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LET US LOOK AT THIS SECTION OF THE PROGRAM

9. NON PARAMETRIC TESTS (R 9.1-9.2; 9.4 ,W&S chap.13)
The problem of non-normal distributed data

Lognormal distribution

Tests of normality

Ranks

Sign test

Wilcoxon rank-sum test (Mann-Whitney U test)

10. MULTIPLE PARAMETRIC/NON PARAMETRIC TESTS (R 12.1-12-4;
12.7)

Whitin group/between-group variability

One-way ANOVA

Bonferroni correction

Kruskal-Wallis tes



Outline L 20

* Generalize tests to situations with multiple groups (beyond two)

e Data dredging, you make” the data eventually tell what you were
looking for” Motivation for the Bonferroni correction (see overleaf n. 8
in W&S) [see W&S chapter 15 for a compact nice discussion]

* https://en.wikipedia.org/wiki/Data_dredging

Why multiple comparison tests induce type | errors?

« ONE WAY ANALYSIS OF VARIANCE (ANOVA)
e Between/within variability
* F test statistics (see also R chap. 8.6

(see Rosners’ chapter 12)



TABLE 3 A comparison of methods to test differences between group means according to

whether the tests assume normal distributions. (Red numbers in parentheses refer to the
chapter that discusses the test.)

Number of Tests assuming normal distribution Tests not assuming normal
treatments distributions

Two treatments

(independent Two-sample t-test (12) Mann-Whitney U-test (13)
samples)

https://en.wikipedia.org/wiki/Welch%27s t-test

Welch's t-test (used when variance is
unequal in the two groups) (12)

Two treatments : _
(paired data) Paired t-test (12) Sign test (13)

More than two ANOVA (15) Kruskal-Wallis test (15)
treatments




FIGURE 11.33 Flowchart for appropriate methods of statistical inference
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Paper already available on bioRxiv and submitted to Molecular
Genetics and Genomics.

Davide Arella

2. bioRyiv

THE PREPRINT SERVER FOR BI0LOGY

DioRxlv i receiving many new papers on coronavirus SARS-CoV-2. A reminder: these are prefiminary reports that
conclusive, guide cinkcal practice health-retated Dehavior, or be reparted In news Mmedia as established Informabion.

New Results > Comment on this paper
Codon usage blas In prokaryotic genomes and environmental adaptation

Davide Arella, Maddalena Diucca, Andrea Glansanti
doi: hiips./idei.org/10.1101/2020.04.03.023309

Gow 'what aoes this mean?

Abstract f Text Hislory M (Y Pre

Abstract

In each genome synonymous codons are used with different frequencies; this phenomenon is
known as codon usage bias. The preferred codons tend 10 correspond 10 the most highly
expressed tANAs, It had been known that codon usage bias can influence the cellular fitness
and that might be associated with the Mestyle of the organism. To test the impact of
ervironments on genome evolution we studied the relationship between codon usage bias and

21 May 2020




o temperature range: p = 1.62 x 10~° (Mann-Whitney test)

o pathogenicity: p = 8.67 x 10% (Mann-Whitney test)

o oxygen requirement: p = 7.09 x 10~% (Kruskal-Wallis test)
p = 4.53 x 1078, facultative vs aerobic (Mann-Whitney test)

p = 1.35 x 10™*, facultative vs anaerobic (Mann-Whitney test)
p = 0.301*, aerobic vs anaerobic (Mann-Whitney test)

e salinity: p = 0.161* (Mann-Whitney test)

o habitat: p =2.66 x 107°, specialized vs multiple (Mann-Whitney
test)

Davide Arella

21 May 2020
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Pulmonary Disease A topic of public-health interest is whether passive smoking (ex-
posure among nonsmokers to cigarette smoke in the atmosphere) has a measurable
effect on pulmonary health. White and Froeb studied this question by measuring
pulmonary function in several ways in the following six groups [1]:

(1) Nonsmokers (NS): People who themselves did not smoke and were not exposed
to cigarette smoke either at home or on the job.

(2) Passive smokers (PS): People who themselves did not smoke and were not ex-
posed to cigarette smoke in the home but were employed for 20 or more years
in an enclosed working area that routinely contained tobacco smoke.

