
Ipersensibilità di tipo IV

Le reazioni di ipersensibilità causate
da linfociti T sono definite di tipo IV o
di tipo ritardato perché si manifestano
1-3 giorni dopo il contatto con
l’antigene



Le reazioni di ipersensibilità ritardata (delayed type hypersensitivity) 

Un tipico esempio di reazione di ipersensibilità
ritardata è rappresentato dal ponfo che si
sviluppa in seguito al test di Mantoux o tuberculin
skin test (TST) in individui che sono entrati in
contatto con il Mycobaterium tuberculosis.

Questo test viene utilizzato per verificare in un
individuo l’esistenza di una infezione da M.
tuberculosis. Nel test viene iniettata, per via
intradermica una piccola quantità di PPD (un
cocktail di antigeni micobatterici estratti dal
bacillo tubercolare) dopo 48-72 ore si verifica
l’apparizione di un ponfo duro dovuto alla
reazione di ipersensibilità ritardata.



Le reazioni DTH (delayed type hypersensitivity) sono caratterizzate
da danno tissutale e da infiammazione. Tali reazioni sono causate da
linfociti T CD4+ appartenenti alla sottopopolazione Th1 e dai
linfociti T CD8+.

I linfociti T responsabili di tali reazioni possono essere autoreattivi o
specifici per antigeni estranei. Infatti le reazioni DTH possono
avvenire come danno collaterale a risposte immuni protettive
contro un microrganismo oppure possono essere completamente
patologiche come in alcune malattie autoimmuni.



Le risposte Th1 predominano nella risposta
immunitaria a diversi patogeni che
includono i batteri intracellulari e i virus. Le
risposte Th1 hanno un ruolo nella risposta
antitumorale e nella risposta ad autoantigeni
nelle malattie autoimmuni. Le citochine
tipicamente prodotte dalle cellule Th1 sono
l’IFN-g e il TNF-a. L’IFN-g agisce attivando i
macrofagi e potenziandone l’attività di
degradazione delle sostanze fagocitate.
Inoltre i linfociti Th1 attraverso la secrezione
di TNF-a e linfotossina favoriscono il
reclutamento dei leucociti ed il processo
infiammatorio caratterizzato da un infiltrato
linfo-monocitario. L’attivazione macrofagica
mediata dai linfociti T può causare un danno
ai tessuti normali circostanti. La reazione
infiammatoria lesiva e tale reazione è
chiamata Delayed-Type hypersensitivity=
ipersensibilità di tipo ritardato

Caratteristiche funzionali dei linfociti Th1 

Morfologia di una reazione da
Ipersensibilità ritardata. Infiltrato
perivascolare dermico di cellule
mononucleate.



Principali sottopopolazioni di linfociti T helper



I linfociti Th1 esprimono il
fattore trascrizionale T-bet. T-
bet è il fattore trascrizionale
che caratterizza i linfociti Th1.
L ’ IFN-g e l ’ IL-12 inducono
l’espressione di T-bet.
T-bet regola l ’ espressione
dell’IFN- g.
I linfociti T CD4+ naive non
esprimono T-bet.

Caratteristiche dei linfociti Th1 
I linfociti Th1 esprimono il
fattore trascrizionale T-bet.
T-bet regola l’espressione
dell’IFN- g.
I linfociti T CD4+ naive non
esprimono T-bet.
L’IFN-g e l’IL-12 inducono
l’espressione di T-bet.

Caratteristiche dei linfociti Th1 



Il fattore trascrizionale T-bet è indotto da IL-12 e da IFN-g

Utilizzando topi transgenici
C57BL/6 T-bet-ZsGreen
reporter (TBGR) è stato
dimostrato che:
•IL-12 and IFN-g sono
ridondanti nell’indurre T-bet
nelle cellule T in vitro e in
vivo

•La segnalazione dipendente
da IFN-g non è
indispensabile per generare
linfociti T producenti IFN-g

•T-bet promuove la propria
espressione quando è
indotto dall’IL-12 o dall’IFN-
g.

•T-bet collabora con STAT4
nella produzione di IFN-g



Differenziamento dei linfociti Th1 

L’IL-12 prodotta dalle cellule dendritiche in
risposta ai batteri intracellulari e/o l’IFN-g
attivano i fattori trascrizionali STAT4, STAT1 e T-
bet. Questi a loro volta stimolano il
differenziamento dei linfociti T naive verso la
sottopopolazione Th1.

Differenziamento dei linfociti Th1 

L’IL-12 prodotta dalle cellule dendritiche in
risposta ai batteri intracellulari e l’IFN-g attivano i
fattori trascrizionali T-bet, STAT1 e STAT4. Questi
a loro volta stimolano il differenziamento dei
linfociti T naive verso la sottopopolazione Th1.

Cytokines
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Figure 1
cDC subsets determine CD4+ Th cell differentiation in adaptive immunity. Speci!c cDC subsets induce distinct T cell activation and
differentiation pathways that are determined by the type of antigen, in"ammatory cues, and intrinsic properties of each DC subset. The
integrated MHC-peptide, costimulatory molecules, cytokines, and metabolites from the DC and local microenvironment, including
accessory cells as shown, determine CD4+ T cell activation and differentiation. This illustration focuses on the major cDC subsets that
drive regulatory T, Th1, Th2, Th17, or Tfh differentiation based on a majority of reports. Under certain immunization conditions,
different types of DCs can also induce the indicated T cell differentiation. Abbreviations: B, B cell; baso, basophil; Bcl6, B cell
lymphoma 6; BTLA, B and T lymphocyte attenuator; cDC, conventional DC; DC, dendritic cell; Foxp3, forkhead box P3; γδ, γδ

T cell; ICOSL, inducible T cell costimulator ligand; IDO, indoleamine 2,3-dioxygenase; ILC1, group 1 innate lymphoid cell; MC,
monocyte-derived cell; Mϕ, macrophage; NK, natural killer cell; PMN, polymorphonuclear leukocyte; pTreg, peripheral regulatory
T cell; RA, retinoic acid; RALDH2, retinaldehyde dehydrogenase 2; SM, smooth muscle; Tfh, T follicular helper cell; Th, T helper cell.

cDC1s and cDC2s (11–13). FLT3L is indispensable for cDC1 and cDC2 development in both
mice and humans (1). The identi!cation of Zbtb46 as a cDC-speci!c transcription factor helps
differentiate cDCs from monocyte-derived cells, especially when combined with Mafb-lineage
tracing (14–16).

In the LN, cDCs can be divided into resident cDCs andmigratory cDCs according to their ini-
tial seeding location from blood-derived precursors. Migratory DCs reside in tissues and migrate
during both steady state and states of in"ammation to draining LNs via lymphatics. Conversely,
the entire life of a resident DC occurs within lymph nodes; despite the name, resident DCs are
still motile (4). Lymph tissue without lymphatics, such as that of the spleen, Peyer patches, and
tonsils, lacks emigrating DCs; however, migration of particular DC subsets within these tissues
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Figure 2
Mechanisms of DC subset induction of Th1 and Th2 differentiation. DC subsets that contribute to Th1 and Th2 differentiation are
shown with corresponding microanatomical locations in lymph nodes. The dominant DC subsets that have been shown to prime Th1
and Th2 are drawn as large cells, whereas other DC subsets that, under particular immunization conditions, can also contribute to or
block differentiation are shown as small cells. (a) In response to tumors, viruses, or intracellular bacteria, cDC1s migrate to the TCZ
through the CCR7-CCL19/21 axis, where they prime CD4+ T cells and induce Th1 differentiation via IL-12 and promote a pro-Th1
niche through CXCL10 production. inf-cDC2s and mo-DCs also promote Th1 differentiation. (b) The differentiation of Th2 cells
happens at the T-B border. CXCL13 produced in the BCZ attracts CXCR5-expressing CD4+ T cells and cDC2s away from the TCZ.
Weak TCR (gray) signaling favors Th2 differentiation. IRF4- and KLF4-dependent MGL2+ PD-L2+ cDC2s are the major DC subset
that drives Th2 differentiation. Jagged and OX40L expressed by cDC2s may promote Th2 differentiation, but results are controversial.
cDC1s inhibit Th2 differentiation through production of IL-12. Abbreviations: cDC1, conventional type 1 DC; DC, dendritic cell;
inf-cDC2, in!ammatory cDC2; mo-DC, monocyte-derived DC; PD-L2, programmed death ligand 2; TCR, T cell receptor; Th1, T
helper 1 cell.

expression on different DC subsets results in the induction of different T cell fates is still incom-
pletely understood (reviewed in 127).

