) or **anthropogenic** by using an external source.

In this course we will study the latter method, i.e. the so-called **active** or **galvanic electrostatic** method.

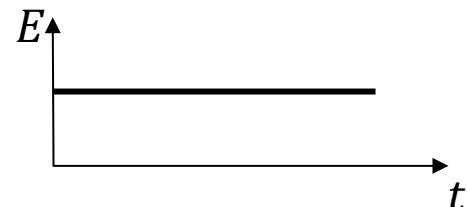


Electrostatic assumption

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = - \frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t}$$

*Faraday's law
1st Maxwell's equation*

E: electric field
B: magnetic induction
 $\mathbf{r} = \mathbf{r}(x, y, z)$: position
t: time



1° assumption: electrostatic field - induction-free media (no time-varying magnetic field)

$$\frac{\partial \mathbf{B}}{\partial t} = 0 \rightarrow \nabla \times \mathbf{E} = 0$$

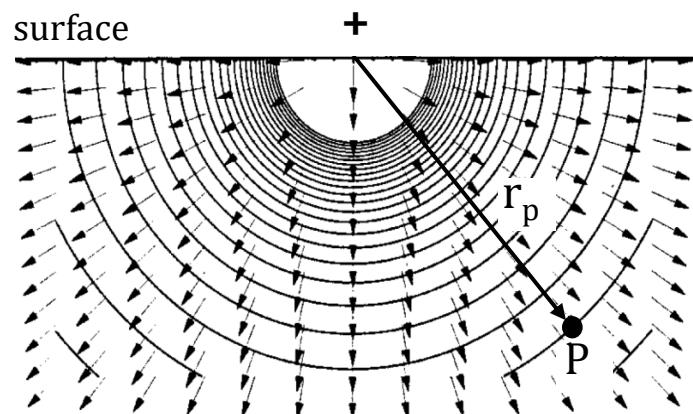
Electrostatic field is irrotational, conservative, that is described by a potential function V, such as:

$$\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r}) \quad \nabla V \equiv \left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z} \right) \quad \text{The minus sign indicates a potential decreasing in the direction of the electric field}$$

hp. **positive charge on surface and homogenous ground** → transformation to spherical coordinates → potential varies only as a function of the radial distance r_p between the observation point P and the charge

$$E = -\frac{\partial V}{\partial r} = -\frac{(V_p - V_0)}{r_p} = \frac{(V_0 - V_p)}{r_p} = \frac{\Delta V_p^+}{r_p}$$

ΔV_p^+ is **potential (or voltage) drop** at the observation point P



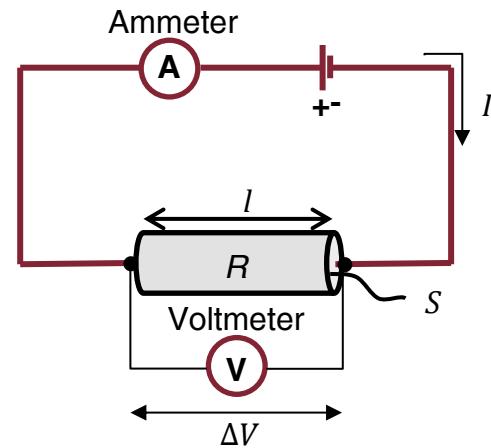
Ohm's law

Resistance
[Ohm - Ω]

$$R = \frac{\Delta V}{I}$$

Volt [V]

Ampere [A]



Resistivity
[Ohm·m - Ωm]

$$\rho = \frac{S}{l} R = \frac{S \Delta V}{l I}$$

$$\sigma = \frac{1}{\rho}$$

depends only on the geometry of the conductor

Conductivity
[Siemens/m - S/m]

ΔV : voltage
 I : current
 S : cross-sectional area
 l : length

$$E = \frac{\Delta V}{L} = \rho \frac{I}{S} J$$

↓

- For a simple R-circuit the electrical field describes the variation of the electric potential by the distance l
- J is the current density, that is the amount of charge per unit time (current intensity I) that flows through a unit area of a chosen cross section S

$$\mathbf{E} = \rho \mathbf{J}$$

or

$$\mathbf{J} = \sigma \mathbf{E}$$

Ohm's law in differential form

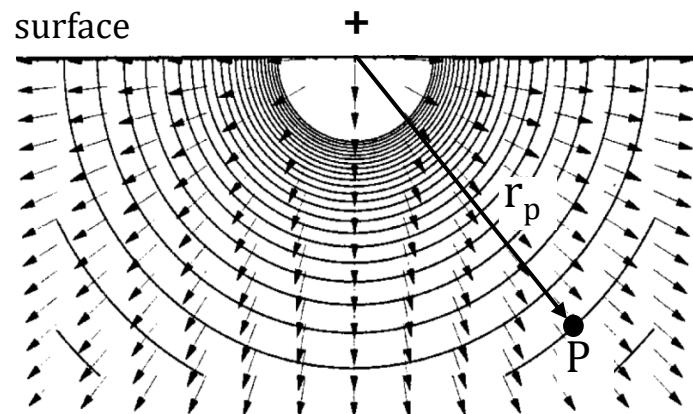
Electric field and electric potential – Single charge

- A positive point charge placed on the surface of a **homogeneous medium** induces a radially-directed current flow
- The voltage drop ΔV_P^+ will follow equipotential surfaces (hemispheres)
- The length of the conductor is the radial distance r_P while the surface to be considered is the equipotential surface (hemisphere) $2\pi r_P^2$

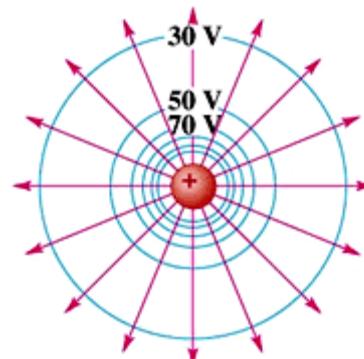
Potential drop as a function of resistivity:

$$\Delta V_P^+ = IR = I \left(\rho \frac{l}{S} \right) = I \left(\rho \frac{r_P}{2\pi r_P^2} \right) = I \left(\rho \frac{1}{2\pi r_P} \right)$$

