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-The bootstrap Montecarlo method to evaluate estimates and confidence
interval

from just one sample (see R chap 6.7, and W&S chap 19)

-confidence intervals definition and evaluation using t-distributions and chi-
square distributions formulas and examples.

HOMEWORK to be done on the LOG-BOOK
REVIEW QUESTION 6B AND & 6C in Rosners’ textbook

The study material for this lecture can be found in chap. 6 of Rosner’s
textbook



WRITTEN HOMEWORK DUE MONDAY APRIL 25
DA_2022_HW_25_4
To be collected in your DA_2022 logbook

REVIEW QUESTIONS 6B  rartone

What is a sampling distribution?
Why is the sample mean X used to estimate the population mean u?
What is the difference between a standard deviation and a standard error?

- W N -

Suppose we have a sample of five values of hemoglobin A1c (HgbA1c) obtained from
a single diabetic patient. HgbA1c is a serum measure often used to monitor compli-
ance among diabetic patients. The values are 8.5%, 9.3%, 7.9%, 9.2%, and 10.3%.

(@) What is the standard deviation for this sample?
(b) What is the standard error for this sample?



Part two

REVIEW QUESTIONS 6C

1 What does a 95% CIl mean?
2 (a) Derive a 95% ClI for the underlying mean HgbA1c in Review Question 6B.4.

(b) Suppose that diabetic patients with an underlying mean HgbA1c < 7% are
considered in good compliance. How do you evaluate the compliance of the
patient in Review Question 6B.47

3 (@) What is the difference between a t distribution and a normal distribution?

(b) What is the 95th percentile of a t distribution with 30 df? What symbol is used
to denote this percentile?

4 What is the central-limit theorem? Why is it important in statistics?

Exercise check the central limit theorem



6.12

Summary

This chapter introduced the concept of a sampling distribution. This concept is
crucial to understanding the principles of statistical inference. The fundamental
idea is to forget about our sample as a unique entity and instead regard it as a ran-

dom sample from all possible samples of size n that could have been drawn from
the population under study. Using this concept, X was shown to be an unbiased

estimator of the population mean p; that is, the average of all sample means over
all possible random samples of size n that could have been drawn will equal the

population mean. Furthermore, if our population follows a normal distribution,
then X has minimum variance among all possible unbiased estimators and is thus
called a minimum-variance unbiased estimator of . Finally, if our population follows
a normal distribution, then X also follows a normal distribution. However, even
if our population is not normal, the sample mean still approximately follows a
normal distribution for a sufficiently large sample size. This very important idea,
which justifies many of the hypothesis tests we study in the rest of this book, is
called the central-limit theorem.

The idea of an interval estimate (or CI) was then introduced. Specifically, a
95% CI is defined as an interval that will contain the true parameter for 95% of
all random samples that could have been obtained from the reference population.
The preceding principles of point and interval estimation were applied to the
following:

(1) Estimating the mean p of a normal distribution

(2) Estimating the variance o? of a normal distribution

(3) Estimating the parameter p of a binomial distribution

(4) Estimating the parameter A of a Poisson distribution

(5) Estimating the expected value p of a Poisson distribution

The t and chi-square distributions were introduced to obtain interval esti-
mates for (1) and (2), respectively. Finally, the bootstrap CI was introduced to
obtain confidence limits for the mean when the assumption of normality is
questionable, and can also be applied to obtain confidence limits for other pa-
rameters from other distributions.

In Chapters 7 through 14, the discussion of statistical inference continues,
focusing primarily on testing hypotheses rather than on parameter estimation. In
this regard, some parallels between inference from the points of view of hypothesis
testing and ClIs are discussed.



6.7 ESTIMATION OF THE VARIANCE OF A DISTRIBUTION

Point Estimation

In Chapter 2, the sample variance was defined as
1
s? = —1 3 (x - %)
-1 i=1

This definition is somewhat counterintuitive because the denominator would be
expected to be n rather than n — 1. A more formal justification for this definition is
now given. If our sample x, . . ., x, is considered as coming from some population
with mean p and variance ¢?, then how can the unknown population variance o?
be estimated from our sample? The following principle is useful in this regard:

6.10 Let X, ..., X, be a random sample from some population with mean p and
variance ¢% The sample variance $? is an unbiased estimator of ¢ over all
possible random samples of size n that could have been drawn from this
population; that is, E(S?) = ¢

Therefore, if repeated random samples of size n are selected from the population,
as was done in Table 6.3, and the sample variance s? is computed from each sample,
then the average of these sample variances over a large number of such samples of size
n is the population variance o?. This statement holds for any underlying distribution.

tends to underestimate the underlying variance o® by a factor of (n — 1)/n. This factor
is considerable for small samples but tends to be negligible for large samples. A more
complete discussion of the relative merits of different estimators for o® is given in [3].