(3) Noninhaling smokers (NI): People who smoked pipes, cigars, or cigarettes but who
did not inhale.

(4) Light smokers (LS): People who smoked and inhaled 1-10 cigarettes per day for
20 or more years. (Note: There are 20 cigarettes in a pack.)

(5) Moderate smokers (MS): People who smoked and inhaled 11-39 cigarettes per day
for 20 or more years.

(6) Heavy smokers (HS): People who smoked and inhaled 40 or more cigarettes per
day for 20 or more years.

A principal measure used by White and Froeb to assess pulmonary function was
forced mid-expiratory flow (FEF). They were interested in comparing mean FEF
among the six groups.

The t test methodology generalizes nicely in this case to a procedure called the one-
way analysis of variance (ANOVA).



THE EXPERIMET: PULMONARY FUNCTION & SMOKING HABITS

Pulmonary Disease Refer to Example 12.1. The authors identified 200 males
and 200 females in each of the six groups except for the NI group, which was
limited to 50 males and S0 females because of the small number of such people
available. The mean and standard deviation of FEF for each of the six groups
for males are presented in Table 12.1. How can the means of these six groups be
compared?

FEF data for smoking and nonsmoking males

Group

number, Mean FEF sd FEF

i Group name (L/s) (L/s) n,
1 NS 3.78 0.79 200
2 PS 3.30 0.77 200
3 NI 3.32 0.86 50
4 LS 3.23 0.78 200
5 MS 2.73 0.81 200
6 HS 2.59 0.82 200

Source: Based on The New England Journal of Medicine, 302(13), 720-723, 1980.



Mean * se for FEF for each of six smoking groups
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THE STATISTICAL MODEL

Suppose there are k groups with n, observations in the ith group. The jth
observation in the ith group will be denoted by y,. Let’s assume the following
model.

where | is a constant, o, is a constant specific to the ith group, and e, is an error
term, which is normally distributed with mean O and variance ¢ Thus, a typi-
cal observation from the ith group is normally distributed with mean p + o, and
variance ¢?. )

It is not possible to estimate both the overall constant p as well as the k con-
stants o, which are specific to each group. The reason is that we only have k
observed mean values for the k groups, which are used to estimate k + 1 parameters.
As a result, we need to constrain the parameters so that only k parameters will be
estimated. Some typical constraints are (1) the sum of the as is set to O, or (2) the o,
for the last group (o) is set to 0. We use the former approach in this text. However,
SAS uses the latter approach.




THE CORE IDEA BEHIND: DO THE STATISTICS OF THE DIFFERENT GROUP
COME FROM THE SAME DISTRIBUTION ?

The model in Equation 12.1 is a one-way analysis of variance, or a one-way
ANOVA model. With this model, the means of an arbitrary number of groups,
each of which follows a normal distribution with the same variance, can be
compared. Whether the variability in the data comes mostly from variability

within groups or can truly be attributed to variability between groups can also be

determined.

CLEARLY, IF THE DIFFERENT GROUPS ARE SIGNIFICANTLY SEPARATED
WE HAVE TO REJECT THE NULL HYPOTHESIS OF JUST THE SAME DISTRIBUTION



Interpretation of the Parameters of a One-Way ANOVA Fixed-Effects Model

(1) p represents the underlying mean of all groups taken together.

(2) o, represents the difference between the mean of the ith group and the over-
all mean.

(3) e, represents random error about the mean p + o, for an individual observa-
tion from the ith group.

Intuitively, in Table 12.1 an observed FEF is represented as a sum of an overall mean
FEF plus an effect of each smoking group plus random variability within each smok-
ing group. Group means are compared within the context of this model.

HYPOTHESIS TESTING IN ONE-WAY ANOVA-—
FIXED-EFFECTS MODEL

The null hypothesis (H,) in this case is that the underlying mean FEF of each of the
six groups is the same. This hypothesis is equivalent to stating that each o, = O be-
cause the o, sum up to 0. The alternative hypothesis (H,) is that at least two of the
group means are not the same. This hypothesis is equivalent to stating that at least
one o, # 0. Thus, we wish to test the hypothesis H: all o, =0 vs. H,: at least one o # O.