CROSS-SECTION



TOP VIEW



$$\rho = 2\pi r_P \frac{\Delta V_P^+}{I}$$

Electric field and electric potential - Dipole

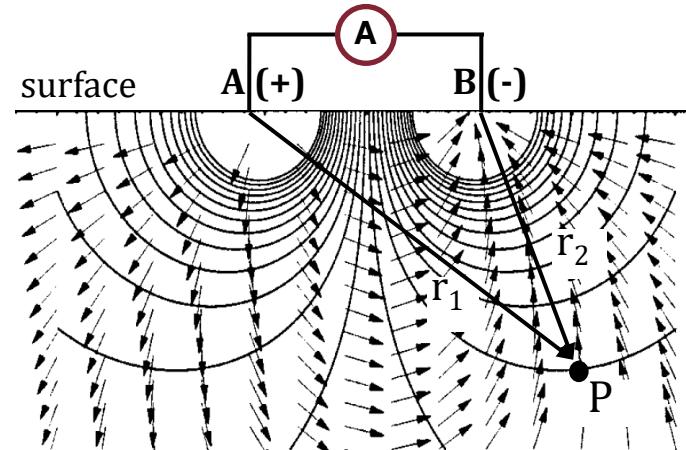
- Inserting a negative charge at a certain distance from the positive one (A - positive and B - negative), thus forming the the so-called **dipole**, we can measure the current intensity through an Ammeter
- The potential drop at point P is the summation of effects due to both charges

field is inward directed in B

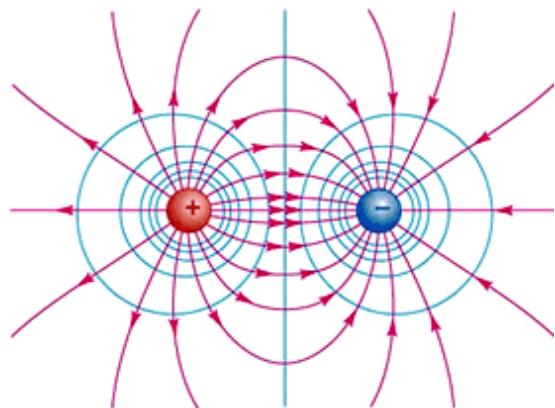
$$\Delta V_P^{(+,-)} = \Delta V_P^+ + \Delta V_P^- = \frac{I\rho}{2\pi r_1} - \frac{I\rho}{2\pi r_2} = \frac{I\rho}{2\pi} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\rho = 2\pi \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \frac{\Delta V_P^{(+,-)}}{I}$$

CROSS-SECTION



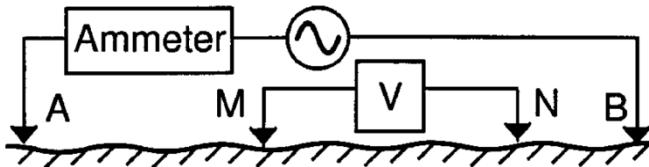
TOP VIEW



Electric field and electric potential – Quadrupole

However, the electric **potential is generally measured by a couple of electrodes on surface** close to the source points, even though also borehole measurements can be performed. This particular geometry leads to a **quadrupole configuration (A-B-M-N)**

A and B: current electrodes
M and N: voltage electrodes



We measure the **voltage difference** ΔV_{MN} due to a dipolar source (A-positive, B-negative poles). Practically we only need to apply two times the previous formulation:

$$\Delta V_M^{(+,-)} = \frac{I\rho}{2\pi} \left(\frac{1}{AM} - \frac{1}{MB} \right) \quad \longrightarrow \quad \Delta V_{MN} = \Delta V_M^{(+,-)} - \Delta V_N^{(+,-)} = \frac{I\rho}{2\pi} \left(\frac{1}{AM} - \frac{1}{MB} - \frac{1}{AN} + \frac{1}{NB} \right)$$

$$\Delta V_N^{(+,-)} = \frac{I\rho}{2\pi} \left(\frac{1}{AN} - \frac{1}{NB} \right) \quad \longrightarrow \quad \rho = 2\pi \left(\frac{1}{AM} - \frac{1}{MB} - \frac{1}{AN} + \frac{1}{NB} \right)^{-1} \cdot \frac{\Delta V_M^{(+,-)}}{I}$$

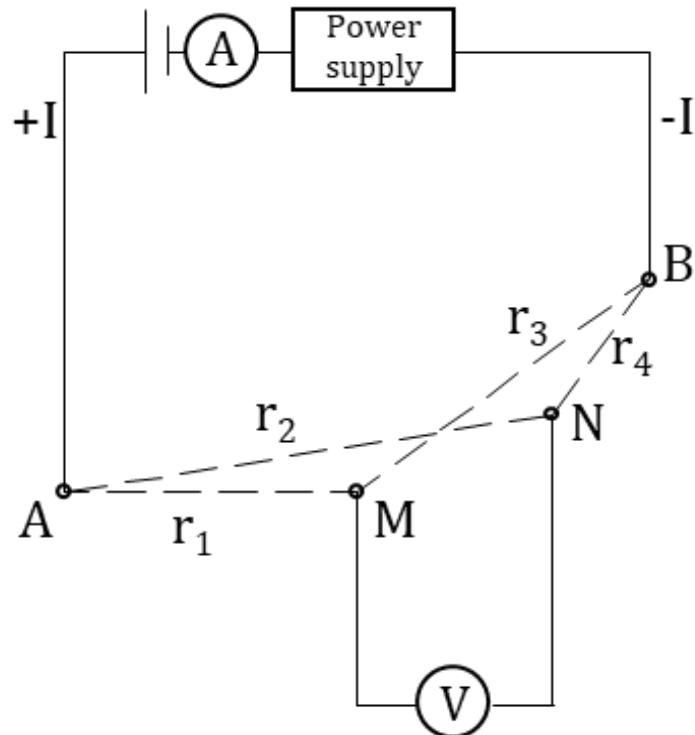
Resistivity of homogeneous ground

$$\rho = \frac{2\pi}{\left(\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{r_3} + \frac{1}{r_4} \right)} \cdot \frac{\Delta V_{MN}}{I_{AB}}$$

geometric factor K

$$\rho = K \frac{\Delta V_{MN}}{I}$$

Resistivity of
homogenous
ground



Do you remember the Ohm's law?