 Example 2: We are looking for an estimator of the
variance of a random variable, we propose the following
two estimators:

n n

Z(Xi_‘X_n)z Z(Xi—X—n)z

Sn2: i=1 and Rn2: i=1
n n—1

Which, in your opinion, is the best estimator of o~ ?

S=1/n) (X/-2X,X,+X?) and

S,’=1/n) X}?-2T,> X/n+T:=1/n) X -T

then E(S,)=E(X’)-E(T:)=0’+m’—V (T,)-E(T,)
2):n—1 2 2

and E(Snz)zoz—c—2 so E(S,)=——0" and b,=—9-
n n n n

By a quite similar calculation we find b,.=0.

This quantities are two estimators of the variance because
they are unbiased or asymptotically unbiased.

R,,2 is the best estimator because it has no bias.



DEFINITION 6.14

DEFINITION 6.15

To obtain an interval estimate for o? a new family of distributions, called
chi-square (x?) distributions, must be introduced to enable us to find the sampling
distribution of §? from sample to sample.

IfG=2n:X,-2

i=1
where X, ..., X ~N(0,1)

and the X;’s are independent, then G is said to follow a chi-square distribution
with n degrees of freedom (df’). The distribution is often denoted by X

The chi-square distribution is actually a family of distributions indexed by the
parameter n referred to, again, as the degrees of freedom, as was the case for the ¢t
distribution. Unlike the t distribution, which is always symmetric about O for any
degrees of freedom, the chi-square distribution only takes on positive values and is
always skewed to the right. The general shape of these distributions is indicated in
Figure 6.8.

For n =1, 2, the distribution has a mode at O [3]. For n = 3, the distribution has
a mode greater than O and is skewed to the right. The skewness diminishes as n
increases. It can be shown that the expected value of a x2 distribution is 7 and the
variance is 2n.

The uth percentile of a x5 distribution (i.e., a chi-square distribution with d df) is de-
noted by xﬁ,u, where Pr(y3 < x‘z,'u) = u. These percentiles are shown in Figure 6.9 for a
chi-square distribution with 5 df and appear in Table 6 in the Appendix.



FIGURE 6.8

General shape of various y? distributions with d df
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FIGURE 6.9 Graphic display of the percentiles of a y? distribution

AS
See table 6 in the appendix
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Table 6 is constructed like the t table (Table S), with the degrees of freedom (d)
indexed in the first column and the percentile (1) indexed in the first row. The main
difference between the two tables is that both lower (u < 0.5) and upper (u > 0.5) per-
centiles are given for the chi-square distribution, whereas only upper percentiles are

given for the t distribution. The t distribution is symmetric about 0, so any lower
percentile can be obtained as the negative of the corresponding upper percentile.
Because the chi-square distribution is, in general, a skewed distribution, there is no
simple relationship between the upper and lower percentiles.



EXAMPLE 6.40

EXAMPLE 6.41

Practical numerical aspects

Find the upper and lower 2.5th percentiles of a chi-square distribution with 10 df.

Solution: According to Appendix Table 6, the upper and lower percentiles are given,
respectively, by

For values of d not given in Table 6, a computer program, such as Excel, R, or
Stata, can be used to obtain percentiles.

For example, in Excel the CHIINV function can be used to obtain upper percen-
tiles of the chi-square distribution. Specifically, CHIINV(p,d) = upper pth percentile
of a chi-square distribution with d d.f. = x7, . In R, the qchisq function can be used
to obtain percentiles of the chi-square distribution. Specifically, qchisq(p,d) = lower
pth percentile of a chi-square distribution with d d.f. = x .

Find the upper and lower Sth percentile of a chi-square distribution with 8 d.f. using
Excel and R.