Second, DC-derived CXCL10 production favors development of Th1 cell foci in the LN
(112, 128). This may be both a direct effect on retaining developing Th1 cells in the TCZ and
favoring prolonged DC–T cell contact time and an indirect effect on recruiting other important
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Figure 2Mechanisms of DC subset induction of Th1 and Th2 differentiation. DC subsets that contribute to Th1 and Th2 differentiation are

shown with corresponding microanatomical locations in lymph nodes. The dominant DC subsets that have been shown to prime Th1

and Th2 are drawn as large cells, whereas other DC subsets that, under particular immunization conditions, can also contribute to or

block differentiation are shown as small cells. (a) In response to tumors, viruses, or intracellular bacteria, cDC1s migrate to the TCZ

through the CCR7-CCL19/21 axis, where they prime CD4+T cells and induce Th1 differentiation via IL-12 and promote a pro-Th1

niche through CXCL10 production. inf-cDC2s and mo-DCs also promote Th1 differentiation. (b) The differentiation of Th2 cells

happens at the T-B border. CXCL13 produced in the BCZ attracts CXCR5-expressing CD4+T cells and cDC2s away from the TCZ.

Weak TCR (gray) signaling favors Th2 differentiation. IRF4- and KLF4-dependent MGL2+PD-L2+ cDC2s are the major DC subset

that drives Th2 differentiation. Jagged and OX40L expressed by cDC2s may promote Th2 differentiation, but results are controversial.

cDC1s inhibit Th2 differentiation through production of IL-12. Abbreviations: cDC1, conventional type 1 DC; DC, dendritic cell;

inf-cDC2, in!ammatory cDC2; mo-DC, monocyte-derived DC; PD-L2, programmed death ligand 2; TCR, T cell receptor; Th1, T

helper 1 cell.

expression on different DC subsets results in the induction of different T cell fates is still incom-

pletely understood (reviewed in 127).

Second, DC-derived CXCL10 production favors development of Th1 cell foci in the LN

(112, 128). This may be both a direct effect on retaining developing Th1 cells in the TCZ and

favoring prolonged DC–T cell contact time and an indirect effect on recruiting other important
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Figure 2Mechanisms of DC subset induction of Th1 and Th2 differentiation. DC subsets that contribute to Th1 and Th2 differentiation are

shown with corresponding microanatomical locations in lymph nodes. The dominant DC subsets that have been shown to prime Th1

and Th2 are drawn as large cells, whereas other DC subsets that, under particular immunization conditions, can also contribute to or

block differentiation are shown as small cells. (a) In response to tumors, viruses, or intracellular bacteria, cDC1s migrate to the TCZ

through the CCR7-CCL19/21 axis, where they prime CD4+
T cells and induce Th1 differentiation via IL-12 and promote a pro-Th1

niche through CXCL10 production. inf-cDC2s and mo-DCs also promote Th1 differentiation. (b) The differentiation of Th2 cells

happens at the T-B border. CXCL13 produced in the BCZ attracts CXCR5-expressing CD4+
T cells and cDC2s away from the TCZ.

Weak TCR (gray) signaling favors Th2 differentiation. IRF4- and KLF4-dependent MGL2+
PD-L2+

cDC2s are the major DC subset

that drives Th2 differentiation. Jagged and OX40L expressed by cDC2s may promote Th2 differentiation, but results are controversial.

cDC1s inhibit Th2 differentiation through production of IL-12. Abbreviations: cDC1, conventional type 1 DC; DC, dendritic cell;

inf-cDC2, in!ammatory cDC2; mo-DC, monocyte-derived DC; PD-L2, programmed death ligand 2; TCR, T cell receptor; Th1, T

helper 1 cell.

expression on different DC subsets results in the induction of different T cell fates is still incom-

pletely understood (reviewed in 127).

Second, DC-derived CXCL10 production favors development of Th1 cell foci in the LN

(112, 128). This may be both a direct effect on retaining developing Th1 cells in the TCZ and

favoring prolonged DC–T cell contact time and an indirect effect on recruiting other important
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Mechanisms of DC subset induction of Th1 and Th2 differentiation. DC subsets that contribute to Th1 and Th2 differentiation are
shown with corresponding microanatomical locations in lymph nodes. The dominant DC subsets that have been shown to prime Th1
and Th2 are drawn as large cells, whereas other DC subsets that, under particular immunization conditions, can also contribute to or
block differentiation are shown as small cells. (a) In response to tumors, viruses, or intracellular bacteria, cDC1s migrate to the TCZ
through the CCR7-CCL19/21 axis, where they prime CD4+ T cells and induce Th1 differentiation via IL-12 and promote a pro-Th1
niche through CXCL10 production. inf-cDC2s and mo-DCs also promote Th1 differentiation. (b) The differentiation of Th2 cells
happens at the T-B border. CXCL13 produced in the BCZ attracts CXCR5-expressing CD4+ T cells and cDC2s away from the TCZ.
Weak TCR (gray) signaling favors Th2 differentiation. IRF4- and KLF4-dependent MGL2+ PD-L2+ cDC2s are the major DC subset
that drives Th2 differentiation. Jagged and OX40L expressed by cDC2s may promote Th2 differentiation, but results are controversial.
cDC1s inhibit Th2 differentiation through production of IL-12. Abbreviations: cDC1, conventional type 1 DC; DC, dendritic cell;
inf-cDC2, in!ammatory cDC2; mo-DC, monocyte-derived DC; PD-L2, programmed death ligand 2; TCR, T cell receptor; Th1, T
helper 1 cell.

expression on different DC subsets results in the induction of different T cell fates is still incom-
pletely understood (reviewed in 127).

Second, DC-derived CXCL10 production favors development of Th1 cell foci in the LN
(112, 128). This may be both a direct effect on retaining developing Th1 cells in the TCZ and
favoring prolonged DC–T cell contact time and an indirect effect on recruiting other important

766 Yin • Chen • Eisenbarth

An
nu.

 Re
v. I

mm
uno

l. 2
021

.39
:75

9-7
90.

 Do
wn

loa
ded

 fro
m w

ww
.an

nua
lrev

iew
s.o

rg
 Ac

ces
s p

rov
ide

d b
y U

niv
ers

ita 
deg

li S
tud

i di
 Ro

ma
 La

 Sa
pie

nza
 on

 10
/06

/22
. Fo

r p
ers

ona
l us

e o
nly

. 