If H, should be accepted we cannot say which is the group that is at variance with the others



F Test for Overall Comparison of Group Means

The mean FEF for the ith group will be denoted by y;, and the mean FEF over all
groups by y. The deviation of an individual observation from the overall mean can
be represented as

HOW THINGS WORK

Vi= V=i =)+ @i -¥)

The first term on the right-hand side (y; — y;) represents the deviation of an indi-
vidual observation from the group mean for that observation and is an indication
of within-group variability. The second term on the right-hand side (y; - y) repre-
sents the deviation of a group mean from the overall mean and is an indication of

between-group variability. These terms are depicted in Figure 12.1.
Generally speaking, if the between-group variability is large and the within-

group variability is small, as in Figure 12.1a, then H, is rejected and the underlying
group means are declared significantly different. Conversely, if the between-group
variability is small and the within-group variability is large, as in Figure 12.1b, then
H,, the hypothesis that the underlying group means are the same, is accepted.

-~ ~ - - . .




Comparison of between-group and within-group variability

A = y;; - y; = within-group variability
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EQUATION 12.3  y; -7 =(y; -7)+(Fi - 7)
Square both sides of 12.3 to get

1y

>3 05-7F =33 - + 2337

TOTAL SS = whitin groups SS + between groups SS
THE CROSS TERM IN THE SQUARE OF 12.3 IS ZERO

[...HW execise]



The term

53 (-7

i=1j=1
is called the Total Sum of Squares (Total SS).

=

The term

kK n

ZZ()’:’; —)_’i)z

i=1j=1

is called the Within Sum of Squares (Within SS).

The term

z( 7Y

is called the Between Sum of Squares (Between SS).




Short Computational Form for the Between SS and Within SS

3 2

Koo [Z{ ni}’i) X )2

BetweenSS = ) ny; —~= - =2”i}_’i2—ﬁ
i=1 =

k
WithinSS =Y (1; - 1)s7
i=1

Between Mean Square = Between MS = Between SS/(k — 1)

Within Mean Square = Within MS = Within SS/(n - k)

The significance test will be based on the ratio of the Between MS to the Within
MS. If this ratio is large, then we reject H; if it is small, we accept (or fail to reject)
H,. Furthermore, under H, the ratio of Between MS to Within MS follows an F dis-
tribution with k — 1 and n - k degrees of freedom. Thus, the following test procedure

for a level a test is used.



The F Distribution

The distribution of the variance ratio (512 / S%) was studied by statisticians R. A. Fisher
and G. Snedecor. It can be shown that the variance ratio follows an F distribution
under the null hypothesis that oz -cz There is no unique F distribution but in-

stead a famlly of F distributions This familx is indexed by two parameters termed

and second samples are n, and n, respectively, then the variance ratio follows an
F distribution with n, - 1 (numerator df) and n, - 1 (denominator df), which is called

anF, ,, distribution.

The F distribution i 1 itively skewed. with the s| | lent

on the relative magnitudes of the two degrees of freedom. If the numerator df’is 1 or
2, then the distribution has a mode at 0; otherwise, it has a mode greater than 0. The

distribution is illustrated in Figure 8.5. Table 8 in the Appendix gives the percentiles
of the F distribution for selected values of the numerator and denominator df.

Probability density for the F distribution
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The 100 x pth percentile of an F distribution with d, and d, degrees of freedom is
denoted by F; , . Thus,

Pr(Fyu, S Ey iy p)= P

The F table is organized such that the numerator df (d,) is shown in the first row,
the denominator df (d,) is shown in the first column, and the various percentiles (p)
are shown in the second column.

Find the upper first percentile of an F distribution with 5 and 9 df.

