Medicines for Cystic Fibrosis

pharmacogenetics *versus* genetic medicines

Cystic fibrosis is a multiorgan disorder

Lungs:

Bronchiectasis Formation of mucus plaque Chronic bacterial and fungal infections

Small Bowel:

Meconium ileus Distal intestinal obstruction syndrome

Pancreas & liver :

Exocrine insufficiency Malabsorption Steatorrhoea Pancreatitis Diabetes Cirrhosis

Reproductive tract: Infertility

but the lung is the most affected organ!

Cystic Fibrosis

- > CF is the most common lethal autosomal recessive condition in Europe (1/2500 live births)
- It is caused by a mutation in *Cystic Fibrosis Transmembrane Conductance Regulator* gene (*CFTR*), located on the long arm of chromosome 7.
- CFTR gene encodes a 1480 amino acid membrane protein (CFTR)

 CFTR is localized on the apical plasma membrane and functions as a regulated chloride channel.

CF mutations databases

At present, 2009 mutations in the *CFTR* gene have been reported including: missense (39,6%); frameshift (15,6%); splicing (11,4%); nonsense (8,3%); in frame deletions or insertions (2%), large deletions or insertions (2,6%); promoter mutations (0,7%); sequence variation (13,4%) and unknown (6,42%).

CFTR mutations are collected in the Cystic Fibrosis Mutation Database that relates to the details of discovery of specific mutations (CFTR1; http://www.genet.sickkids.on.ca/).

The Clinical and Functional TRanslation of CFTR (CFTR2, www.cftr2.org) collects clinical and experimental data of the most common 276 mutations: CF-causing (242); non-CF causing (12); mutations or mutations of varying clinical consequences (19); mutations of unknown significance (3). The CFTR2 website uses data from the 88.000 patients included in the database to provide information about the clinical signs and symptoms associated with specific mutations and the different mechanisms by which mutations cause CF disease

Classes of CFTR mutations

Normal	I	II	III	IV	V	VI
CI ⁻ CI ⁻ CI ⁻ CI ⁻ CI ⁻ CI ⁻ CI ⁻ CI ⁻ CI ⁻ Golgi	Absent functional CFTR Golgi	Absent functional CFTR Golgi	Defective channel regulation	Cl Defective CFTR channel Golgi	Cl ⁻ Scarce functional CFTR Golgi	Cl ⁻ Decreased CFTR membrane stability Golgi
Nascent CFTR Endoplasmic reticulum Full-length CFTR RNA Nucleus CFTR DNA	Absent nascent CFTR Endoplasmic reticulum Unstable truncated RNA Nucleus CFTR DNA	Protease destruction of misfolded CFTR Endoplasmic reticulum Full-length CFTR RNA Nucleus CFTR DNA	Nascent CFTR Endoplasmic reticulum Full-length CFTR RNA Nucleus CFTR DNA	Nascent CFTR Endoplasmic reticulum Full-length CFTR RNA Nucleus CFTR DNA	Scarce nascent CFTR Endoplasmic reticulum Correct RNA Incorrect RNA	Nascent CFTR Endoplasmic reticulum Full-length CFTR RNA Nucleus CFTR DNA
CETR defect	No functional	CFTR trafficking	Defective channel	Decreased channel	Reduced synthesis	Decreased CFTR
Type of mutations	CFTR protein Nonsense; frameshift;	defect Missense; aminoacid deletion	regulation Missense; aminoacid change	Conductance Missense; aminoacid change	of CFTR Splicing defect; missense	stability Missense; aminoacid change
Specific mutation examples	canonical splice Gly542X Trp1282X Arg553X 621+1G→T	Phe508del Asn1303Lys Ile507del Arg560Thr	Gly551Asp Gly178Arg Gly551Ser Ser549Asn	Arg117His Arg347Pro Arg117Cys Arg334Trp	3849+10kbC→T 2789+5G→A 3120+1G→A 5T	4326delTC Gln1412X 4279insA