T
h

2

G
A
T
A
3

c
D

C
2

IL
-1
2

IL
-1
2

IL
1
2
R

C
X
C
R
3

B
A
T
F
3

IR
F
8

c
D

C
1

C
X
C
L
1
3

C
C
L
1
9
/2
1

O
X
4
0
L

M
H
C
-II

T
C
R

M
H
C
-II

C
C
R
7

T
C
R

J
a
g
g
e
d

N
o
tc
h

O
X
4
0

M
G
L
2

C
X
C
R
5

C
X
C
R
5

IL
2
R

IL
4
R

IL
-4

P
D
-L
2

T
-B

 b
o

r
d

e
r

T
h

1
T
-b
e
t

IF
N
γ
R

in
f-

c
D

C
2

C
X
C
L
1
0

IL
-1
2

C
C
R
7

T
u
m
o
rs
,

v
iru
s
e
s
,

in
tra
c
e
llu
la
r

b
a
c
te
ria

A
lle
rg
e
n
s
,

h
e
lm
in
th
s
,

to
x
in
s

b

a

T
 c

e
ll z

o
n

e

T
-B

 b
o

r
d

e
r

T
 c

e
ll z

o
n

e

B
 c

e
ll z

o
n

e

IR
F
4

K
L
F
4

m
o

-D
C

c
D

C
1

F
ig
u
r
e
2

M

e
c
h
a
n
ism

s
o
f
D
C

su
b
se
t
in
d
u
c
tio
n
o
f
T
h
1
a
n
d
T
h
2
d
iffe

r
e
n
tia
tio
n
.
D
C

su
b
se
ts
th
a
t
c
o
n
tr
ib
u
te
to
T
h
1
a
n
d
T
h
2
d
iffe

r
e
n
tia
tio
n
a
r
e

sh
o
w
n
w
ith

c
o
r
r
e
sp
o
n
d
in
g
m
ic
r
o
a
n
a
to
m
ic
a
l
lo
c
a
tio
n
s
in
ly
m
p
h
n
o
d
e
s.
T
h
e
d
o
m
in
a
n
t
D
C

su
b
se
ts
th
a
t
h
a
v
e
b
e
e
n
sh
o
w
n
to
p
r
im
e
T
h
1

a
n
d
T
h
2
a
r
e
d
r
a
w
n
a
s
la
r
g
e
c
e
lls,

w
h
e
r
e
a
s
o
th
e
r
D
C

su
b
se
ts
th
a
t,
u
n
d
e
r
p
a
r
tic
u
la
r
im
m
u
n
iz
a
tio
n
c
o
n
d
itio

n
s,
c
a
n
a
lso

c
o
n
tr
ib
u
te
to
o
r

b
lo
c
k
d
iffe

r
e
n
tia
tio
n
a
r
e
sh
o
w
n
a
s
sm
a
ll
c
e
lls.

(a
)
In
r
e
sp
o
n
se
to
tu
m
o
r
s,
v
ir
u
se
s,
o
r
in
tr
a
c
e
llu
la
r
b
a
c
te
r
ia
,
c
D
C
1
s
m
ig
r
a
te
to
th
e
T
C
Z

th
r
o
u
g
h
th
e
C
C
R
7
-
C
C
L
1
9
/2
1
a
x
is,
w
h
e
r
e
th
e
y
p
r
im
e
C
D
4
+

T

c
e
lls
a
n
d
in
d
u
c
e
T
h
1
d
iffe

r
e
n
tia
tio
n
v
ia
IL
-
1
2
a
n
d
p
r
o
m
o
te
a
p
r
o
-
T
h
1

n
ic
h
e
th
r
o
u
g
h
C
X
C
L
1
0
p
r
o
d
u
c
tio
n
.
in
f-
c
D
C
2
s
a
n
d
m
o
-
D
C
s
a
lso

p
r
o
m
o
te
T
h
1
d
iffe

r
e
n
tia
tio
n
.
(b
)
T
h
e
d
iffe

r
e
n
tia
tio
n
o
f
T
h
2
c
e
lls

h
a
p
p
e
n
s
a
t
th
e
T
-
B
b
o
r
d
e
r.
C
X
C
L
1
3
p
r
o
d
u
c
e
d
in
th
e
B
C
Z
a
ttr
a
c
ts
C
X
C
R
5
-
e
x
p
r
e
ssin

g
C
D
4
+

T

c
e
lls
a
n
d
c
D
C
2
s
a
w
a
y
fr
o
m

th
e
T
C
Z
.

W

e
a
k
T
C
R

(g
ra
y
)
sig
n
a
lin
g
fa
v
o
r
s
T
h
2
d
iffe

r
e
n
tia
tio
n
.
IR
F
4
-
a
n
d
K
L
F
4
-
d
e
p
e
n
d
e
n
t
M

G
L
2
+

P
D
-
L
2
+

c
D
C
2
s
a
r
e
th
e
m
a
jo
r
D
C

su
b
se
t

th
a
t
d
r
iv
e
s
T
h
2
d
iffe

r
e
n
tia
tio
n
.
Ja
g
g
e
d
a
n
d
O
X
4
0
L
e
x
p
r
e
sse
d
b
y
c
D
C
2
s
m
a
y
p
r
o
m
o
te
T
h
2
d
iffe

r
e
n
tia
tio
n
,
b
u
t
r
e
su
lts
a
r
e
c
o
n
tr
o
v
e
r
sia
l.

c
D
C
1
s
in
h
ib
it
T
h
2
d
iffe

r
e
n
tia
tio
n
th
r
o
u
g
h
p
r
o
d
u
c
tio
n
o
f
IL
-
1
2
.
A
b
b
r
e
v
ia
tio
n
s:
c
D
C
1
,
c
o
n
v
e
n
tio
n
a
l
ty
p
e
1
D
C
;
D
C
,
d
e
n
d
r
itic

c
e
ll;

in
f-
c
D
C
2
,
in
!
a
m
m
a
to
r
y
c
D
C
2
;
m
o
-
D
C
,
m
o
n
o
c
y
te
-
d
e
r
iv
e
d
D
C
;
P
D
-
L
2
,
p
r
o
g
r
a
m
m
e
d
d
e
a
th
lig
a
n
d
2
;
T
C
R
,
T

c
e
ll
r
e
c
e
p
to
r
;
T
h
1
,
T

h
e
lp
e
r
1
c
e
ll.

e
x
p
r
e
ssio

n
o
n
d
iffe

r
e
n
t
D
C

su
b
se
ts
r
e
su
lts
in
th
e
in
d
u
c
tio
n
o
f
d
iffe

r
e
n
t
T

c
e
ll
fa
te
s
is
still

in
c
o
m
-

p
le
te
ly
u
n
d
e
r
sto
o
d
(r
e
v
ie
w
e
d
in
1
2
7
).

S
e
c
o
n
d
,
D
C
-
d
e
r
iv
e
d
C
X
C
L
1
0
p
r
o
d
u
c
tio
n

fa
v
o
r
s
d
e
v
e
lo
p
m
e
n
t
o
f
T
h
1
c
e
ll
fo
c
i
in

th
e
L
N

(1
1
2
,
1
2
8
).
T
h
is
m
a
y
b
e
b
o
th
a
d
ir
e
c
t
e
ffe
c
t
o
n
r
e
ta
in
in
g
d
e
v
e
lo
p
in
g
T
h
1
c
e
lls
in
th
e
T
C
Z

a
n
d

fa
v
o
r
in
g
p
r
o
lo
n
g
e
d
D
C
–
T

c
e
ll
c
o
n
ta
c
t
tim

e
a
n
d
a
n
in
d
ir
e
c
t
e
ffe
c
t
o
n
r
e
c
r
u
itin

g
o
th
e
r
im
p
o
r
ta
n
t

7
6
6

Y
in

•
C
h
en

•
E
isen
b
a
r
th

Annu. R
ev. Im

munol. 2
021.39

:759-7
90. Downloade

d from
 www.annua

lreview
s.org

 Access 
provid

ed by 
Univers

ita deg
li Stud

i di Roma La Sapi
enza o

n 10/0
6/22. F

or per
sonal 

use on
ly. 