Solution:

Excel
Theupper Sth percentile= xgpgs = CHIINV(0.05,8) =15.51.
Thelower Sth percentile= xgl_os = CHIINV(0.95,8) = 2.73.

Theupper Sth percentile= x§,_95 = qchisq(0.95,8) =15.51.

Thelower Sth percentile= xg‘_os = qchisq(0.05,8) = 2.73.
These are denoted by chisq_8_upper and chisq_8_lower in the R output below.



Interval Estimation See demonstration p. 185-6

To obtain a 100% X (1 — o) CI for o we use the following formula:

EQUATION 6.11 A 100% x (1 - o) CI for o? is given by

[(n - l)sz/xﬁ—l,l—aIZ'(n - l)sz/X§—1,a/2:|

To show why this is true, we need to find the sampling distribution of $%. Suppose we
assume that X, ..., X ~ N(u,0?. Then it can be shown that

2,,2

EQUATION 6.12 sk%



REMINDER

EQUATION 6.6 Confidence Interval for the Mean of a Normal Distribution

A 100% X (1 — o) CI for the mean p of a normal distribution with unknown
variance is given by

(’7 ~ty11-0/2S/N, X+t 11 g2 5\ )

A shorthand notation for the CI is
Xtt, 11-q/2 s/\n

Note that the CI for o? in Equation 6.11 is only valid for normally distributed

samples. If the underlying distribution is not normal, then the level of confidence for
this interval may not be 1 — a even if the sample size is large. This is different from

the CI for u given in Equation 6.6 (see page 176), which will be valid for large n based
on the central-limit theorem, even if the underlying distribution is not normal.




EXAMPLE 6.39

TABLE 6.6

Hypertension An Arteriosonde machine “prints” blood-pressure readings on a tape so
that the measurement can be read rather than heard. A major argument for using
such a machine is that the variability of measurements obtained by different observ-
ers on the same person will be lower than with a standard blood-pressure cuff.

Suppose we have the data in Table 6.6, consisting of systolic blood pressure (SBP)
measurements obtained on 10 people and read by two observers. We use the differ-
ence d, between the first and second observers to assess interobserver variability. In
particular, if we assume the underlying distribution of these differences is normal
with mean p and variance ¢?, then it is of primary interest to estimate o2 The higher
o’is, the higher the interobserver variability.

SBP measurements (mm Hg) from an Arteriosonde machine obtained
from 10 people and read by two observers

Observer
Person (i) 1 2 Difference (d)
1 194 200 -6
2 126 123 +3
3 130 128 +2
4 98 101 -3
5 136 135 +1
6 145 145 0
7 110 111 -1
8 108 107 +1
9 102 99 +3
10 126 128 -2

We have seen previously that an unbiased estimator of the variance o? is given
by the sample variance §2. In this case,

Mean difference = (-6 +3+----2)/10 =-0.2=d

n
Sample variance = s* = Y (d; - d)* /9
i1

=[(-6+02 +-+(-2+02) ]9 =8.178

How can an interval estimate for o2 be obtained?



EXAMPLE 6.42

Hypertension We now return to the specific data set in Example 6.39 (see page 182).
Suppose we want to construct a 95% CI for the interobserver variability as defined
by o

Solution: Because there are 10 people and s* = 8.178, the required interval is given by

(952 /x5,975:95 /xg,_ozs) =[9(8.178)/19.02,9(8.178)/2.70 | = (3.87,27.26)

Similarly, a 95% CI for o is given by (J3.87,J27.26) =(1.97,5.22). Notice that the CI
for o2 is not symmetric about s? = 8.178, in contrast to the CI for p, which was sym-
metric about X. This characteristic is common in CIs for the variance.

We could use the CI for o? to make decisions concerning the variability of the
Arteriosonde machine if we had a good estimate of the interobserver variability of
blood-pressure readings from a standard cuff. For example, suppose we know from
previous work that if two people are listening to blood-pressure recordings from a
standard cuff, then the interobserver variability as measured by the variance of the

set of differences between the readings of two observers is 35. This value is outside
the range of the 95% CI for ¢%(3.87, 27.26), and we thus conclude that the interob-
server variability is reduced by using an Arteriosonde machine. Alternatively, if this
prior variance were 15, then we could not say that the variances obtained from us-
ing the two methods are different.
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Bootstrap sampling
https://datasciencechalktalk.com/2019/11/12/bootstrap-sampling-an-implementation-

with-python/
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Bootstrap standard errors and confidence intervals

The bootstrap is a computer-intensive procedure used to approximate the sampling distribution
of an estimate. Bootstrapping creates this sampling distribution by taking new samples
randomly and repeatedly from the data themselves. Unlike simulation, the bootstrap is not
directly intended for testing hypotheses. Instead, the bootstrap is used to find a standard error or
confidence interval for a parameter estimate. The bootstrap is especially useful when no
formula is available for the standard error or when the sampling distribution of the estimate of
interest is unknown.