Solution: F_, ., must be found. Look in the 5 column, the 9 row, and the subrow
marked .99 to obtain

F 4 99 = 6.06



TABLE 8 Percentage points of the F distribution (F 4 “,)

df for df for numerator, d,
denominator,
, P 1 2 3 4 5 6 7 8 12 24 %0
1 90 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 60.71 62.00 63.33
95 161.4 199.5 215.7 2246 230.2 234.0 236.8 2389 2439 2491 254.3
8975 647.8 789.5 864.2 899.6 921.8 937.1 9482 956.7 976.7 8972 1018
99 4052, 5000. 5403. 5625. 5764, 5859. 5928. 5881. 6106. 6235. B6366.
995 16211, 20000. 21815, 22500. 23058, 23437. 23715, 23825, 24426. 24940. 25464,
989 405280. 500000. 540380. 562500. 576400. 585940. 592870. 598140. 610670. 623500. 636620.
2 90 8.53 9.00 9.186 9.24 9.29 9.33 9.35 9.37 9.41 9.45 9.49
95 18.51 18.00 18.16 19.25 19.30 19.33 19.35 19.37 18.41 19.45 19.50
975 38.51 39.00 38.17 39.25 39.30 39.33 39.36 39.37 39.42 39.46 39.50
99 98.50 99.00 98.17 99.25 99.30 99.33 99.36 99.37 99.42 99.46 99.50
985 198.5 189.0 199.2 1989.2 199.3 189.3 199.4 189.4 189.4 199.5 189.5
989 998.5 999.0 999.2 999.2 999.3 989.3 999.4 999.4 989.4 999.5 989.5
3 90 554 5486 5.39 5.34 5.31 5.28 5.27 5.25 5.22 5.18 5.13
95 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 B8.74 8.64 8.53
8975 17.44 16.04 15.44 15.10 1488 14.74 14.62 1454 14.34 1412 13.890
99 3412 30.82 29.46 28.71 28.24 27.91 27.87 27.49 27.05 26.60 26.13
995 55.55 49.80 47.47 46.20 45.39 4484 4443 4413 43.39 42,62 41.83
989 167.00 1485 1411 1371 1346 132.8 1316 130.6 128.3 1259 1235
4 80 454 432 419 4.1 4,05 4.01 3.88 3.95 3.90 3.83 3.76
95 7.7 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.91 5.77 5.63
975 12,22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 B8.75 8.51 8.26
998 21.20 18.00 16.69 15.98 15.52 15.21 14,98 14.80 14.37 13.93 13.486
985 31.33 26.28 2426 23.18 22.46 21.98 21.862 21.35 20.70 20.03 19.32
999 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 47.41 45.77 44,05
5 90 4.06 3.78 362 3.652 3.45 3.40 3.37 3.34 3.27 3.19 3.10
95 6.61 5.79 5.41 5.19 5.056 495 4,88 4.82 4.68 453 4.36
8975 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.52 6.28 6.02
998 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 9.89 947 9.02
995 22.78 18.31 16.53 15.56 1494 14.51 14.20 13.96 13.38 12.78 12.14
989 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 26.42 25.13 23.79
6 90 3.78 3.486 3.29 3.18 3.11 3.05 3.01 298 2.890 282 2.72
95 5.99 514 476 453 439 428 4.21 4.15 4.00 3.84 3.67
975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.37 5.12 4.85
998 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.72 7.31 6.88
985 18.64 14.54 1292 12.03 11.46 11.07 10.79 10.57 10.03 947 8.88
999 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 17.99 16.90 15.75
7 90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2,67 2.58 247
95 5.59 4.74 435 4.12 397 3.87 3.79 3.73 3.57 3.41 3.23
8975 8.07 6.54 5.89 5.62 5.29 512 499 490 467 442 4.14
99 12.25 9.55 845 7.85 7.46 719 6.99 6.84 6.47 6.07 5.65
995 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.18 7.65 7.08
989 29.25 21.69 18.77 17.20 16.21 15.52 156.02 1463 13.71 12.73 11.70
8 90 3.46 3.11 292 2.81 2.73 2.67 2,62 2.59 2.50 240 2.29
95 532 4.46 407 3.84 3.69 3.68 3.50 3.44 3.28 3.12 2.93
975 7.57 6.06 542 5.05 482 4.65 4,53 443 4.20 3.95 3.67
99 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.67 5.28 4.86
985 14,69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.01 6.50 5.95
999 25.42 18.49 1583 14.39 13.49 12.86 1240 12.04 11.19 10.30 9.33
9 90 3.36 3.01 281 2.69 2.61 2.565 251 247 2.38 2.28 216
95 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.07 2.90 2.71
8975 7.21 5.7 5.08 4.72 448 432 420 4.10 3.87 3.61 3.33
99 10.56 8.02 6.99 6.42 6.06 5.80 5.61 547 511 4.73 4.31
985 13.61 10.11 872 7.96 7.47 713 6.88 6.69 6.23 5.73 519
989 22.86 16.39 13.90 12.56 1.7 11.13 10.70 10.37 9.57 8.72 7.81