It is the same formulation

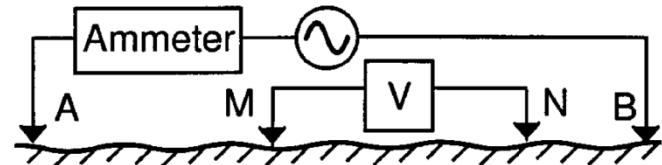
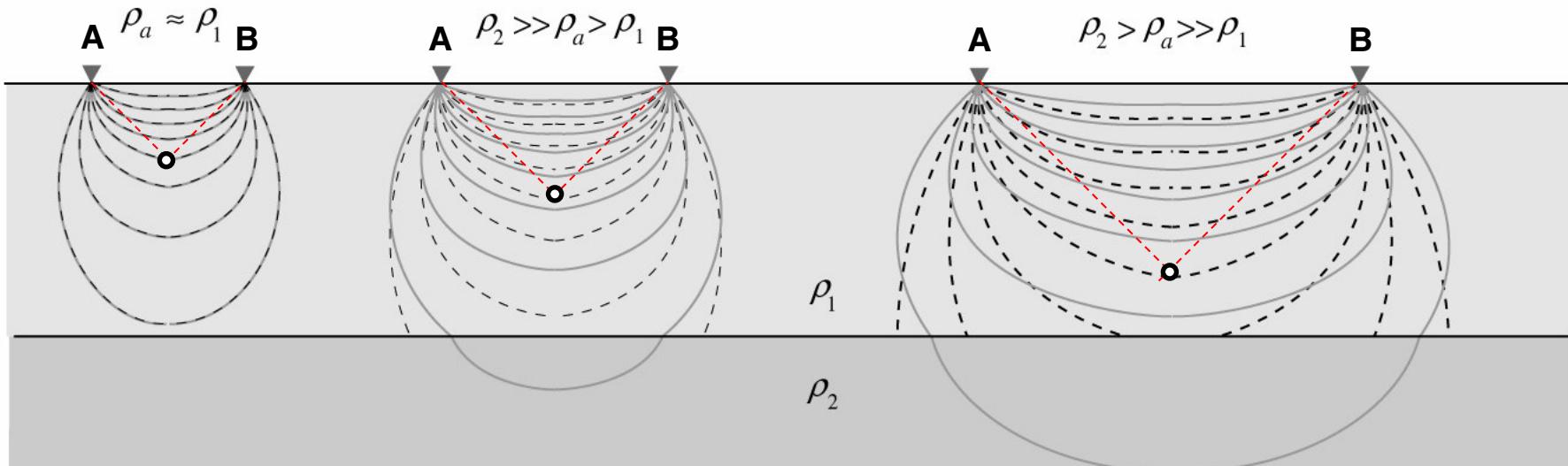
Q. What does it happen for a layered ground?

A. We cannot measure the true resistivity but only an “apparent” value”

Apparent resistivity - 1D case

$$\rho_a^{OBS} = K \frac{\Delta V_{MN}}{I_{AB}}$$

Apparent resistivity



- Measurement (conventional) location: cross point of straight lines at 45°

----- Current flow lines – homogeneous subsurface

$$\rho_2 > \rho_1$$

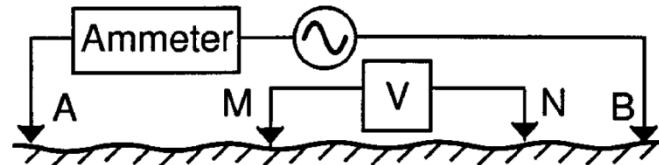
———— Current flow lines – horizontal interface

Introduction to Applied Geophysics
Copyright © 2006 W. W. Norton & Company

Apparent resistivity - 1D case

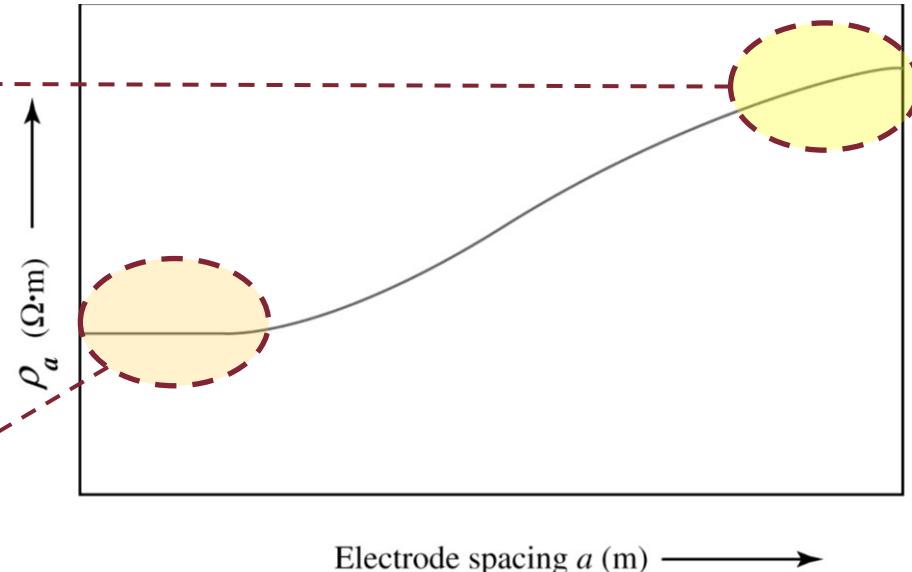
$$\rho_a^{OBS} = K \frac{\Delta V_{MN}}{I}$$