Bootstrapping uses resampling from the data to approximate the sampling distribution of an
estimate.

Recall from Section 4.1 that the sampling distribution is the probability distribution of
sample estimates when a population is sampled repeatedly in the same way. The standard error
is the standard deviation of this sampling distribution. In principle, therefore, we might obtain a
standard error of an estimate by taking repeated samples from the population, calculating the
sample estimate each time, and then taking the standard deviation of the many sample
estimates. In reality, however, we can’t do repeated sampling; collecting data is expensive, and
it is best to put all individuals collected into one sample if we had more data. However, if the
size of our sample from the population is large, then we do have easy access to a part of the
popula-tion—namely, the part that was already sampled. Bootstrapping is a kind of repeated
sampling, but instead of taking individuals from the population directly, we use a computer to
draw the samples from the data, a procedure called “resampling.” If the data set is large
enough, then bootstrap samples drawn in this way will have statistical properties very similar to
the distribution of possible sample estimates obtained from the population itself.

The bootstrap is therefore a bit strange: we resample from the data itself to generate many
new data sets, and from these we infer the sampling distribution of the estimate. If you think
about it, this is almost cheating, because we use the one and only data set to infer the
distribution of estimates from all possible data sets. Hence the name “bootstrap,” coming from
the idea of picking yourself up by your own bootstraps.? The method was proposed by Bradley
Efron in 1979, when desktop computers started to become available. The bootstrap is now
commonly used in biology and other sciences.

Example 19.2 shows how to calculate a standard error and a confidence interval using the
bootstrap. This particular example estimates a median, a simple quantity for which it is
otherwise difficult to calculate a sampling distribution. Bootstrapping, however, can be applied

to essentially any type of estimate.?



EXAMPLE 19.2 The language center in chimps' brains

One of the things that makes humans different from other organisms is our well-developed
capacity for complex speech. Chimps and gorillas can learn some rudimentary language, but
with a capacity far below that of humans. Speech production in humans is associated with a part
of the brain called "Brodmann’s area 44,” which is part of Broca’'s area. In humans, this area is
larger in the left hemisphere of the brain than in the right, and this asymmetry has been shown

to be important for language development. With the advent of magnetic resonance imaging
(MRI), it is possible to ask whether this area is asymmetric in other apes’ brains as well. A
sample of 20 chimpanzees were scanned with MRI, and the asymmetry of their Brodmann's
area 44 was recorded (Cantalupo and Hopkins 2001). This asymmetry score is left
measurement minus the right, divided by the average of the two sides. The raw data are listed in
Table 19.2-1. The sample median asymmetry score was 0.14. We want to quantify the
uncertainty of this estimate of the population median by calculating its standard error.
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TABLE 19.2-1 Asymmetry scores for Brodmann's area 44 in 20

chimpanzees.
Name of chimp Asymmetry score
Austin 0.30
Carmichael 0.16 because the range of values includes negative numbers. What to do? Bootstrapping provides a
Chuck —0.24 suitable approach.
Dobbs -0.25 .
Donald 0.36 » 5
Hoboh 0.17 s it
Jimmy Carter 0.11 €2
Lazarus 0.12 ) .
Merv 034 -05-025 0 025 05 075 v 125
Brod ‘s area 44 asy y score
Storer 0.32 Figure 19.2-1
Ada 071 oo
Anna 0.09 FIGURE 19.2-1 The frequency distribution of asymmetry scores for Brodmann's area
Atlanta 1.12 44 in 20 chimpanzees. A negative score indicates that the area is larger on the right
Cheri 0.22 side of the chimp's brain, while chimps with positive scores show a larger area in the
el Bty left hemisphere.
Jeannie 1.19
Kengee 0.01
Lana -0.24
Lulu 0.24
Mary -0.30
Panzee -0.16

The frequency distribution of asymmetry scores shown in Figure 19.2-1 is skewed to the
right and might even be bimodal. A transformation of these data would be difficult to find



because the range of values includes negative numbers. What to do? Bootstrapping provides a
suitable approach.