Generally, F distribution tables give only upper percentage points because
the symmetry properties of the F distribution make it possible to derive the lower
percentage points of any F distribution from the corresponding upper percentage
points of an F distribution with the degrees of freedom reversed. Specifically, note
that under H, 53 /57 follows an F,, , distribution. Therefore,

Pr(S3/St2Fp 40 ,)=p

By taking the inverse of each side and reversing the direction of the inequality,
we get

2
SZ Fd)_.dl.l—p

Under H,, however, 5 /53 follows an Fy 4, distribution. Therefore,

It follows from the last two inequalities that
1

Fdd =
i Fi i a-p

This principle is summarized as follows.

Computation of the Lower Percentiles of an F Distribution

The lower pth percentile of an F distribution with d, and d, dfis the reciprocal of

the upper pth percentile of an F distribution with d, and d, df. In symbols,
Fivay.p =Y Eiy iy 1-p

Thus, from Equation 8.14 we see that the lower pth percentile of an F distribu-
tion is the same as the inverse of the upper pth percentile of an F distribution with
the degrees of freedom reversed.



Overall F Test for One-Way ANOVA

To test the hypothesis H,: o, =0 for all i vs. H,: at least one o, # 0, use the follow-
ing procedure:

(1) Compute the Between SS, Between MS, Within SS, and Within MS using

(2)

(3)

(4)

Equation 12.5 and Definitions 12.5 and 12.6.

Compute the test statistic F = Between MS/Within MS, which follows an F
distribution with k — 1 and n - k df under H,.

If F>F

k-1,n-k,1-c
If F< Fk—l,n—k,l—a
The exact p-value is given by the area to the right of F under an F distri-

-1,n-k
bution =Pr(F,_, > F).

then reject H,
then accept H,

The acceptance and rejection regions for this test are shown in Figure 12.2.

Computation of the exact p-value is illustrated in Figure 12.3. The results from
the ANOVA are typically displayed in an ANOVA table, as in Table 12.2.



Display of one-way ANOVA results

Source of
variation SS df MS F statistic p-value

k 2 ,,

o Y. B B/(k-1)

Between ny*-2-=B k-1 T —=F Pr(F,_, _>F)

é Iyl n k—1 A (n —k) k—1,n—k

k 0 A
Within Y (n,—Vs?=A n-k —

i=1 n—k
Total Between SS + Within SS
ANOVA table for FEF data in Table 12.1

SS df MS F statistic p-value

Between 184.38 5 36.875 58.0 p < .001
Within 663.87 1044 0.636
Total 848.25




Computation of the exact p-value for the overall F test for one-way ANOVA

Fy_1, g distribution

F = Between MS/Within MS ~ F; _; ,,_; under H,

Frequency

p-value

Value

Refer to Table 8 in the Appendix and find that

F; 159,909 = 4.42 CONCLUSION
Because F <F =4.42<58.0=F

5,1044,.999 5,120,.999

it follows that p < .001. The exact p-value obtained from Stata = Ftail(5,1044,58) =
2.5 x 107%, Therefore, we can reject H,, that all the means are equal, and can
conclude that at least two of the means are significantly different. These results are
displayed in an ANOVA table (Table 12.3).



THE KRUSKAL-WALLIS TEST

In some instances we want to compare means among more than two samples, but
either the underlying distribution is far from being normal or we have ordinal data.
In these situations, a nonparametric alternative to the one-way ANOVA described in
Sections 12.1-12.4 of this chapter must be used.