Apparent resistivity



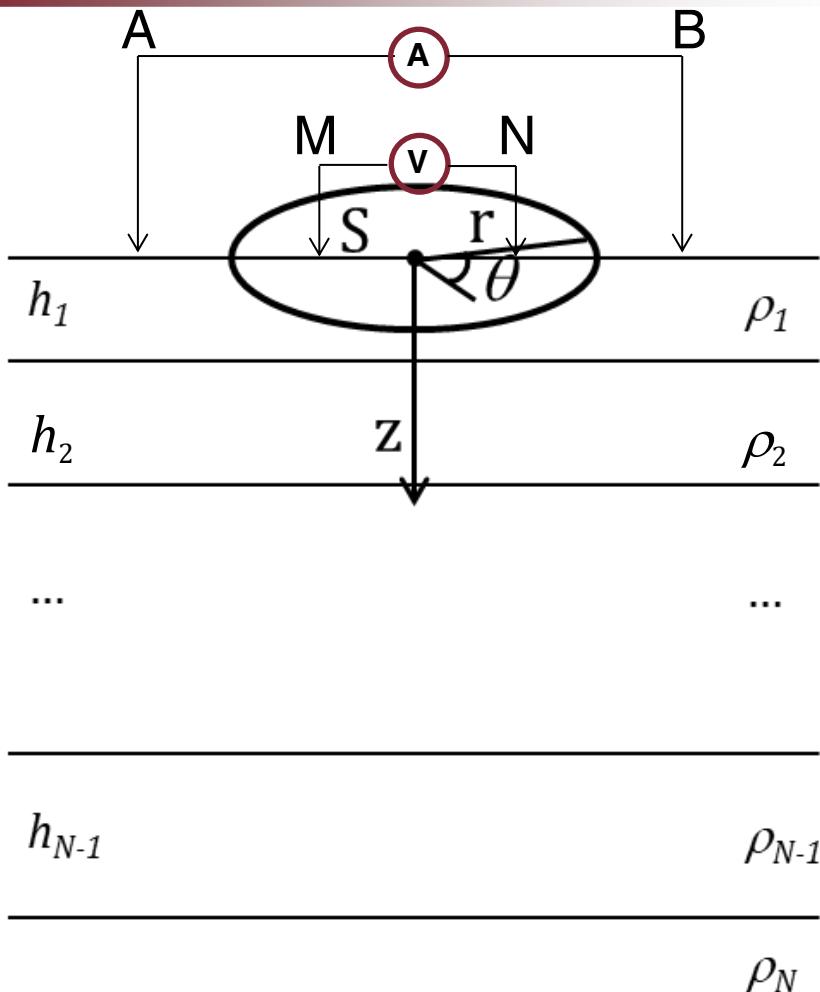
Electrode spacing **too large** to “feel”
the shallow conductive layer ρ_1

Electrode spacing **too small** to “feel”
the deep resistive layer ρ_2



Introduction to Applied Geophysics
Copyright © 2006 W. W. Norton & Company

Apparent resistivity - 1D case



The 1-D method is called
Vertical Electrical Sounding (VES)

Therefore, **we cannot measure directly on surface the “true” resistivity** of a “real” medium.

In case of inhomogeneities (always in practical cases) this value is only a “mean” resistivity value called **apparent resistivity** ρ_a

$$\rho_a^{OBS} = K \frac{\Delta V_{MN}^{OBS}}{I}$$

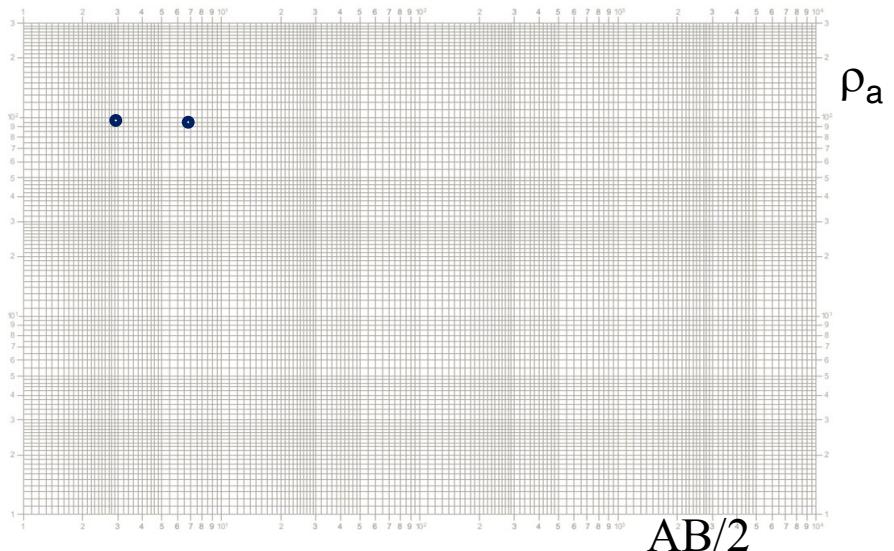
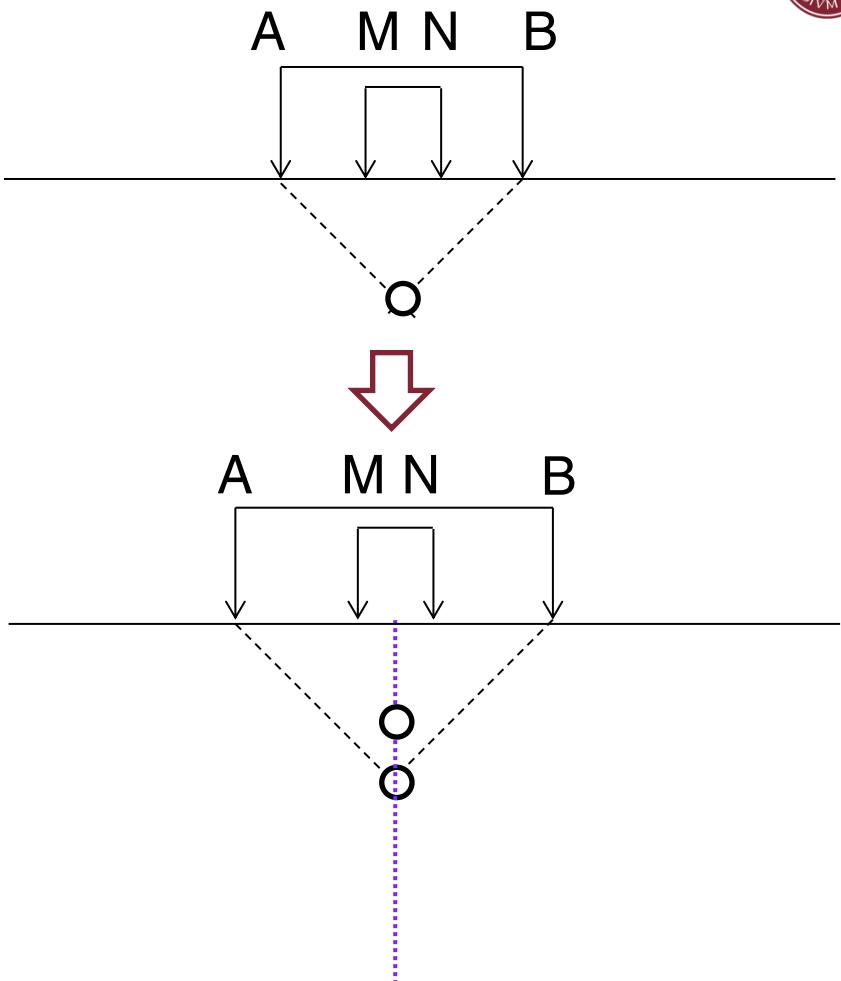
Observed apparent resistivity