0
-05-025 0 025 05 075 1V 135

Brodmann’s area 44 asymmetry score
Figure 19.21

Whitlock et al, The Analysis of Biological Data, 2e,
© 2015 W, H. Freeman and Company

FIGURE 19.2-1 The frequency distribution of asymmetry scores for Brodmann's area
44 in 20 chimpanzees. A negative score indicates that the area is larger on the right
side of the chimp's brain, while chimps with positive scores show a larger area in the
left hemisphere.



Bootstrap standard error

To generate a bootstrap standard error, there are four steps to follow. First, we list the steps all
at once here, and then we go through them again with the data.

. Use the computer to take a random sample of individuals from the original data. Each
individual in the data has an equal chance of being sampled. The bootstrap sample should
contain the same number of individuals as the original data. Each time an observation is
chosen, it is left available in the data set to be sampled again, so the probability of it being

sampled remains unchanged.?

'. Calculate the estimate using the measurements in the bootstrap sample from step 1. This is
the first bootstrap replicate estimate.

). Repeat steps 1 and 2 a large number of times (10,000 times is reasonable). The frequency
distribution of all bootstrap replicate estimates approximates the sampling distribution of the
estimate.

l. Calculate the sample standard deviation of all the bootstrap replicate estimates obtained in
steps 1-3. The resulting quantity is called the bootstrap standard error.

The bootstrap standard error is the standard deviation of the bootstrap replicate estimates
obtained from resampling the data.

The last point is worth repeating: the standard error is the standard deviation of the
sampling distribution of estin_lates.5



We can now apply these four steps to the chimp data. There are 20 data points in the
sample, so each bootstrap sample must also have 20 measurements. Each of the 20
measurements in the bootstrap sample is chosen with equal probability from the values in the
original data. Applying step 1, the following is the first bootstrap replicate that we obtained:

024 036 030 016 034 -024 030 119 032 032
036 001 o001 011 011 -025 012 032 -024 017

Each of the measurements in this first bootstrap sample is present in the original data set.
By chance, some of the original data points are present more than once in the bootstrap sample.
For example, the score 0.32 (from the chimp named Storer) is present three times. Also by
chance, some of the original data points are absent from this first bootstrap sample. For
example, the score 0.71 (from the chimp named Ada) was not sampled. The sample median of
this bootstrap sample is 0.205, so this is our first bootstrap replicate estimate of the median
asymmetry score (step 2).



We repeated this process 10,000 times, calculating the sample median of the measurements
each time (step 3). Figure 19.2-2 shows the frequency distribution of the bootstrap replicate
estimates of the sample median.

1400
1200 4

1000

Frequency
3
b

0.2 0 0.2 04

Bootstrap replicate estimates of the
median asymmetry

Figure 19.2-2
Whitlock et al, The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 19.2-2 The distribution of 10,000 bootstrap replicate estimates for the
median asymmetry of Brodmann’s area 44 in chimpanzees.

The mean of the bootstrap replicate estimates is 0.142, which is very close to the estimated
median from the original data (0.14). Remember that the bootstrap procedure is calculating a

sampling distribution for an estimate, not a null distribution for a hypothesis test. As such, the
overall mean of the bootstrap replicate estimates should be close to the estimate first calculated

on the original data.?
The standard deviation of these bootstrap replicate estimates is 0.085 (step 4). This is the

bootstrap standard error of our sample median: SE = 0.085.
Because the bootstrap samples come from the data, which generally do not represent the

full population, the bootstrap standard error tends to be slightly smaller than the true standard
error. This effect is negligible when the sample size is large.






EQUATION 6.6

Beyond normality

Confidence Interval for the Mean of a Normal Distribution
A 100% x (1 — o) CI for the mean p of a normal distribution with unknown

variance is given by
(’7 ~ty11-a/2S/N, X+t 11 g2 8/ )

A shorthand notation for the CI is
Xtt, 11q25/n

Infectious Disease Suppose we refer to the hospital stay data in Table 2.13 (HOSPI-
TAL.DAT). Obtain a point estimate and a 95% Cl for the duration of hospital stay.