THE KW TEST IS BASED ON THE CHI_SQUARE STATISTICS

where R; = average rank in the ith sample and R= average rank over all samples com-
bined. Thus, if the average rank is about the same in all samples, then IR,- —Rl will
tend to be small and H, will be accepted. On the contrary, if the average rank is very

different across samples, then |R; — ?’ will tend to be large and H, will be rejected.




The Kruskal-Wallis Test

To compare the means of k samples (k > 2) using nonparametric methods, use
the following procedure:

(1) Pool the observations over all samples, thus constructing a combined sam-
ple of size N = Xn,

(2) Assign ranks to the individual observations, using the average rank in the
case of tied observations.



(3) Compute the rank sum R, for each of the k samples.

(4) If there are no ties, compute the test statistic

.12 R?
H=H == xY 5 _3(N+1
N(N+1) X,E;n, 3(N+1)

If there are ties, compute the test statistic

*

H
H= g
>.(t-1)
1-E
N3-N

where £, refers to the number of observations (i.e., the frequency) with the
same value in the jth cluster of tied observations and g is the number of
tied groups.

(8) For alevel a test,
if H >y} 1,_, then reject H,
if H < X%-m-a then accept H,

(6) To assess statistical significance, the p-value is given by

P=PT(X%—1>H)

(7) This test procedure should be used only if minimum »,> S (i.e., if the small-
est sample size for an individual group is at least S).

The acceptance and rejection regions for this test are shown in Figure 12.12.
Computation of the exact p-value is given in Figure 12.13.



Multiple Comparisons—Bonferroni Approach

In many studies, comparisons of interest are specified before looking at the actual
data, in which case the t test procedure in Equation 12.12 and the linear-contrast
procedure in Equation 12.13 are appropriate. In other instances, comparisons of
interest are only specified after looking at the data. In this case a large number
of potential comparisons are often possible. Specifically, if there are a large num-
ber of groups and every pair of groups is compared using the t test procedure in
Equation 12.12, then some significant differences are likely to be found just by
chance.
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Suppose there are 10 groups. Thus, there are ( » ) = 45 possible pairs of groups to be

compared. Using a 5% level of significance would imply that .05(435), or about two
comparisons, are likely to be significant by chance alone. How can we protect our-
selves against the detection of falsely significant differences resulting from making
too many comparisons?

Several procedures, referred to as multiple-comparisons procedures, ensure
that too many falsely significant differences are not declared. The basic idea of these
procedures is to ensure that the overall probability of declaring any significant differ-
ences between all possible pairs of groups is maintained at some fixed significance level
(say a)). One of the simplest and most widely used such procedures is the method of
Bonferroni adjustment. This method is summarized as follows.



Comparison of Pairs of Groups in One-Way ANOVA—Bonferroni Multiple-
Comparisons Procedure

Suppose we wish to compare two specific groups, arbitrarily labeled as group 1
and group 2, among k groups. To test the hypothesis Hy: o, = o, vs. Hyia, #o,,
use the following procedure:

(1) Compute the pooled estimate of the variance s* = Within MS from the one-
way ANOVA.

(2) Compute the test statistic
Nt

o)
sl —+—
n n

k
(3) For a two-sided level « test, let a” = oz/ ( 2]

If t>t

ST (T S e T
n-kl-a /2

then reject H,,

n-ka' /2

If then accept H,

t St <t :
n-ka'/2 n-k1-a'/2

The acceptance and rejection regions for this test are given in Figure 12.7.
(4) The Bonferroni corrected p-value = min [2 [g]l’r(t,,_ 2 >, 1]
=minlk(k - 1)Pr(t_, > |t|, 1)] = [’2‘) LSD p-value.

This test is called the Bonferroni multiple-comparisons procedure.

K
The rationale behind this procedure is that in a study with k groups, there are [ 2}

possible two-group comparisons. Suppose each two-group comparison is con-
ducted at the ao* level of significance. Let E be the event that at least one of the
two-group comparisons is statistically significant. Pr(E) is sometimes referred to as
the “experiment-wise type I error.” We wish to determine the value a* such that
Pr(E) = a. To find a*, we note that