Mutations in the CFTR gene can be divided into six classes. Class I mutations result in no protein production. Class II mutations (including the most prevalent, Phe508del) cause retention of a misfolded protein at the endoplasmic reticulum, and subsequent degradation in the proteasome. Class III mutations affect channel regulation, impairing channel opening (eg, Gly551Asp). Class IV mutants show reduced conduction—ie, decreased flow of ions (eg, Arg117His). Class V mutations cause substantial reduction in mRNA or protein, or both, Class VI mutations cause substantial plasma membrane instability and include Phe508del when rescued by most correctors (rPhe508del)

CFTR mutations and prevalence

CI- CI- CI- HCO ₃ - HCO ₃ - CI- Non-CF				CI- HCO3- CI-	CI- HCO3 CI-	CI- HCO ₃ CI-
Class of CFTR mutation	I	П	Ш	IV	V	VI
Protein output	No synthesis	Block in processing	Block in regulation	Reduced conductance	Reduced synthesis	Reduced half-life
Mutation example	G542X	F508	G551D	R117H	3489+10kb C>T	4326delTC
% of people with CF who have at least one mutation*	22%	88%	6%	6%	5%	5%
Small molecules**		VX-809,VX-661 correctors	VX-770 potentiator			

Figure 1. Classes of cystic fibrosis transmembrane conductance regulator (CFTR) mutations. Cystic fibrosis transmembrane conductance regulator mutations are categorized into 6 classes based on the mutation function or protein output [5]. A red "x" or arrow indicates where each CFTR mutant protein is affected. A common mutation example is listed for each class. * People with CF can have more than one mutation; thus, the percentage is representative of the entire population and does not add up to 100. Percentages acquired from the Cystic Fibrosis Foundation (U.S., 2017). ** Potentiators and correctors provide relief to some people with CF in these classes. Additional mutations have been approved for use of CFTR modulators.

Efects of CFTR dysfunction

ASL=airway surface liquid. CFTR=cystic fibrosis transmembrane conductance regulator. ENaC=epithelial sodium channel.

Relation between phenotype and genotype

Relation between phenotype, genotype, and CFTR function in patients with cystic fibrosis, carriers, and healthy individuals. CFTR=cystic fibrosis transmembrane conductance regulator.

current therapies for CF patients

Symptomatic therapies

- anti-microbial drugs
- anti-inflammatory drugs
- mucolytic

Restore the activity of dysfunctional CFTR

correctors and potenziators are allele specific treatments which correct specific defects.

very recently the potentiator VX-770 enters the clinic for the treatment of G551D CF patients (about 4% of CF patients in USA, more rare in Italy)

kalydecoTM approved by FDA (Jan 2012) for people age 6 or older with G551D mutation of CF

pharmacogenetics

The improved understanding of cystic fibrosis (CF) pharmacogenetics has led to licensing of drugs that begin to address the molecular defect caused by certain cystic fibrosis transmembrane conductance regulator (CFTR) mutations.

Ivacaftor (kalydeco VX-770) is a corrector identified by high-throughput screening; it is specific for the Gly551Asp mutation

lumacaftor (VX-809) is a potentiator specifically targeting DF508 mutation, it shows some activity in combination with ivacaftor

Ivacaftor and lumacaftor, (orkambi) on going clinical trials

	Class	Drug	Effect on sweat chloride	Clinical response		Reference	
				FEV ₁	Pulmonary exacerbations	-	
Gly551Asp	III	lvacaftor	50% decrease	10% increase	40% decrease	118–122	
Gly551Ser, Gly178Arg, Gly1244Glu, Gly1349Asp, Ser549Asn, Ser549Arg, Ser1251Asn, Ser1255Pro	III	lvacaftor	50% decrease	10% increase	NK	123	
Arg117His	IV	lvacaftor	25% decrease	3% increase (>18 years)	NK	124	
Stop mutations (eg, Gly542X)	I	Ataluren	No change	No change	No effect	125, 126	
Phe508del	II	Ivacaftor plus Iumacaftor	8% decrease	3% increase	30% decrease	127, 128	
FEV ₁ =forced expiratory volume in 1 s. NK=not known.							

Table 2: Summary of clinical trial results of precision medicine-based treatments of CFTR dystinction by small molecules in people with cystic fibrosis, by mutation