Since we cannot measure directly the “true” resistivity of a medium, the correct approach to retrieve a resistivity model is to perform **DATA INVERSION**

Data inversion – 1D VES case

OBSERVED DATASET

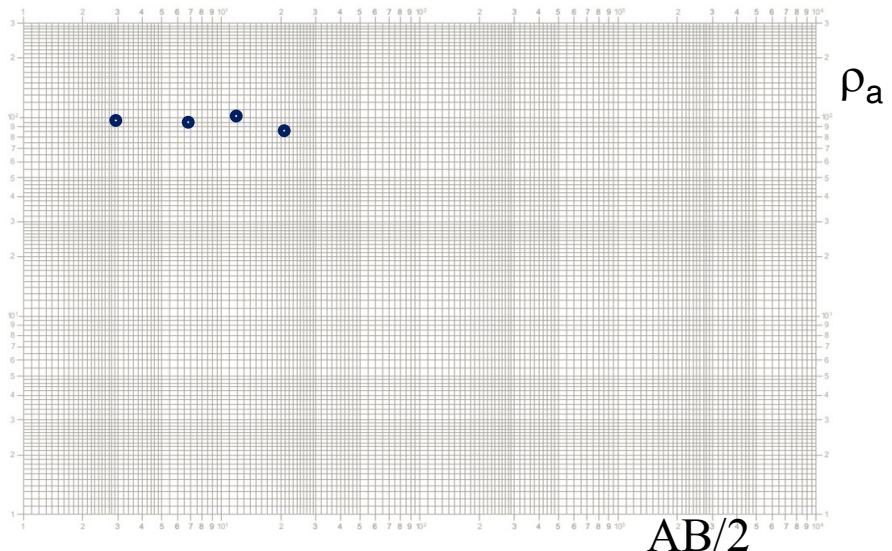
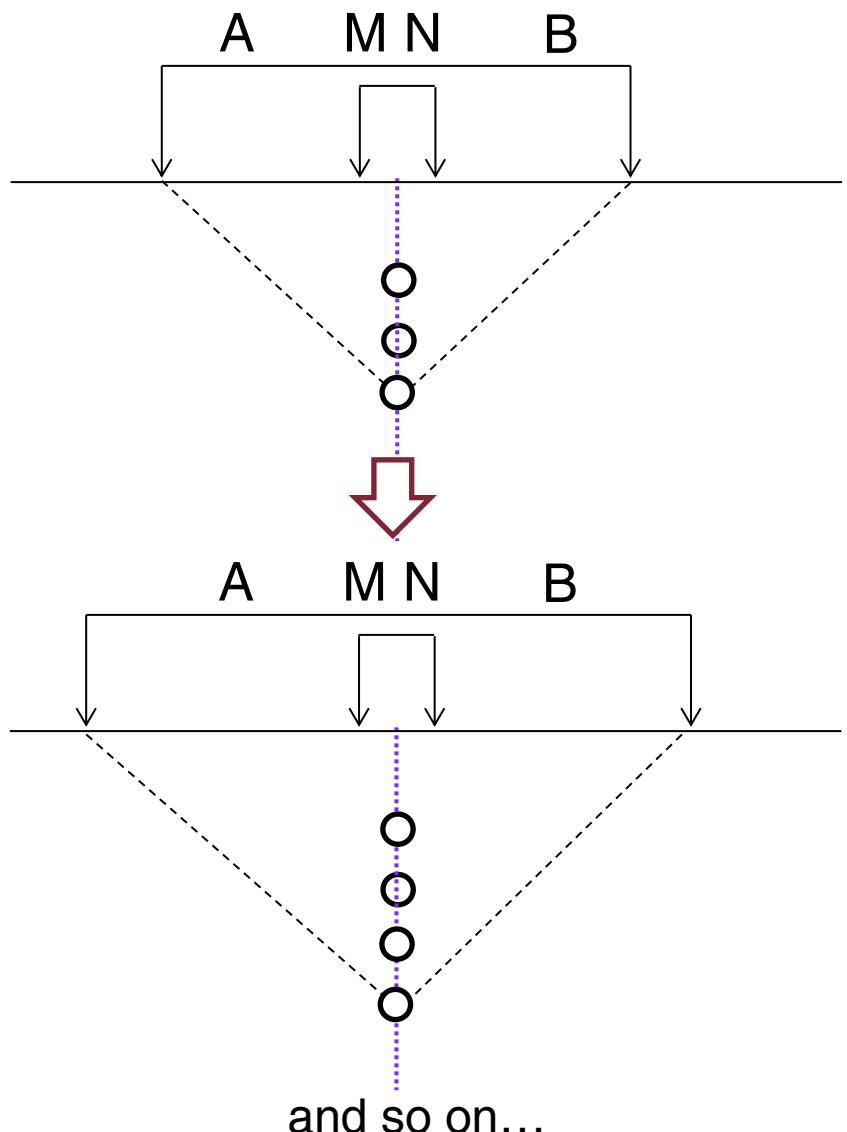
N.	AB/2	MN/2	ΔV (V)	I (mA)	σ (%)	ρ_a (Ω m)
1	1	0.5	0.679910	101.45	1.20	100
2	2	0.5	0.266054	101.56	0.08	99