Th2
GATA3

cDC2

IL-12

IL-12
IL12R

CXCR3

BATF3
IRF8

cDC1

CXCL13

CCL19/21

OX40L

MHC-II

TCR

MHC-II

CCR7

TCR

Jagged Notch

OX40

MGL2

CXCR5
CXCR5 IL2R

IL4R

IL-4

PD-L2

T-B border

Th1
T-bet

IFNγR

inf-
cDC2

CXCL10

IL-12

CCR7

Tumors,
viruses,intracellular

bacteria

Allergens,
helminths,

toxins

b

a
T cell zone

T-B border T cell zone

B cell zone

IRF4
KLF4

mo-DC

cDC1

Figure 2
Mechanisms of DC subset induction of Th1 and Th2 differentiation. DC subsets that contribute to Th1 and Th2 differentiation are

shown with corresponding microanatomical locations in lymph nodes. The dominant DC subsets that have been shown to prime Th1

and Th2 are drawn as large cells, whereas other DC subsets that, under particular immunization conditions, can also contribute to or

block differentiation are shown as small cells. (a) In response to tumors, viruses, or intracellular bacteria, cDC1s migrate to the TCZ

through the CCR7-CCL19/21 axis, where they prime CD4 +T cells and induce Th1 differentiation via IL-12 and promote a pro-Th1

niche through CXCL10 production. inf-cDC2s and mo-DCs also promote Th1 differentiation. (b) The differentiation of Th2 cells

happens at the T-B border. CXCL13 produced in the BCZ attracts CXCR5-expressing CD4 +T cells and cDC2s away from the TCZ.

Weak TCR (gray) signaling favors Th2 differentiation. IRF4- and KLF4-dependent MGL2 +PD-L2 +cDC2s are the major DC subset

that drives Th2 differentiation. Jagged and OX40L expressed by cDC2s may promote Th2 differentiation, but results are controversial.

cDC1s inhibit Th2 differentiation through production of IL-12. Abbreviations: cDC1, conventional type 1 DC; DC, dendritic cell;

inf-cDC2, in!ammatory cDC2; mo-DC, monocyte-derived DC; PD-L2, programmed death ligand 2; TCR, T cell receptor; Th1, T

helper 1 cell.

expression on different DC subsets results in the induction of different T cell fates is still incom-

pletely understood (reviewed in 127).Second, DC-derived CXCL10 production favors development of Th1 cell foci in the LN

(112, 128). This may be both a direct effect on retaining developing Th1 cells in the TCZ and

favoring prolonged DC–T cell contact time and an indirect effect on recruiting other important
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Segnali che promuovono il differenziamento dei Th1 

Oltre all’IL-12 e
all’IFN-g altri segnali
quali l’IL-18, gli
interferoni di tipo I,
elevate dosi di
antigeni, una alta
affinità del TCR per
l’antigene sono in
grado di
promuovere il
differenziamento
dei T naive in Th1



I linfociti Th1 mediano la risposta immunitaria verso i microrganismi 
che sopravvivono all’interno dei fagociti  

Il differenziamento dei linfociti T
in Th1 è stimolato da molti
batteri intracellulari
(Micobatteri, Listeria) che
infettano i macrofagi.
Una caratteristica in comune fra
tutte queste infezioni è la
stimolazione di cellule
dell’immunità innata producenti
IL-12. La produzione di IL-12 da
parte delle cellule dendritiche è
considerata l’evento critico nella
polarizzazione delle cellule T
naive in Th1.



I topi deficienti in IL-12
mostrano un profondo
difetto di linfociti Th1.
I pazienti con difetti del
recettore dell’IL-12 (IL-
12R) mostrano difetti
nella produzione di IFN-g
e sono soggetti a
infezioni da parte di
Micobatteri e
Salmonella.

Caratteristiche dei linfocti Th1



La tubercolosi è un esempio di infezione da parte di
batteri intracellulari in cui l ’ immunità protettiva e
l’ipersensibilità coesistono e le lesioni sono causate
dalla risposta dell’ospite.



La tubercolosi è causata dall’infezione da
parte di M. tuberculosis .
Tale infezione si trasmette per via aerea
quando un individuo infetto attraverso la
tosse rilascia particelle aeree (droplet)
che contengono M. tuberculosis.
Questi droplets presentano un diametro
di 1-5 micron.

Infezione da M. tuberculosis 



Epidemiologia dell’infezione da M. tuberculosis  

La tubercolosi è causata dall’infezione dei
polmoni da parte del bacillo Mycobacterium
tuberculosis, identificato per la prima volta nel
1882 da R. Koch.
La malattia è nella maggior parte dei casi
polmonare (70%) ma può essere disseminata ad
altri organi quali i linfonodi, le ossa, le meningi.
L’infezione da parte di M. tuberculosis può
evolvere in: i) malattia attiva e sintomatica II)
malattia latente e asintomatica. La prima è
caratterizzata da febbre, perdita di peso, danno
tissutale nella sede dell’infezione, presenza del
batterio nello sputo. La seconda può essere
evidenziata misurando la reattività dei linfociti T
ad antigeni di M. tuberculosis.
Sono circa 9 milioni i casi all’anno di TB attiva

diagnosticati e si stima che circa 1/3 della
popolazione mondiale sia infettata da M.
tuberculosis in modo asintomatico.



In seguito ad infezione da parte di M.
tuberculosis il 5-10% di questi individui
sviluppa TB attiva nel corso della loro vita.
Il micobatterio della tubercolosi non è
particolarmente contagioso si stima che un
individuo infetto possa infettare fra le 3 e le
10 persone per anno.



L’infezione da M. tuberculosis può
evolvere in:
I)forma sintomatica di malattia attiva
che determina la distruzione del
tessuto nel sito dell’infezione. Questa
si associa alla replicazione dei batteri.
La cura consiste nel trattamento con
più farmaci per 6 mesi.
II)forma asintomatica con infezione
allo stato latente. In questa forma
l’infezione da M. tuberculosis o il
precedente contatto con il batterio
possono essere dimostrati verificando
la reattività del sistema immune
dell’individuo al test della tubercolina.
III) Il trattamento standard della
tubercolosi comprende l’uso di 4
farmaci: isoniazide, rafampicina,
pirazinamide, etambutolo.
Resistenza a tutti i farmaci può
avvenire.



Fasi iniziali dell’infezione da M. tuberculosis 

L’infezione ha inizio quando il micobatterio raggiunge gli alveoli dove incontra i macrofagi
residenti. Se questa prima linea di difesa non riesce ad eliminare il batterio, questo invade il
parenchima. L’accesso del batterio al parenchima polmonare può avvenire o attraverso
l’infezione dell’epitelio o attraverso la trasmigrazione dei macrofagi infettati.



Recettori coinvolti nella entrata di M.  tuberculosis nei macrofagi   

L’entrata di M. tuberculosis
all’interno dei macrofagi è mediata
da diversi tipi di recettori cellulari



cells and T cells as well as fibroblasts that drive the develop-

ment of a fibrotic capsule comprise the outer layer of the

granuloma.

This entire complex cascade of events would be impossi-

ble without the primary step, namely, recognition of Mtb

by mucosal and innate immune cells. Here, we review the

various mycobacterial PAMPs and their role in triggering the

immune response to Mtb via cell surface and cytoplasmic

receptors. Whenever possible, we incorporate both a host-

and bacterial-centered view, as engagement of host receptors

leads to both beneficial and detrimental consequences to

each partner in this interaction.

Mycobacterium tuberculosis pathogen-associated
molecular patterns

Mtb produces and releases antigens common to all bacteria

including components of the peptidoglycan cell wall and

nucleic acids. However, the unique makeup of the Mtb cell

wall generates antigens specific to mycobacterial species

(Fig. 1). These include lipomannan (LM), lipoarabinoman-

nan (LAM), and its mannosylated form (ManLAM), lipopro-

teins, phthiocerol dimycocerosate (PDIM), and mycolic

acids. Mtb also secretes effector proteins either via the gen-

eralized Sec secretion system or the specialized Type VII or

ESAT-6 (ESX) secretion system and some Mtb-secreted pro-

teins can be recognized by pattern recognition receptors

(PRRs). As discussed below, many of the cell wall compo-

nents can be viewed not only as PAMPs that stimulate the

immune system but also as bacterial effectors that modulate

the host response.