Solution: It is reasonable to consider using large sample confidence limits for the
mean of a normal distribution given in Equation 6.6 (p. 176). Indeed, we have that
x = 8.6 days, s = 5.72 days, and n = 25.

Thus, the large sample 95% CI for p would be:

Xtty o755/

= 8.6+ 2.064(5.72) /25
=8.6+2.36
= (6.24,10.96).

However, the confidence interval formula in Equation 6.6 assumes that the distribution
of hospital stay is normal or that the central limit theorem can be used. To check this
assumption, we plot the distribution of duration of stay using R as shown in Figure 6.10.



Plot of duration of stay in HOSPITAL.DAT

Histogram of Dur_stay
10~

(0]
|

(o)}
|

Frequency
=N
1

N
|

o

0 S 10 15 20 25 30
Dur_stay

The distribution appears right-skewed and far from being normal. How can we
check the validity of the 95% Cl computed in Example 6.63? A simulation-based ap-
proach, known as the Bootstrap approach, can be used for this purpose for estimat-
ing confidence intervals.



Bootstrap sample

Suppose we have an original sample denoted by X = {x, ..., x_}. A bootstrap sample
Y={y, ..., y ) is a sample chosen with replacement from X such that each observa-
tion in X has an equal probability of being chosen. Thus, it is possible that the same
observation x, will be chosen for multiple observations in Y, or that some observa-
tion x, will not be chosen for any observation in Y. Mathematically,

Pr(Y, = x].) =1/n,1=1, ..., m;j=1,..., n,

where Y, ..., Y_ are independent. In most applications, m = n.

The rationale for bootstrap sampling is that the population distribution of X is
estimated from the empirical distribution {x,, ..., x_} each with probability 1/n. The
advantage is that no specific functional form is assumed for the distribution of X.



Bootstrap confidence intervals

The idea is that if we select many bootstrap samples, compute the mean of each
sample, and plot the distribution of means, then this will reflect the variation
in the sample mean from the reference population. Thus, if we wish to obtain a
100% x (1 — o) CI for p, we can:

1. Generate N bootstrap samples of size n from the original sample. Typi-
cally, N is large (= 1000).
2. Compute the mean of each bootstrap sample.

3. Sort the means and determine the upper and lower 100% X (o/2) percen-
tile of the distribution (denoted by y, ,andy_,, respectively).
4. The Bootstrap 100% x (1 — o) CI for p is given by (y,,,, ¥,_.»)-

Note that this method of confidence interval estimation makes no assumptions as
to the underlying distribution of the original sample. If the central limit theorem
holds, the bootstrap CI in equation 6.25 should be approximately the same as the

large sample CI in equation 6.6.



Infectious Disease Determine a 95% CI for the mean duration of stay in the Data
Set HOSPITAL.DAT (Table 2.13) using bootstrap methods.

Solution: We use the sample command of R to select N = 1000 bootstrap samples
and the mean command to calculate the mean of each of the samples. We then use
the quantile command to determine the 2.5th and 97.5th percentiles of the 1000
sample means. The R code used for this purpose is given in Table 6.9.

The R code for obtaining 95% Bootstrap confidence limits for the mean duration of stay
in HOSPITAL.DAT.

> a<— numeric(1000)

> for (i in 1:1000){

+ alil<—mean(sample(Dur_stay,25,replace=T))}
> quantile(a,c(.025,.975))

2.5% 97.5%

6.68 11.04

We see that the 95% CI for u = (6.68, 11.04).
A histogram of the means of the 1000 bootstrap samples is given in Figure 6.11.
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The distribution of sample means looks slightly positively skewed, which is con-
sistent with the bootstrap 95% CI (6.68, 11.04) being asymmetric with respect to the
mean in the original sample (8.6) and notably different from the large sample 95%
CI (6.24, 10.96) given in the solution to Example 6.63.

Thus, the large sample 95% CI for p based on n = 25 is probably not ap-
propriate for this type of data and the bootstrap CI is preferable. The bootstrap
method for obtaining CI can also be used to obtain confidence limits for other
parameters. More details about bootstrap sampling is provided in Efron and
Tibshirani [4].