Data inversion – 1D VES case

OBSERVED DATASET

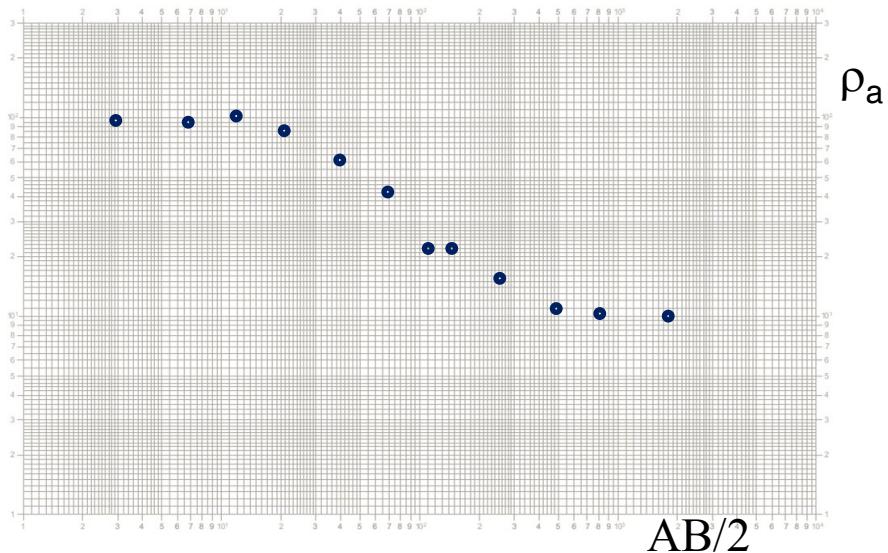
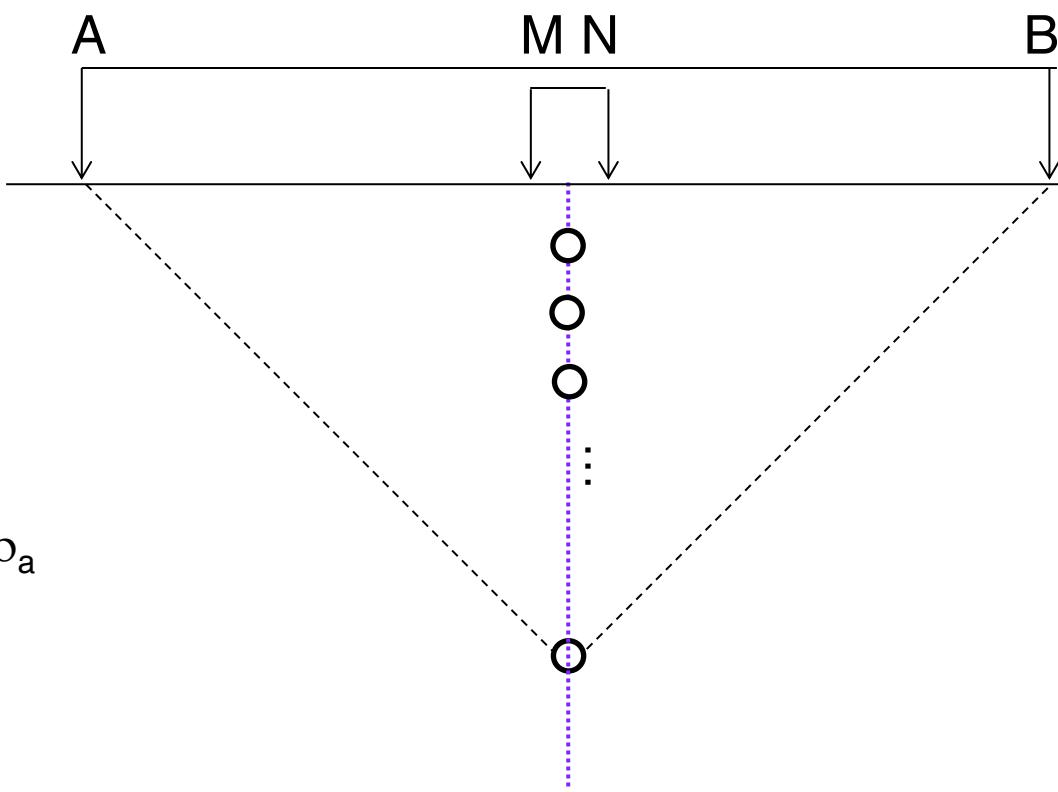
N.	AB/2	MN/2	ΔV (V)	I (mA)	σ (%)	ρ_a (Ω m)
1	1	0.5	0.679910	101.45	1.20	100
2	2	0.5	0.266054	101.56	0.08	99
3	4	0.5	0.121435	101.43	2.02	102
4	8	0.5	0.172654	125.67	1.06	95



Data inversion – 1D VES case

OBSERVED DATASET

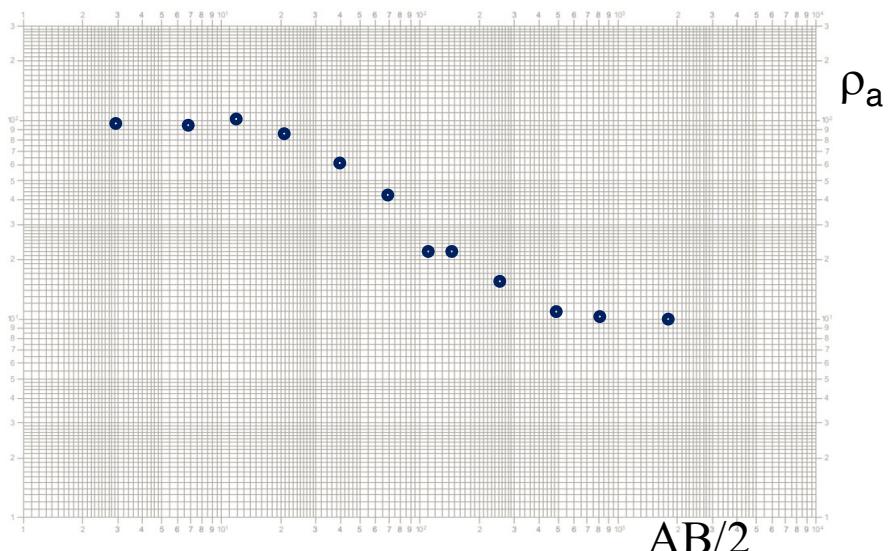
N.	AB/2	MN/2	ΔV (V)	I (mA)	σ (%)	ρ_a (Ω m)
1	1	0.5	0.679910	101.45	1.20	100
2	2	0.5	0.266054	101.56	0.08	99
3	4	0.5	0.121435	101.43	2.02	102
4	8	0.5	0.172654	125.67	1.06	95
...						
12	200	0.5	0.545678	105.65	1.87	10



Data inversion – 1D VES case

OBSERVED DATASET

N.	AB/2	MN/2	ΔV (V)	I (mA)	σ (%)	ρ_a (Ω m)
1	1	0.5	0.679910	101.45	1.20	100
2	2	0.5	0.266054	101.56	0.08	99
3	4	0.5	0.121435	101.43	2.02	102
4	8	0.5	0.172654	125.67	1.06	95
...						
12	200	0.5	0.545678	105.65	1.87	10