The biosynthesis of the major cell wall components of

Mtb has been recently reviewed (1, 2). Phosphatidyl inositol

(PI) forms the backbone for the majority of the cell wall

components including LM, LAM and ManLam, which are

synthesized by sequential additions of mannoses and arabi-

noses to PI. The length and degree of branching of the sugar

residues on PI dictates the nature of the product. Since they

are formed on a PI backbone, these molecules are embedded

in the plasma membrane or outer membrane by their lipid

moiety (3). PDIM is a surface exposed bioactive lipid that

requires the sequential action of several polyketide synthas-

es, and ultimately is exported by a specific transporter,

MmpL7 (4, 5). Finally, mycolic acids are long chain fatty

acids that are a major component of the mycobacterial cell

wall, and when conjugated to a trehalose sugar residue,

become cord factor, the major cell surface lipid of Mtb.

Ultimately, this complex lipid coat can not only shield Mtb

from host defenses but also presents an array of possible

ligands for the host to recognize. Among all these lipids and

lipoproteins are also cell wall associated proteins and

embedded secretion machines that facilitate secretion of

putative effector molecules including some molecules like

ESAT-6 that may lead to phagosomal rupture (6, 7). In that

way, Mtb can communicate with the host cytoplasm, but

Fig. 1. Schematic representation of the Mycobacterium tuberculosis (Mtb) cell wall. Components of the Mtb cell wall are ligands for PRRs,
including peptidoglycan, LAM and its variants, mycolic acids, and lipoproteins. Secreted proteins, c-diAMP, and extracellular DNA are also
recognized by host PRRs.

© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
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this also leads to exposure of mycobacterial PAMPs to cyto-

plasmic receptors.

Surface receptors

Surface expressed PRRs of host cells are the first to encoun-

ter bacteria as they contact the host plasma membrane. Toll-

like receptors (TLRs), C-type lectin receptors, and scavenger

receptors are the main families of surface receptors that

interact with Mtb (Fig. 2). Within each family are receptors

capable of recognizing PAMPs on the surface of and secreted

from Mtb. In most cases, the cell types responsible for

detecting Mtb are macrophages and DCs, which are the

main niche for the bacilli. Other cells such as neutrophils

and lung epithelial cells are also able to detect Mtb.

Toll-like receptors

TLRs are a conserved family of leucine-rich repeat proteins

that recognize a wide variety of PAMPs from all types of

invading microbes. Of the known human receptors, TLR1,

TLR2, TLR4, TLR5, and TLR6 are surface expressed (8).

Each TLR has a specific subset of PAMPs that it can bind;

however, ligands for each TLR continue to be discovered. In

the TLR family, Mtb is primarily detected by TLR2, TLR4,

and TLR9, with a dominant role for TLR2 (9, 10). Follow-

ing recognition of Mtb PAMPs by TLRs, an intracellular

signaling cascade is activated that recruits the adapter pro-

tein myeloid differentiation primary response protein 88

(MyD88) to the intracellular domains of TLRs (11). MyD88

then serves as the scaffolding for recruitment of IL-1 recep-

tor-associated kinases (IRAK), TNF receptor-associated factor

6 (TRAF), TGFb-activated protein kinase 1 (TAK1), and

mitogen-activated protein (MAP) kinase. This signaling cas-

cade activates the transcription factor NFjB to translocate to

the nucleus (8, 12), driving production of multiple pro-

inflammatory cytokines including tumor necrosis factor

(TNF), interleukin-1b (IL-1b), and interleukin-12 (IL-12).

Secreted TNF and IL-12 then stimulate IFN-c production

from neighboring natural killer (NK) and T cells. A cycle is

thus established whereby IFN-c activates macrophages to

enhance antigen presentation and promote antimycobacterial

effector mechanisms such as the production of reactive

nitrogen intermediates (RNI), reactive oxygen intermediates

(ROI), phagolysosome fusion and acidification (13), and

autophagy (14).

TLR2

The primary ligands for TLR2 are lipid-containing moieties

such as lipoteichoic acid (LTA) from Gram-positive bacteria

Fig. 2. Pattern recognition receptors important for the sensing of mycobacterial PAMPs. This schematic shows the major receptors involved
in recognition of Mtb and their localization to the surface or the cytoplasm of host cells. PRRs on the surface of cells include TLRs, scavenger
receptors, and C-type lectin receptors. Cytoplasmic receptors recognize mycobacterial components, such as secreted proteins and DNA that access
the cytoplasm through phagosomal membrane damage. Major signaling pathways are shown including NFjB- and IRF3-dependent cytokine
secretion, inflammasome-mediated IL-1b secretion, and the activation of autophagy.

© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
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Componenti della parete cellulare di M. tuberculosis e recettori cellulari coinvolti nel 
riconoscimento del batterio 



Entrata di M. tuberculosis nei macrofagi 

ManLAM= 
lipoarabinomannano 
mannosilato, lipide 
della parete batterica

Mannose receptor



Traffico intracellulare di M. tuberculosis 

M. tuberculosis all’interno del
macrofago previene la normale
maturazione del fagosoma.
Il batterio persiste all’interno di
compartimenti che assomigliano
agli endosomi precoci (Rab5+). Tali
compartimenti non presentano i
tipici marcatori degli endosomi
tardivi e dei lisosomi fra cui la v-
ATPase e presentano un pH
modestamente acido. Questo
vacuolo non è particolarmente
ostile in termini di pH e attività
degli enzimi idrolitici.



M.tuberculosis attiva i macrofagi a produrre citochine pro-
infiammatorie 

Le lipoproteine di M.tuberculosis
attivano i macrofagi a produrre
TNF-a, IL-12 e chemochine.
L’attivazione dei macrofagi da
parte di M. tuberculosis avviene
principalmente attraverso il
legame delle lipoproteine
batteriche con il TLR2.
I macrofagi attivati richiamano
leucociti dal circolo.



Eventi iniziali nell’infezione da M. tuberculosis 

In risposta all’infezione i macrofagi
producono citochine
proinfiammatorie e peptidi
antimicrobici. Tali mediatori
richiamano i neutrofili. Oltre ai
macrofagi anche i neutrofili e le
cellule dendritiche sono infettate
da M. tuberculosis.



Popolazioni cellulari infettate da M. tuberculosis 
nel tempo

Esperimenti di citofluorimetria a
flusso effettuati su topi infettati
per via aerosolica con M.
tuberculosis esprimente la
proteina GFP (green fluorescent
protein) hanno dimostrato che
M.tuberculosis risiede oltre che
nei macrofagi anche nelle cellule
dendritiche e nei neutrofili.



Esperimenti
effettuati
somministrando via
aerosol M.
tuberculosis
esprimente la GFP
ai topi hanno
dimostrato che le
cellule dendritiche
nei linfonodi sono
responsabili della
attivazione dei
linfociti T.

L’attivazione della risposta T Mtb specifica avviene nei linfonodi da parte 
delle cellule dendririche   



Induzione della risposta immune adattativa al Micobatterio 
della tubercolosi  

L’attivazione della risposta T
diretta verso il M. tuberculosis
avviene a livello dei linfonodi ad
opera delle cellule dendritiche
che dal polmone migrano nel
linfonodo.
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La fagocitosi di M.tuberculosis inibisce la capacità delle DC di migrare nel 
linfonodo 

Le DC infettate da M.
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capacità di APC. Es: tali cellule
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dell’espressione di CCR7 e non
sono in grado di migrare nel
linfonodo. Il legame fra ManLAM
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dai neutrofili e dai macrofagi che
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Diversi pathways di morte cellulare delle cellule infettate da M. 
tuberculosis 

Subito dopo l’infezione M.tuberculosis si
replica all’interno dei fagociti. La
replicazione del batterio all’interno dei
fagociti può indurre sia morte cellulare per
necrosi che per apoptosi. La capacità del
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apoptotico aumenta la virulenza di M.
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Batteri antiapoptotici e pronecrotici sono
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dendritiche circostanti diffondendo
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Lymph Nodes

La migrazione delle DC infettate da M. tuberculosis dal polmone ai linfonodi è guidata 
dalle chemochine CCL19/21    

I topi plt che non
esprimono le
chemochine
CCL19/CCL21 (ligandi
del CCR7) infettati
per via aerosol da M.
tuberculosis
presentano una
riduzione del 95% di
batteri e di DC nei
linfonodi.



Le DC durante l’infezione da M. tuberculosis
producono IL-12 che è la citochina
fondamentale nello sviluppo dei linfociti Th1 che
avviene nei linfonodi.

L’induzione dei linfociti Th1 M. tuberculosis specifici necessita dell’IL-12

I topi IL-12p35 o
IL-12p40 KO
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aumento della
crescita dei batteri
rispetto ai topi
normali quando
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BCG. I topi KO per
l’IL-12p40 o p35
non sviluppano
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Le cellule dendritiche producono IL-12 durante l’infezione da 
M.tuberculosis

Durante l’infezione da
M. tuberculosis le DC
producono elevati
livelli di IL-12. La
stimolazione del TLR 2
e 9 espressi dalle
cellule dendritiche è il
segnale che induce i
più alti livelli di
produzione di IL-12 da
parte delle DC.



Ruolo delle citochine appartenenti alla famiglia dell’IL-12 
nell’induzione e nel mantenimento della risposta T contro M. 

tuberculosis  

Le citochine appartenenti alla
famiglia dell’IL-12 sono composte
da due subunità la cui
espressione è regolata
indipendentemente. L’IL-12 è
costituita dall’eterodimero 35p e
40p, l’IL-23 da p19 e p40, l’IL-27
da p28 e Epstein Barr virus
induced gene 3 e p28, l’IL-35 da
p35 e EBI3. Esistono inoltre
monomeri o dimeri di p40 IL-
12p40. Molti tipi cellulari sono in
grado di produrre la subunità p35,
solo le cellule dendritiche e i
macrofagi producono la subunità
p40.



Effetto dell’assenza dei diversi dimeri di IL-12p40 sul 
contenimento dell’infezione  da M. tuberculosis





..

I topi KO per la catena p40 dell’ IL-12
sono più suscettibili alla infezione da
M.tuberculosis rispetto ai topi p35
KO.
Nei topi che mancano dell’IL-12p40
non si accumulano linfociti T attivati
nel polmone. La migrazione delle DC,
mediata dalle chemochine associate
al reclutamento nei linfonodi,
richiede la presenza di IL-12p40.
L ’ esposizione delle DC al
Micobatterio determina la secrezione
di IL-12p40 che agisce in modo
autocrino rendendo le DC responsive
alle chemochine. L’omodimero IL-
12p40 è secreto dalle DC in risposta
alla stimolazione del TLR9 e del TLR2.
Il DNA genomico di M. tuberculosis è
un potente agonista del TLR9.

Ruolo delle IL-12p40 nell’induzione della risposta T verso M. 
tuberculosis 



effector and memory cells based on known markers,
and studied their characteristics in the context of
reinfection.21,24–26

Marshall et al.24 found that within the primary effector
populations from the spleen at day 8, two CD4+ T-cell
subsets that resembled the CD8+ TE and MP T-cells were
observed. The TE-like population was marked by high
expression of both P-selectin glycoprotein ligand-1
(PSGL-1) and lymphocyte antigen 6 complex (Ly6C),
while the MP-like effector cells were PSGL-1hiLy6Clo. In
contrast to the PSGL-1hiLy6Chi cells, the PSGL-1hiLy6Clo

MP-like population exhibited greater longevity in unin-
fected hosts, increased proliferation following antigen
re-challenge, and similar gene-expression profiles with
day 60 PSGL-1hi memory CD4+ T-cells.24 These results
led the authors to propose that differential expression of
Ly6C can distinguish TE from MP cells within the TH1
subset. At day 8, PSGL-1loLy6Clo effector cells showed
high expression of known TFH markers (ICOS, CXCR5,
PD-1). This PSGL-1loLy6Clo subset was found along with
PSGL-1hiLy6Chi and PSGL-1hiLy6Clo TH1 cells within the
memory cells at day 150 after infection, suggesting that
MP of both TH1 and TFH phenotypes may persist long
term.24 Interestingly, while the PSGL-1hiLy6Clo MP popu-
lation was thought to be primarily TH1 cells, it was later
shown by Choi et al.25 that the PSGL-1hiLy6Clo MP pop-
ulation actually contains both CXCR5! TH1 and CXCR5+

TFH cells at comparable frequencies. These results high-
light the complexity and heterogeneity within CD4+

memory T-cells and the need for further studies to fully
understand the nature of the CD4+ memory T-cell pool.
To investigate the potential of TFH memory cells for re-

differentiation upon reinfection, Hale et al.27 utilized
expression of CXCR5 and Ly6C to distinguish between
TH1 (CXCR5!Ly6Chi) and TFH (CXCR5+Ly6Clo &
CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
This multi-potency of TFH memory cells during re-chal-
lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28

In a concurrent study, Pepper et al. addressed CD4+

memory T-cell differentiation using LM infection and the
expression of CXCR5 and CC chemokine receptor 7
(CCR7), a marker used in previous studies to identify
TCM. During acute infection, antigen-specific effector cells
segregated into a CXCR5! population favouring the TH1
phenotype and a CXCR5+ population.30 A fraction of the
CXCR5! TH1 population, which the authors termed TH1
effector memory cells, survived to a memory time point
and, upon re-challenge, produced TH1 effector cells. The
CXCR5+ effector population included cells with high
expression of the lineage-defining factor Bcl6, were local-
ized to follicles and were termed TFH, while cells with
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(TRM) may differentiate from: (1) the naive subset; (2) MP cells within the effector population; or (3) committed memory cells. (b) Two models

for T follicular helper cell (TFH) multi-potency: (1) TFH memory cells retain cellular plasticity and can differentiate into TH1 or TFH secondary

effectors based on signals present during secondary challenge; (2) TFH memory cells are actually a heterogeneous population with subsets that are

biased or primed towards a particular secondary effector lineage (TH1 or TFH).
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To investigate the potential of TFH memory cells for re-
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expression of CXCR5 and Ly6C to distinguish between
TH1 (CXCR5!Ly6Chi) and TFH (CXCR5+Ly6Clo &
CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
This multi-potency of TFH memory cells during re-chal-
lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28

In a concurrent study, Pepper et al. addressed CD4+

memory T-cell differentiation using LM infection and the
expression of CXCR5 and CC chemokine receptor 7
(CCR7), a marker used in previous studies to identify
TCM. During acute infection, antigen-specific effector cells
segregated into a CXCR5! population favouring the TH1
phenotype and a CXCR5+ population.30 A fraction of the
CXCR5! TH1 population, which the authors termed TH1
effector memory cells, survived to a memory time point
and, upon re-challenge, produced TH1 effector cells. The
CXCR5+ effector population included cells with high
expression of the lineage-defining factor Bcl6, were local-
ized to follicles and were termed TFH, while cells with
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re-challenge, and similar gene-expression profiles with
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Ly6C can distinguish TE from MP cells within the TH1
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PD-1). This PSGL-1loLy6Clo subset was found along with
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understand the nature of the CD4+ memory T-cell pool.
To investigate the potential of TFH memory cells for re-

differentiation upon reinfection, Hale et al.27 utilized
expression of CXCR5 and Ly6C to distinguish between
TH1 (CXCR5!Ly6Chi) and TFH (CXCR5+Ly6Clo &
CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
This multi-potency of TFH memory cells during re-chal-
lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28
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memory T-cell differentiation using LM infection and the
expression of CXCR5 and CC chemokine receptor 7
(CCR7), a marker used in previous studies to identify
TCM. During acute infection, antigen-specific effector cells
segregated into a CXCR5! population favouring the TH1
phenotype and a CXCR5+ population.30 A fraction of the
CXCR5! TH1 population, which the authors termed TH1
effector memory cells, survived to a memory time point
and, upon re-challenge, produced TH1 effector cells. The
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Ly6C can distinguish TE from MP cells within the TH1
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lation was thought to be primarily TH1 cells, it was later
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ulation actually contains both CXCR5! TH1 and CXCR5+