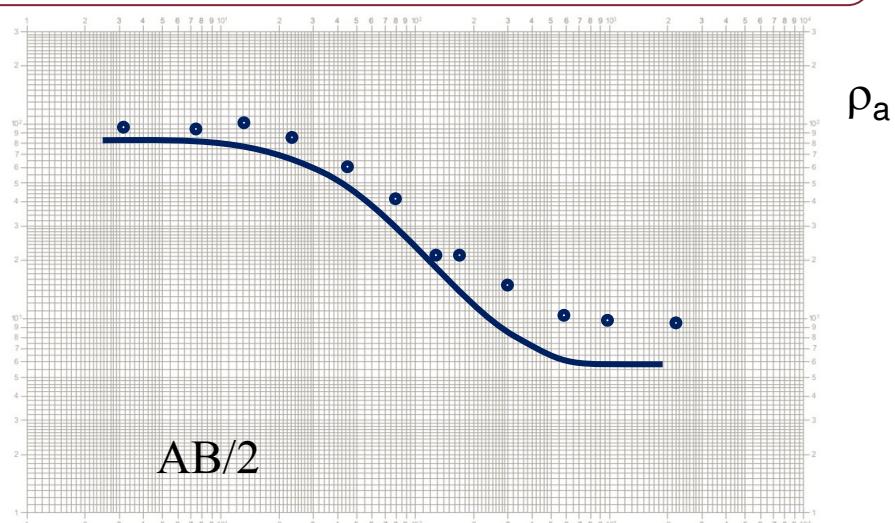
First trial model

$h=8$ m

$\rho_1=80$ Ω m

$\rho_2=5$ Ω m

PREDICTED DATASET Solving the electrostatic field equation

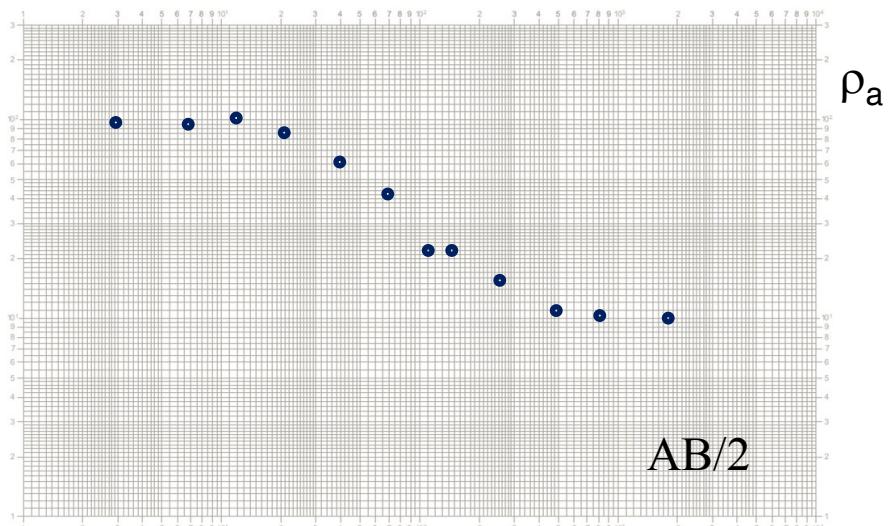


TRY IF CALCULATED DATA FIT THE OBSERVED ONE

Data inversion – 1D VES case

OBSERVED DATASET

N.	AB/2	MN/2	ΔV (V)	I (mA)	σ (%)	ρ_a (Ω m)
1	1	0.5	0.679910	101.45	1.20	100
2	2	0.5	0.266054	101.56	0.08	99
3	4	0.5	0.121435	101.43	2.02	102
4	8	0.5	0.172654	125.67	1.06	95
...						
12	200	0.5	0.545678	105.65	1.87	10



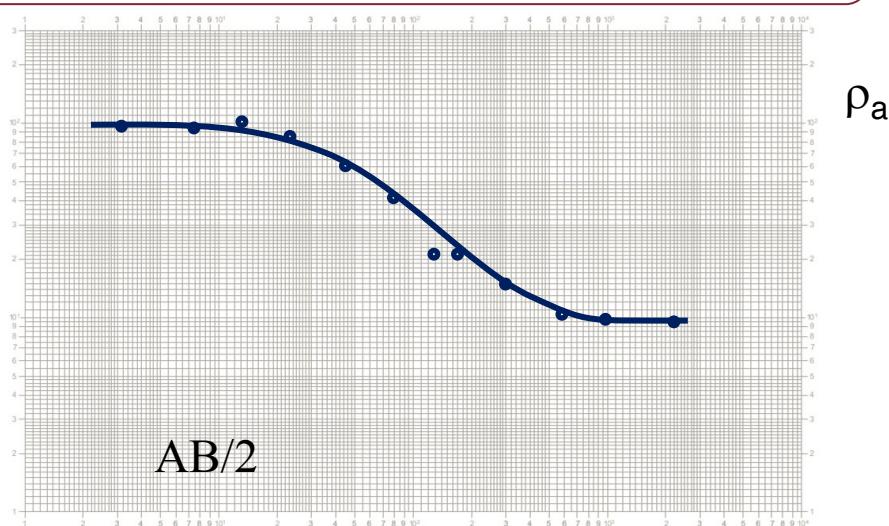
Final model

$h=10$ m

$\rho_1 = 100 \Omega\text{m}$

$\rho_2 = 10 \Omega\text{m}$

PREDICTED DATASET Solving the electrostatic field equation



If the fit is satisfying, the trial model is the final resistivity model
Otherwise, we have to try an other model and repeat the procedure

Electrostatic field equation – Real media

Q. How we can solve the electrostatic field equation for inhomogeneous media?

$$\left\{ \begin{array}{l} \mathbf{E} = -\nabla V \\ \nabla \times \mathbf{H}(\mathbf{r}, t) = \mathbf{J}_T(\mathbf{r}) + \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t} \\ \mathbf{J}_T = \mathbf{J}_C + \mathbf{J}_{ext} = \sigma(\mathbf{r})\mathbf{E} + \mathbf{J}_{ext} \end{array} \right.$$

*Electrostatic potential
from Faraday's Law*
Ampère-Maxwell's Law
*Constitutive equation (CE)
(generalized Ohm's law)*

\mathbf{D}	electric displacement
\mathbf{H}	magnetic field
\mathbf{J}_T	total current density
\mathbf{J}_C	conduction current density
\mathbf{J}_{ext}	external current density (external source)
$\mathbf{r}(x, y, z)$	position
t	time