TFH cells at comparable frequencies. These results high-
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memory T-cells and the need for further studies to fully
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To investigate the potential of TFH memory cells for re-
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expression of CXCR5 and Ly6C to distinguish between
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CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
This multi-potency of TFH memory cells during re-chal-
lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28
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TCM. During acute infection, antigen-specific effector cells
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lation was thought to be primarily TH1 cells, it was later
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TFH cells at comparable frequencies. These results high-
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To investigate the potential of TFH memory cells for re-

differentiation upon reinfection, Hale et al.27 utilized
expression of CXCR5 and Ly6C to distinguish between
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CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
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lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28

In a concurrent study, Pepper et al. addressed CD4+
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TCM. During acute infection, antigen-specific effector cells
segregated into a CXCR5! population favouring the TH1
phenotype and a CXCR5+ population.30 A fraction of the
CXCR5! TH1 population, which the authors termed TH1
effector memory cells, survived to a memory time point
and, upon re-challenge, produced TH1 effector cells. The
CXCR5+ effector population included cells with high
expression of the lineage-defining factor Bcl6, were local-
ized to follicles and were termed TFH, while cells with

1° Encounter Contraction Memory

TH

TFH

(a)

Death

Death

Naive CD4+

Naive CD4

TH1 TE effector TFH TE effector

TRM Precursor?

TH1 MP effector/memory

TH1 Memory

TFH Memory

TRM

TRM

TFH MP effector/memory

T
is

su
es

S
ec

on
da

ry
 ly

m
ph

oi
d 

or
ga

ns

?

?

?

?

? ?

(b)
2° Challenge

TH1 bias subset

TFH unbiased “plastic”

TFH bias subset

TH1

M
od

el
 2

TH1

TFH

TFH

M
od

el
 1

CXCR5+ Memory

CXCR5+ Memory

Figure 1. Models of CD4+ memory T-cell formation. (a) Upon antigen encounter, naive CD4+ T-cells differentiate into effector subsets based on

the type of infection. Within each effector CD4+ subset, there potentially exist terminal effectors (TE) and memory precursor (MP) effectors. The

majority of TEs die during the contraction, while MPs can survive and transition into resting memory cells. CD4+ tissue-resident memory cells

(TRM) may differentiate from: (1) the naive subset; (2) MP cells within the effector population; or (3) committed memory cells. (b) Two models

for T follicular helper cell (TFH) multi-potency: (1) TFH memory cells retain cellular plasticity and can differentiate into TH1 or TFH secondary

effectors based on signals present during secondary challenge; (2) TFH memory cells are actually a heterogeneous population with subsets that are

biased or primed towards a particular secondary effector lineage (TH1 or TFH).
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CD4+ memory T cells differentiation

effector and memory cells based on known markers,
and studied their characteristics in the context of
reinfection.21,24–26

Marshall et al.24 found that within the primary effector
populations from the spleen at day 8, two CD4+ T-cell
subsets that resembled the CD8+ TE and MP T-cells were
observed. The TE-like population was marked by high
expression of both P-selectin glycoprotein ligand-1
(PSGL-1) and lymphocyte antigen 6 complex (Ly6C),
while the MP-like effector cells were PSGL-1hiLy6Clo. In
contrast to the PSGL-1hiLy6Chi cells, the PSGL-1hiLy6Clo

MP-like population exhibited greater longevity in unin-
fected hosts, increased proliferation following antigen
re-challenge, and similar gene-expression profiles with
day 60 PSGL-1hi memory CD4+ T-cells.24 These results
led the authors to propose that differential expression of
Ly6C can distinguish TE from MP cells within the TH1
subset. At day 8, PSGL-1loLy6Clo effector cells showed
high expression of known TFH markers (ICOS, CXCR5,
PD-1). This PSGL-1loLy6Clo subset was found along with
PSGL-1hiLy6Chi and PSGL-1hiLy6Clo TH1 cells within the
memory cells at day 150 after infection, suggesting that
MP of both TH1 and TFH phenotypes may persist long
term.24 Interestingly, while the PSGL-1hiLy6Clo MP popu-
lation was thought to be primarily TH1 cells, it was later
shown by Choi et al.25 that the PSGL-1hiLy6Clo MP pop-
ulation actually contains both CXCR5! TH1 and CXCR5+

TFH cells at comparable frequencies. These results high-
light the complexity and heterogeneity within CD4+

memory T-cells and the need for further studies to fully
understand the nature of the CD4+ memory T-cell pool.
To investigate the potential of TFH memory cells for re-

differentiation upon reinfection, Hale et al.27 utilized
expression of CXCR5 and Ly6C to distinguish between
TH1 (CXCR5!Ly6Chi) and TFH (CXCR5+Ly6Clo &
CXCR5+Ly6Cint) memory populations following acute
infection with LCMV-Armstrong, then transferred each of
the three subsets into naive hosts for reinfection. TH1
memory cells mostly maintained high Ly6C expression
with few effector cells gaining CXCR5 expression, while
TFH memory cells were able to give rise to both
CXCR5!Ly6Chi TH1 cells and CXCR5+Ly6Clo/int TFH cells.
This multi-potency of TFH memory cells during re-chal-
lenge has also been observed in acute bacterial infection
with LM29 as well as in viral influenza infection.28

In a concurrent study, Pepper et al. addressed CD4+

memory T-cell differentiation using LM infection and the
expression of CXCR5 and CC chemokine receptor 7
(CCR7), a marker used in previous studies to identify
TCM. During acute infection, antigen-specific effector cells
segregated into a CXCR5! population favouring the TH1
phenotype and a CXCR5+ population.30 A fraction of the
CXCR5! TH1 population, which the authors termed TH1
effector memory cells, survived to a memory time point
and, upon re-challenge, produced TH1 effector cells. The
CXCR5+ effector population included cells with high
expression of the lineage-defining factor Bcl6, were local-
ized to follicles and were termed TFH, while cells with
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for T follicular helper cell (TFH) multi-potency: (1) TFH memory cells retain cellular plasticity and can differentiate into TH1 or TFH secondary

effectors based on signals present during secondary challenge; (2) TFH memory cells are actually a heterogeneous population with subsets that are

biased or primed towards a particular secondary effector lineage (TH1 or TFH).
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expressionofbothP-selectinglycoproteinligand-1
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whiletheMP-likeeffectorcellswerePSGL-1hiLy6Clo.In
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CD4+memoryTcellsdifferentiation

TH1TE

L’interazione con le cellule
dendritiche presentanti
l’antigene induce una elevata
proliferazione dei linfociti T
CD4 e il loro
differenziamento in linfociti T
effettori TE e linfociti T della
memoria. I linfociti TE dopo
aver eliminato il patogeno
vanno incontro a morte
mentre persistono i linfociti T
della memoria. I linfociti T
della memoria sono cellule
non proliferanti che possono
essere suddivise in
sottopopolazioni in base
all’espressione di marcatori di
membrana, localizzazione
tissutale e caratteristiche
funzionali.

Linfociti T effettori e della memoria 



Le cellule della memoria sono
distinte in cellule della memoria
centrale (TCM), cellule della
memoria effettrici (TEM) cellule
della memoria residenti (TRM).
Le cellule della memoria
centrale ricircolano fra il sangue
e i linfonodi, hanno una elevata
capacità di proliferare ma
ridotta capacità di produrre
citochine.
Diversamente i linfociti TEM si
localizzano preferenzialmente
nei tessuti periferici, hanno
capacità di produrre le citochine
caratteristiche di ciascuna
sottopopolazione (IFN-g, IL-4,
and IL-17) e ridotta capacità
proliferativa.
I TRM sono linfociti che risiedono
nei tessuti.

Popolazioni di cellule della memoria



TN= T naive
TCM= T central memory
TEM= T effector memory 

Caccamo et al. Atypical Human Memory CD4T Cells

FIGURE 1 | Hypothetical model of human CD4+ T cell differentiation. Naive T cells (TN) upon specific antigen stimulation progressively differentiate into different

population of effector/memory cells, including T cells with a naive-like phenotype but exerting several different effector functions, such as cytokine production (TNR,

TCNP, and TSCM cells). TNR, naive receptor memory T cells, TSCM, stem memory T cells; TCM, central memory T cells; TEM, effector memory T cells.

Interestingly, Mpande et al. (17) have also reported the
identification of seemingly naive CD4+ T cells that are induced
by primaryM. tuberculosis infection. These cells are distinct from
naive T cells, display a TSCM phenotype and produce IL-2, TNF-
α, and IFN-γ. This has been identified by transcriptomic analysis,
showing that bulk CD4+ TSCM and M. tuberculosis -specific
TSCM cells expressed chemokine receptor and cytotoxic molecule
transcripts, which were mostly undetectable in bulk T naive cells.
Moreover, the comparison of the different subsets of CD4+ T
cells showed that M. tuberculosis-specific TSCM cells possessed
the least differentiated M. tuberculosis-specific phenotypic and
functional profile, suggesting that M. tuberculosis-specific TCM

cells appear as an intermediate subset before TSCM cells further
differentiate intoM. tuberculosis-specific effector CD4+ T cells.

Cytokine-Producing Naive CD4+ T Cells
(TCNP)
Very recently, we have identified in the peripheral blood of
patients with tuberculosis a novel human effector/memory CD4+

T cell subset with a non-classical, naive-like T cell phenotype.
These cells were CD45RO−, CD45RA+, CCR7+, CD62L+,
CD27+, and capable of rapidly secreting multiple cytokines
(IFN-γ, TNF-α, IL-2) in response to different M. tuberculosis
antigens (18). We have designated this CD4+T cell population
as TCNP cells (T cells that are able to produce cytokines with
a naive phenotype). TCNP cells were further phenotyped as
CD95lo CD28int CD49dhi CXCR3hi and a sizeable fraction
(ranging from 50 to 80%) also expressed CD31. Following
curative tuberculosis treatment, the size of this T cell subset

significantly decreased, suggesting that these cells are markers of
active tuberculosis disease during infection with M. tuberculosis
and probably expand in response to actively multiplying bacilli.
Accordingly, subjects with latent M. tuberculosis infection had
a lower proportion of responding CD4+ TCNP cells in the
peripheral blood, than tuberculosis patients.

Compared to TSCM cells, TCNP cells express higher levels
of CD49d and comparable levels of CXCR3, but they do not
express CD95 (19, 20). The α4 integrin CD49d associates with β-
integrin subunits to form α4β7 or α4β1 heterodimers that regulate
the trafficking of effector memory T cells to inflamed tissues.
Similarly, CXCR3 regulates lymphocyte trafficking in response to

its ligands as above reported. Therefore, it is likely that CD4+

TCNP cells may be able to rapidly traffic to sites ofM. tuberculosis
infection and engage in the control of bacterial replication by
virtue of their ability to secrete the type-1 cytokines, IFN-γ,
and TNF-α, which are well known players in anti-mycobacterial
protective immune responses (21).

Our findings are reminiscent of the CD8+ T cells reported
by Pulko et al. (22), that produced IFN-γ but expressed a naive
phenotype, and were termed TMNP cells (memory T cells with
a naive phenotype). Interestingly, and similar to our findings in
tuberculosis, these CD8+ TMNP cells were increased in patients
with active West Nile virus infection, and their frequency and
numbers correlated with the severity of infection.

Thus, our findings demonstrate that CD4+ TCNP cells
are polyfunctional T cells that differ both phenotypically
and functionally from the quiescent CD4+ T naive
population.
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a naive phenotype). Interestingly, and similar to our findings in
tuberculosis, these CD8+ TMNP cells were increased in patients
with active West Nile virus infection, and their frequency and
numbers correlated with the severity of infection.

Thus, our findings demonstrate that CD4+ TCNP cells
are polyfunctional T cells that differ both phenotypically
and functionally from the quiescent CD4+ T naive
population.
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I linfociti Th1 specifici per il M.
tuberculosis lasciano gli organi
linfoidi e tornano nel polmone
richiamati da chemochine
specifiche. In seguito al contatto
con i macrofagi i linfociti T
produrranno IFN-g e attiveranno i
macrofagi.

Migrazione dei linfociti Th1 nel polmone 



L’attivazione e il richiamo nel polmone dei linfociti T CD4+ 
producenti IFN-g sono necessari per il controllo dell’infezione da M. 

tuberculosis

L’IFN-g, prodotto dai
linfociti Th1 micobatterio
specifici, attiva i macrofagi
potenziandone l’attività
antimicrobica.



La presenza di linfociti T specifici per M. tuberculosis nel polmone si associa 
ad un arresto della replicazione batterica 



Il saggio Elispot permette di quantificare i linfociti T specifici 
per l’antigene producenti IFN-g



Funzioni effettrici dei linfociti Th1 specifici per M. tuberculosis  

In seguito al riconoscimento
dell’antigene presentato dai
macrofagi i linfociti T mediano
diverse funzioni effettrici. In
particolare i Th1 producono
oltre all’IFN-g, TNF-a e
chemochine.



Effetti dell’IFN-g sui macrofagi 

L’IFN-g sui
macrofagi induce:
maggiore
espressione delle
molecole
MHC=maggior
riconoscimento da
parte delle cellule T
maggiore attività
antimicrobica:
aumento della
sintesi di iNOS e
attivazione NADPH
ossidasi aumento
della maturazione
del fagosoma.
maggiore
produzione di
citochine.



Il trattamento dei macrofagi
murini con IFN-g prima
dell’infezione con M. tuberculosis
aumenta in modo significativo
l’uccisione dei batteri intracellulari
attraverso l’induzione della ossido
nitrico sintasi (catalizza la
conversione dell ’ arginina in
citrullina con liberazione di ossido
nitrico diffusibile ) con produzione
delle specie reattive dell’azoto.
L’IFN-g aumenta la maturazione
del fagosoma.
L’IFN-g attiva l’autofagia e
rimuove il blocco di M.
tuberculosis negli endosomi
precoci dirigendoli verso
l’autofagosoma.

Meccanismi microbicidi  rilevanti nella eliminazione di 
M.tuberculosis  nei macrofagi murini attivati 



La risposta immune protettiva verso M. tuberculosis è 
mediata dai linfociti T CD4+ producenti  IFN-g

I topi KO per l’IFN-g non sono in
grado di controllare infezioni
anche a basse dosi di
M.tuberculosis.
In assenza di IFN-g si osserva una
replicazione incontrollata del
batterio e distruzione tissutale che
determina la morte.



L’IL-12 e l’IFN-g sono necessari nel controllo dell’infezione da parte di M. 
tuberculosis 

Il pathway IL-12/IFN-g
svolge un ruolo
fondamentale
nell’infezione da M.
tuberculosis.
Questo pathway lega
l’immunità innata alla
risposta adattativa
contro M.tuberculosis
dominata dai linfociti
Th1.



La persistenza del batterio è una caratteristica dell’infezione 
tubercolare. 



Struttura del granuloma tubercolare 
Il granuloma tubercolare è
un aggregato compatto di
macrofagi maturi che si
sviluppa in risposta alla
infezione persistente.
Altre cellule quali i
monociti e i linfociti
circondano i macrofagi. Il
granuloma è delimitato da
una capsula fibrotica
costituita da collagene e
altre proteine della matrice
extracellulare. Questa
risposta tissutale è tipica
della fase di contenimento
dell’infezione