2° assumption: no capacitive effects (polarization) - pure resistive response

1. Applying the divergence to Ampère's Law:

$$\nabla \cdot (\nabla \times \mathbf{H}) = \nabla \cdot \mathbf{J}_T \quad \Rightarrow \quad \boxed{\nabla \cdot \mathbf{J}_T = \mathbf{J}_C + \mathbf{J}_{ext} = 0} \quad \text{Continuity equation}$$

2. Substituting Ohm's law:

$$\nabla \cdot (\sigma \mathbf{E} + \mathbf{J}^{ext}) = 0$$

3. Substituting the electrostatic potential:

$$\boxed{-\nabla \cdot (\sigma \nabla V) + \nabla \cdot \mathbf{J}^{ext} = 0}$$

Electrostatic field equation – real media

Q. How can I express the external source term?

A. Please see this box

$$-\nabla \cdot (\sigma \nabla V) + \nabla \cdot \mathbf{J}^{\text{ext}} = 0$$

$$-\nabla \cdot (\sigma \nabla V) - I\delta(\mathbf{r}) = 0$$

$$-\nabla \cdot (\sigma(\mathbf{r}) \nabla V(\mathbf{r})) = I\delta(\mathbf{r})$$

Electrostatic field equation

Differential equation describing the propagation of electric field within a non-homogenous half-space

For homogeneous ground:

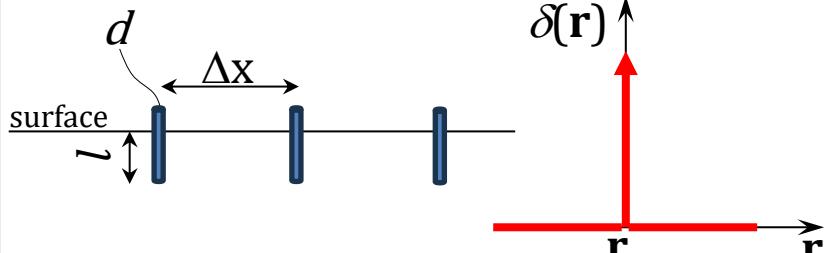
$$-\sigma \nabla \cdot \nabla V(r) = I\delta(r) \Rightarrow V(r) = \frac{\rho I}{2\pi r}$$

3° assumption: point source

Dirac's delta function $\delta(\mathbf{r})$

$$\begin{aligned} \Delta x &\gg l \\ \Delta x &\gg d \end{aligned}$$

d : electrode diameter
 l : electrode grounded length
 Δx : electrode spacing



$$\delta(\mathbf{r}) = \begin{cases} \infty & \text{if } \mathbf{r} \equiv \mathbf{r}_s \\ 0 & \text{elsewhere} \end{cases} \quad \mathbf{r}_s \equiv (x_s, y_s, z_s) : \text{source position}$$

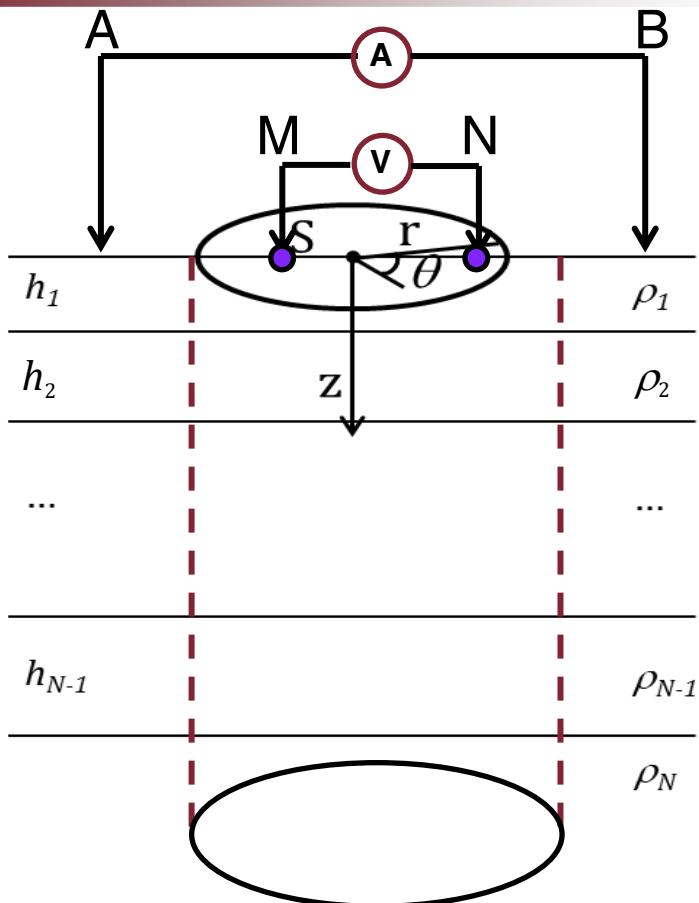
$$\nabla \cdot \mathbf{J}^{\text{ext}} = \lim_{V \rightarrow 0} \frac{\int_S \mathbf{J}^{\text{ext}} \cdot \mathbf{n} dS}{V} = -I\delta(\mathbf{r})$$

The minus sign indicates an inflow current opposite to the outflow conventionally expressed by the divergence

Q. And for inhomogeneous ground?

A. There is not a closed-form solution (analytical solution) for this equation, except for the 1-D case

1-D model: Vertical Electrical Soundings (VES)



We compare predictions with observations and if the fitting is not satisfactory, we change iteratively the conductivity model until finding the best fitting (SEE INVERSION)

Assumption:
1-D model

$$\rho(x, y, z) \rightarrow \rho(z)$$

$$\sigma(x, y, z) \rightarrow \sigma(z)$$

Cylindrical coordinates

$$-\nabla \cdot (\sigma(z) \nabla V(r, z)) = I \delta(r_s) \delta(z_s)$$

 SOLVING FOR V

$$V(r, z)$$

I can **predict the potential function V** due to an arbitrary current I injected in A and B **everywhere in the space**.

Among all the (infinite) points, I need V only at the points M and N corresponding to the observation points (voltage electrodes) and I make the potential difference: $\Delta V_{MN} = V_M - V_N$

$$\rho_a^{PRE} = K \frac{\Delta V_{MN}^{PRE}}{I}$$

PREDICTED APPARENT RESISTIVITY